summaryrefslogtreecommitdiff
path: root/boost/container/flat_set.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/container/flat_set.hpp')
-rw-r--r--boost/container/flat_set.hpp625
1 files changed, 352 insertions, 273 deletions
diff --git a/boost/container/flat_set.hpp b/boost/container/flat_set.hpp
index f36730972e..09c95eb2f5 100644
--- a/boost/container/flat_set.hpp
+++ b/boost/container/flat_set.hpp
@@ -1,6 +1,6 @@
//////////////////////////////////////////////////////////////////////////////
//
-// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
+// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
@@ -45,31 +45,31 @@ template <class T, class Pred, class A>
class flat_set;
template <class T, class Pred, class A>
-inline bool operator==(const flat_set<T,Pred,A>& x,
+inline bool operator==(const flat_set<T,Pred,A>& x,
const flat_set<T,Pred,A>& y);
template <class T, class Pred, class A>
-inline bool operator<(const flat_set<T,Pred,A>& x,
+inline bool operator<(const flat_set<T,Pred,A>& x,
const flat_set<T,Pred,A>& y);
/// @endcond
-//! flat_set is a Sorted Associative Container that stores objects of type Key.
-//! flat_set is a Simple Associative Container, meaning that its value type,
-//! as well as its key type, is Key. It is also a Unique Associative Container,
-//! meaning that no two elements are the same.
-//!
+//! flat_set is a Sorted Associative Container that stores objects of type Key.
+//! flat_set is a Simple Associative Container, meaning that its value type,
+//! as well as its key type, is Key. It is also a Unique Associative Container,
+//! meaning that no two elements are the same.
+//!
//! flat_set is similar to std::set but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_set invalidates
//! previous iterators and references
//!
-//! Erasing an element of a flat_set invalidates iterators and references
+//! Erasing an element of a flat_set invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
-class flat_set
+class flat_set
{
/// @cond
private:
@@ -100,227 +100,245 @@ class flat_set
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
- //! <b>Effects</b>: Defatuls constructs an empty flat_map.
- //!
+ //! <b>Effects</b>: Default constructs an empty flat_set.
+ //!
//! <b>Complexity</b>: Constant.
explicit flat_set()
: m_flat_tree()
{}
- //! <b>Effects</b>: Constructs an empty flat_map using the specified
+ //! <b>Effects</b>: Constructs an empty flat_set using the specified
//! comparison object and allocator.
- //!
+ //!
//! <b>Complexity</b>: Constant.
explicit flat_set(const Pred& comp,
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a)
{}
- //! <b>Effects</b>: Constructs an empty map using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty set using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
- //!
- //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
- flat_set(InputIterator first, InputIterator last,
+ flat_set(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(comp, a)
+ : m_flat_tree(comp, a)
{ m_flat_tree.insert_unique(first, last); }
- //! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and
//! allocator, and inserts elements from the ordered unique range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
//! unique values.
- //!
+ //!
//! <b>Complexity</b>: Linear in N.
+ //!
+ //! <b>Note</b>: Non-standard extension.
template <class InputIterator>
- flat_set(ordered_unique_range_t, InputIterator first, InputIterator last,
+ flat_set(ordered_unique_range_t, InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
+ : m_flat_tree(ordered_range, first, last, comp, a)
{}
- //! <b>Effects</b>: Copy constructs a map.
- //!
+ //! <b>Effects</b>: Copy constructs a set.
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_set(const flat_set<T,Pred,A>& x)
- : m_flat_tree(x.m_flat_tree) {}
+ flat_set(const flat_set& x)
+ : m_flat_tree(x.m_flat_tree)
+ {}
- //! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
+ //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
//! <b>Postcondition</b>: x is emptied.
- flat_set(BOOST_RV_REF(flat_set) mx)
+ flat_set(BOOST_RV_REF(flat_set) mx)
: m_flat_tree(boost::move(mx.m_flat_tree))
{}
+ //! <b>Effects</b>: Copy constructs a set using the specified allocator.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_set(const flat_set& x, const allocator_type &a)
+ : m_flat_tree(x.m_flat_tree, a)
+ {}
+
+ //! <b>Effects</b>: Move constructs a set using the specified allocator.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
+ flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a)
+ : m_flat_tree(boost::move(mx.m_flat_tree), a)
+ {}
+
//! <b>Effects</b>: Makes *this a copy of x.
- //!
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_set<T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x)
+ flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
- //! <b>Effects</b>: Makes *this a copy of x.
- //!
+ //! <b>Effects</b>: Makes *this a copy of the previous value of xx.
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_set<T,Pred,A>& operator=(BOOST_RV_REF(flat_set) mx)
+ flat_set& operator=(BOOST_RV_REF(flat_set) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- key_compare key_comp() const
+ key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- value_compare value_comp() const
+ value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
+ allocator_type get_allocator() const
{ return m_flat_tree.get_allocator(); }
- const stored_allocator_type &get_stored_allocator() const
+ const stored_allocator_type &get_stored_allocator() const
{ return m_flat_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator begin()
+ iterator begin()
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator begin() const
+ const_iterator begin() const
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cbegin() const
+ const_iterator cbegin() const
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator end()
+ iterator end()
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator end() const
+ const_iterator end() const
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cend() const
+ const_iterator cend() const
{ return m_flat_tree.cend(); }
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return m_flat_tree.rbegin(); }
+ reverse_iterator rbegin()
+ { return m_flat_tree.rbegin(); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return m_flat_tree.rbegin(); }
+ const_reverse_iterator rbegin() const
+ { return m_flat_tree.rbegin(); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crbegin() const
- { return m_flat_tree.crbegin(); }
+ const_reverse_iterator crbegin() const
+ { return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
+ const_reverse_iterator rend() const
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crend() const
+ const_reverse_iterator crend() const
{ return m_flat_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- bool empty() const
+ bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type size() const
+ size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type max_size() const
+ size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
@@ -331,10 +349,10 @@ class flat_set
void swap(flat_set& x)
{ m_flat_tree.swap(x.m_flat_tree); }
- //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -342,7 +360,7 @@ class flat_set
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator, bool> insert(insert_const_ref_type x)
+ std::pair<iterator, bool> insert(insert_const_ref_type x)
{ return priv_insert(x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
@@ -357,7 +375,7 @@ class flat_set
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -365,10 +383,10 @@ class flat_set
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
+ std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
{ return m_flat_tree.insert_unique(boost::move(x)); }
- //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
@@ -379,7 +397,7 @@ class flat_set
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator p, insert_const_ref_type x)
+ iterator insert(const_iterator p, insert_const_ref_type x)
{ return priv_insert(p, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
@@ -400,12 +418,12 @@ class flat_set
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
+ iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
{ return m_flat_tree.insert_unique(position, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
//!
- //! <b>Effects</b>: inserts each element from the range [first,last) if and only
+ //! <b>Effects</b>: inserts each element from the range [first,last) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
@@ -413,16 +431,31 @@ class flat_set
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
+ void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(first, last); }
+ //! <b>Requires</b>: first, last are not iterators into *this and
+ //! must be ordered according to the predicate and must be
+ //! unique values.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) .This function
+ //! is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(ordered_unique_range_t, InputIterator first, InputIterator last)
+ { m_flat_tree.insert_unique(ordered_unique_range, first, last); }
+
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object x of type T constructed with
- //! std::forward<Args>(args)... if and only if there is no element in the container
+ //! std::forward<Args>(args)... if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -435,7 +468,7 @@ class flat_set
{ return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
- //! std::forward<Args>(args)... in the container if and only if there is
+ //! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
@@ -471,14 +504,14 @@ class flat_set
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
+ //! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
- iterator erase(const_iterator position)
+ iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
@@ -487,7 +520,7 @@ class flat_set
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
+ size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
@@ -498,7 +531,7 @@ class flat_set
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- iterator erase(const_iterator first, const_iterator last)
+ iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
@@ -506,7 +539,7 @@ class flat_set
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
- void clear()
+ void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
@@ -522,34 +555,34 @@ class flat_set
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
- iterator find(const key_type& x)
+ iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
- const_iterator find(const key_type& x) const
+ const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
+ size_type count(const key_type& x) const
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
+ iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
+ const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
@@ -563,42 +596,42 @@ class flat_set
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
+ const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator, const_iterator>
- equal_range(const key_type& x) const
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator>
- equal_range(const key_type& x)
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type capacity() const
+ size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
+ //!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
- void reserve(size_type count)
+ void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
@@ -609,46 +642,46 @@ class flat_set
friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
private:
- std::pair<iterator, bool> priv_insert(const T &x)
+ std::pair<iterator, bool> priv_insert(const T &x)
{ return m_flat_tree.insert_unique(x); }
- iterator priv_insert(const_iterator p, const T &x)
+ iterator priv_insert(const_iterator p, const T &x)
{ return m_flat_tree.insert_unique(p, x); }
/// @endcond
};
template <class T, class Pred, class A>
-inline bool operator==(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator==(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class T, class Pred, class A>
-inline bool operator<(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator<(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class T, class Pred, class A>
-inline bool operator!=(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator!=(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return !(x == y); }
template <class T, class Pred, class A>
-inline bool operator>(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator>(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return y < x; }
template <class T, class Pred, class A>
-inline bool operator<=(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator<=(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return !(y < x); }
template <class T, class Pred, class A>
-inline bool operator>=(const flat_set<T,Pred,A>& x,
- const flat_set<T,Pred,A>& y)
+inline bool operator>=(const flat_set<T,Pred,A>& x,
+ const flat_set<T,Pred,A>& y)
{ return !(x < y); }
template <class T, class Pred, class A>
-inline void swap(flat_set<T,Pred,A>& x, flat_set<T,Pred,A>& y)
+inline void swap(flat_set<T,Pred,A>& x, flat_set<T,Pred,A>& y)
{ x.swap(y); }
/// @cond
@@ -675,31 +708,31 @@ template <class T, class Pred, class A>
class flat_multiset;
template <class T, class Pred, class A>
-inline bool operator==(const flat_multiset<T,Pred,A>& x,
+inline bool operator==(const flat_multiset<T,Pred,A>& x,
const flat_multiset<T,Pred,A>& y);
template <class T, class Pred, class A>
-inline bool operator<(const flat_multiset<T,Pred,A>& x,
+inline bool operator<(const flat_multiset<T,Pred,A>& x,
const flat_multiset<T,Pred,A>& y);
/// @endcond
-//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
-//! flat_multiset is a Simple Associative Container, meaning that its value type,
+//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
+//! flat_multiset is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key.
//! flat_Multiset can store multiple copies of the same key value.
-//!
+//!
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_multiset invalidates
//! previous iterators and references
//!
-//! Erasing an element of a flat_multiset invalidates iterators and references
+//! Erasing an element of a flat_multiset invalidates iterators and references
//! pointing to elements that come after (their keys are equal or bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
-class flat_multiset
+class flat_multiset
{
/// @cond
private:
@@ -729,8 +762,8 @@ class flat_multiset
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
- //! <b>Effects</b>: Defatuls constructs an empty flat_map.
- //!
+ //! <b>Effects</b>: Default constructs an empty flat_multiset.
+ //!
//! <b>Complexity</b>: Constant.
explicit flat_multiset()
: m_flat_tree()
@@ -744,187 +777,219 @@ class flat_multiset
flat_multiset(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(comp, a)
+ : m_flat_tree(comp, a)
{ m_flat_tree.insert_equal(first, last); }
- //! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and
//! allocator, and inserts elements from the ordered range [first ,last ). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
- //!
+ //!
//! <b>Complexity</b>: Linear in N.
+ //!
+ //! <b>Note</b>: Non-standard extension.
template <class InputIterator>
flat_multiset(ordered_range_t, InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
+ : m_flat_tree(ordered_range, first, last, comp, a)
{}
- flat_multiset(const flat_multiset<T,Pred,A>& x)
- : m_flat_tree(x.m_flat_tree) {}
+ //! <b>Effects</b>: Copy constructs a flat_multiset.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multiset(const flat_multiset& x)
+ : m_flat_tree(x.m_flat_tree)
+ {}
+
+ //! <b>Effects</b>: Move constructs a flat_multiset. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ flat_multiset(BOOST_RV_REF(flat_multiset) mx)
+ : m_flat_tree(boost::move(mx.m_flat_tree))
+ {}
+
+ //! <b>Effects</b>: Copy constructs a flat_multiset using the specified allocator.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multiset(const flat_multiset& x, const allocator_type &a)
+ : m_flat_tree(x.m_flat_tree, a)
+ {}
- flat_multiset(BOOST_RV_REF(flat_multiset) x)
- : m_flat_tree(boost::move(x.m_flat_tree))
+ //! <b>Effects</b>: Move constructs a flat_multiset using the specified allocator.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
+ flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a)
+ : m_flat_tree(boost::move(mx.m_flat_tree), a)
{}
- flat_multiset<T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x)
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
- flat_multiset<T,Pred,A>& operator=(BOOST_RV_REF(flat_multiset) mx)
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- key_compare key_comp() const
+ key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- value_compare value_comp() const
+ value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
+ allocator_type get_allocator() const
{ return m_flat_tree.get_allocator(); }
- const stored_allocator_type &get_stored_allocator() const
+ const stored_allocator_type &get_stored_allocator() const
{ return m_flat_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator begin()
+ iterator begin()
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator begin() const
+ const_iterator begin() const
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cbegin() const
+ const_iterator cbegin() const
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator end()
+ iterator end()
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator end() const
+ const_iterator end() const
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cend() const
+ const_iterator cend() const
{ return m_flat_tree.cend(); }
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return m_flat_tree.rbegin(); }
+ reverse_iterator rbegin()
+ { return m_flat_tree.rbegin(); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return m_flat_tree.rbegin(); }
+ const_reverse_iterator rbegin() const
+ { return m_flat_tree.rbegin(); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crbegin() const
- { return m_flat_tree.crbegin(); }
+ const_reverse_iterator crbegin() const
+ { return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
+ const_reverse_iterator rend() const
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crend() const
+ const_reverse_iterator crend() const
{ return m_flat_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- bool empty() const
+ bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type size() const
+ size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type max_size() const
+ size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
@@ -936,13 +1001,13 @@ class flat_multiset
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
- //! newly inserted element.
+ //! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(insert_const_ref_type x)
+ iterator insert(insert_const_ref_type x)
{ return priv_insert(x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
@@ -955,13 +1020,13 @@ class flat_multiset
#endif
//! <b>Effects</b>: Inserts a new value_type move constructed from x
- //! and returns the iterator pointing to the newly inserted element.
+ //! and returns the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(BOOST_RV_REF(value_type) x)
+ iterator insert(BOOST_RV_REF(value_type) x)
{ return m_flat_tree.insert_equal(boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container.
@@ -974,7 +1039,7 @@ class flat_multiset
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator p, insert_const_ref_type x)
+ iterator insert(const_iterator p, insert_const_ref_type x)
{ return priv_insert(p, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
@@ -997,7 +1062,7 @@ class flat_multiset
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
+ iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
{ return m_flat_tree.insert_equal(position, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
@@ -1009,14 +1074,28 @@ class flat_multiset
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
+ void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(first, last); }
+ //! <b>Requires</b>: first, last are not iterators into *this and
+ //! must be ordered according to the predicate.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) .This function
+ //! is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(ordered_range_t, InputIterator first, InputIterator last)
+ { m_flat_tree.insert_equal(ordered_range, first, last); }
+
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
- //! newly inserted element.
+ //! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
@@ -1062,14 +1141,14 @@ class flat_multiset
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
+ //! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
- iterator erase(const_iterator position)
+ iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
@@ -1078,7 +1157,7 @@ class flat_multiset
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
+ size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
@@ -1089,7 +1168,7 @@ class flat_multiset
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- iterator erase(const_iterator first, const_iterator last)
+ iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
@@ -1097,7 +1176,7 @@ class flat_multiset
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
- void clear()
+ void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
@@ -1113,34 +1192,34 @@ class flat_multiset
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
- iterator find(const key_type& x)
+ iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
- const_iterator find(const key_type& x) const
+ const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
+ size_type count(const key_type& x) const
{ return m_flat_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
+ iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
+ const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
@@ -1154,42 +1233,42 @@ class flat_multiset
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
+ const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator, const_iterator>
- equal_range(const key_type& x) const
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator>
- equal_range(const key_type& x)
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type capacity() const
+ size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
+ //!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
- void reserve(size_type count)
+ void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
@@ -1200,46 +1279,46 @@ class flat_multiset
friend bool operator< (const flat_multiset<K1,C1,A1>&,
const flat_multiset<K1,C1,A1>&);
private:
- iterator priv_insert(const T &x)
+ iterator priv_insert(const T &x)
{ return m_flat_tree.insert_equal(x); }
- iterator priv_insert(const_iterator p, const T &x)
+ iterator priv_insert(const_iterator p, const T &x)
{ return m_flat_tree.insert_equal(p, x); }
/// @endcond
};
template <class T, class Pred, class A>
-inline bool operator==(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator==(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class T, class Pred, class A>
-inline bool operator<(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator<(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class T, class Pred, class A>
-inline bool operator!=(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator!=(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return !(x == y); }
template <class T, class Pred, class A>
-inline bool operator>(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator>(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return y < x; }
template <class T, class Pred, class A>
-inline bool operator<=(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator<=(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return !(y < x); }
template <class T, class Pred, class A>
-inline bool operator>=(const flat_multiset<T,Pred,A>& x,
- const flat_multiset<T,Pred,A>& y)
+inline bool operator>=(const flat_multiset<T,Pred,A>& x,
+ const flat_multiset<T,Pred,A>& y)
{ return !(x < y); }
template <class T, class Pred, class A>
-inline void swap(flat_multiset<T,Pred,A>& x, flat_multiset<T,Pred,A>& y)
+inline void swap(flat_multiset<T,Pred,A>& x, flat_multiset<T,Pred,A>& y)
{ x.swap(y); }
/// @cond