summaryrefslogtreecommitdiff
path: root/boost/container/flat_map.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/container/flat_map.hpp')
-rw-r--r--boost/container/flat_map.hpp1457
1 files changed, 1457 insertions, 0 deletions
diff --git a/boost/container/flat_map.hpp b/boost/container/flat_map.hpp
new file mode 100644
index 0000000000..2d4515b4a4
--- /dev/null
+++ b/boost/container/flat_map.hpp
@@ -0,0 +1,1457 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_CONTAINER_FLAT_MAP_HPP
+#define BOOST_CONTAINER_FLAT_MAP_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/container/detail/config_begin.hpp>
+#include <boost/container/detail/workaround.hpp>
+
+#include <boost/container/container_fwd.hpp>
+#include <utility>
+#include <functional>
+#include <memory>
+#include <stdexcept>
+#include <boost/container/detail/flat_tree.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/container/detail/mpl.hpp>
+#include <boost/container/allocator/allocator_traits.hpp>
+#include <boost/move/move.hpp>
+
+#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
+namespace boost {
+namespace container {
+#else
+namespace boost {
+namespace container {
+#endif
+
+/// @cond
+// Forward declarations of operators == and <, needed for friend declarations.
+#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
+template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
+#else
+template <class Key, class T, class Pred, class A>
+#endif
+class flat_map;
+
+template <class Key, class T, class Pred, class A>
+inline bool operator==(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y);
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y);
+
+namespace container_detail{
+
+template<class D, class S>
+static D &force(const S &s)
+{ return *const_cast<D*>((reinterpret_cast<const D*>(&s))); }
+
+template<class D, class S>
+static D force_copy(S s)
+{
+ D *vp = reinterpret_cast<D *>(&s);
+ return D(*vp);
+}
+
+} //namespace container_detail{
+
+
+/// @endcond
+
+//! A flat_map is a kind of associative container that supports unique keys (contains at
+//! most one of each key value) and provides for fast retrieval of values of another
+//! type T based on the keys. The flat_map class supports random-access iterators.
+//!
+//! A flat_map satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. A flat_map also provides
+//! most operations described for unique keys. For a
+//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
+//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! A is the allocator to allocate the value_types
+//! (e.g. <i>allocator< std::pair<Key, T> ></i>).
+//!
+//! flat_map is similar to std::map but it's implemented like an ordered vector.
+//! This means that inserting a new element into a flat_map invalidates
+//! previous iterators and references
+//!
+//! Erasing an element of a flat_map invalidates iterators and references
+//! pointing to elements that come after (their keys are bigger) the erased element.
+#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
+template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
+#else
+template <class Key, class T, class Pred, class A>
+#endif
+class flat_map
+{
+ /// @cond
+ private:
+ BOOST_COPYABLE_AND_MOVABLE(flat_map)
+ //This is the tree that we should store if pair was movable
+ typedef container_detail::flat_tree<Key,
+ std::pair<Key, T>,
+ container_detail::select1st< std::pair<Key, T> >,
+ Pred,
+ A> tree_t;
+
+ //This is the real tree stored here. It's based on a movable pair
+ typedef container_detail::flat_tree<Key,
+ container_detail::pair<Key, T>,
+ container_detail::select1st<container_detail::pair<Key, T> >,
+ Pred,
+ typename allocator_traits<A>::template portable_rebind_alloc
+ <container_detail::pair<Key, T> >::type> impl_tree_t;
+ impl_tree_t m_flat_tree; // flat tree representing flat_map
+
+ typedef typename impl_tree_t::value_type impl_value_type;
+ typedef typename impl_tree_t::pointer impl_pointer;
+ typedef typename impl_tree_t::const_pointer impl_const_pointer;
+ typedef typename impl_tree_t::reference impl_reference;
+ typedef typename impl_tree_t::const_reference impl_const_reference;
+ typedef typename impl_tree_t::value_compare impl_value_compare;
+ typedef typename impl_tree_t::iterator impl_iterator;
+ typedef typename impl_tree_t::const_iterator impl_const_iterator;
+ typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
+ typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
+ typedef typename impl_tree_t::allocator_type impl_allocator_type;
+ typedef allocator_traits<A> allocator_traits_type;
+
+
+
+ /// @endcond
+
+ public:
+
+ // typedefs:
+ typedef Key key_type;
+ typedef T mapped_type;
+ typedef typename std::pair<key_type, mapped_type> value_type;
+ typedef typename allocator_traits_type::pointer pointer;
+ typedef typename allocator_traits_type::const_pointer const_pointer;
+ typedef typename allocator_traits_type::reference reference;
+ typedef typename allocator_traits_type::const_reference const_reference;
+ typedef typename impl_tree_t::size_type size_type;
+ typedef typename impl_tree_t::difference_type difference_type;
+
+ typedef container_detail::flat_tree_value_compare
+ < Pred
+ , container_detail::select1st< std::pair<Key, T> >
+ , std::pair<Key, T> > value_compare;
+ typedef Pred key_compare;
+ typedef typename container_detail::
+ get_flat_tree_iterators<pointer>::iterator iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators<pointer>::const_iterator const_iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators
+ <pointer>::reverse_iterator reverse_iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators
+ <pointer>::const_reverse_iterator const_reverse_iterator;
+ typedef A allocator_type;
+ typedef A stored_allocator_type;
+
+ public:
+ //! <b>Effects</b>: Default constructs an empty flat_map.
+ //!
+ //! <b>Complexity</b>: Constant.
+ flat_map()
+ : m_flat_tree() {}
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified
+ //! comparison object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit flat_map(const Pred& comp, const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a)) {}
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
+ //! allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
+ { m_flat_tree.insert_unique(first, last); }
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
+ //! allocator, and inserts elements from the ordered unique range [first ,last). This function
+ //! is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
+ //! unique values.
+ //!
+ //! <b>Complexity</b>: Linear in N.
+ template <class InputIterator>
+ flat_map( ordered_unique_range_t, InputIterator first, InputIterator last
+ , const Pred& comp = Pred(), const allocator_type& a = allocator_type())
+ : m_flat_tree(ordered_range, first, last, comp, a)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a flat_map.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_map(const flat_map<Key,T,Pred,A>& x)
+ : m_flat_tree(x.m_flat_tree) {}
+
+ //! <b>Effects</b>: Move constructs a flat_map.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ flat_map(BOOST_RV_REF(flat_map) x)
+ : m_flat_tree(boost::move(x.m_flat_tree))
+ {}
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_map<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ //! <b>Effects</b>: Move constructs a flat_map.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ flat_map<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_map) mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return container_detail::force<const_iterator>(m_flat_tree.cbegin()); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return container_detail::force_copy<iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return container_detail::force<const_iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return container_detail::force<const_iterator>(m_flat_tree.cend()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.crbegin()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.crend()); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! value_type(x, T()) into the flat_map.
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ mapped_type &operator[](const key_type& k);
+
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! value_type(move(x), T()) into the flat_map (the key is move-constructed)
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ mapped_type &operator[](key_type &&k) ;
+
+ #else
+ BOOST_MOVE_CONVERSION_AWARE_CATCH( operator[] , key_type, mapped_type&, priv_subscript)
+ #endif
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ T& at(const key_type& k)
+ {
+ iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ const T& at(const key_type& k) const
+ {
+ const_iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ void swap(flat_map& x)
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return container_detail::force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(container_detail::force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
+ { return container_detail::force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(boost::move(container_detail::force<impl_value_type>(x)))); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ std::pair<iterator,bool> insert(BOOST_RV_REF(impl_value_type) x)
+ {
+ return container_detail::force<std::pair<iterator,bool> >
+ (m_flat_tree.insert_unique(boost::move(x)));
+ }
+
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return container_detail::force_copy<iterator>(
+ m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
+ { return container_detail::force_copy<iterator>
+ (m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(container_detail::force<impl_value_type>(x)))); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(x)));
+ }
+
+ //! <b>Requires</b>: first, last are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) if and only
+ //! if there is no element with key equivalent to the key of that element.
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_unique(first, last); }
+
+ #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
+
+ //! <b>Effects</b>: Inserts an object x of type T constructed with
+ //! std::forward<Args>(args)... if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class... Args>
+ std::pair<iterator,bool> emplace(Args&&... args)
+ { return container_detail::force_copy< std::pair<iterator, bool> >(m_flat_tree.emplace_unique(boost::forward<Args>(args)...)); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return container_detail::force_copy<iterator>
+ (m_flat_tree.emplace_hint_unique(container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...)); }
+
+ #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
+ std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
+ { return container_detail::force_copy< std::pair<iterator, bool> > \
+ (m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
+ \
+ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
+ iterator emplace_hint(const_iterator hint \
+ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
+ { return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_unique \
+ (container_detail::force<impl_const_iterator>(hint) \
+ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return container_detail::force_copy<iterator>
+ (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.s
+ const_iterator find(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return container_detail::force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
+ { return container_detail::force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const flat_map<K1, T1, C1, A1>&,
+ const flat_map<K1, T1, C1, A1>&);
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const flat_map<K1, T1, C1, A1>&,
+ const flat_map<K1, T1, C1, A1>&);
+
+ private:
+ mapped_type &priv_subscript(const key_type& k)
+ {
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first)){
+ container_detail::value_init<mapped_type> m;
+ i = insert(i, impl_value_type(k, ::boost::move(m.m_t)));
+ }
+ return (*i).second;
+ }
+ mapped_type &priv_subscript(BOOST_RV_REF(key_type) mk)
+ {
+ key_type &k = mk;
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first)){
+ container_detail::value_init<mapped_type> m;
+ i = insert(i, impl_value_type(boost::move(k), ::boost::move(m.m_t)));
+ }
+ return (*i).second;
+ }
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class A>
+inline bool operator==(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator!=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return !(x == y); }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator>(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return y < x; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return !(y < x); }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator>=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
+ { return !(x < y); }
+
+template <class Key, class T, class Pred, class A>
+inline void swap(flat_map<Key,T,Pred,A>& x,
+ flat_map<Key,T,Pred,A>& y)
+ { x.swap(y); }
+
+/// @cond
+
+} //namespace container {
+/*
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move<boost::container::flat_map<K, T, C, A> >
+{
+ static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
+};
+*/
+namespace container {
+
+// Forward declaration of operators < and ==, needed for friend declaration.
+#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
+template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
+#else
+template <class Key, class T, class Pred, class A>
+#endif
+class flat_multimap;
+
+template <class Key, class T, class Pred, class A>
+inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y);
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y);
+/// @endcond
+
+//! A flat_multimap is a kind of associative container that supports equivalent keys
+//! (possibly containing multiple copies of the same key value) and provides for
+//! fast retrieval of values of another type T based on the keys. The flat_multimap
+//! class supports random-access iterators.
+//!
+//! A flat_multimap satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. For a
+//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
+//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! A is the allocator to allocate the value_types
+//! (e.g. <i>allocator< std::pair<Key, T> ></i>).
+#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
+template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
+#else
+template <class Key, class T, class Pred, class A>
+#endif
+class flat_multimap
+{
+ /// @cond
+ private:
+ BOOST_COPYABLE_AND_MOVABLE(flat_multimap)
+ typedef container_detail::flat_tree<Key,
+ std::pair<Key, T>,
+ container_detail::select1st< std::pair<Key, T> >,
+ Pred,
+ A> tree_t;
+ //This is the real tree stored here. It's based on a movable pair
+ typedef container_detail::flat_tree<Key,
+ container_detail::pair<Key, T>,
+ container_detail::select1st<container_detail::pair<Key, T> >,
+ Pred,
+ typename allocator_traits<A>::template portable_rebind_alloc
+ <container_detail::pair<Key, T> >::type> impl_tree_t;
+ impl_tree_t m_flat_tree; // flat tree representing flat_map
+
+ typedef typename impl_tree_t::value_type impl_value_type;
+ typedef typename impl_tree_t::pointer impl_pointer;
+ typedef typename impl_tree_t::const_pointer impl_const_pointer;
+ typedef typename impl_tree_t::reference impl_reference;
+ typedef typename impl_tree_t::const_reference impl_const_reference;
+ typedef typename impl_tree_t::value_compare impl_value_compare;
+ typedef typename impl_tree_t::iterator impl_iterator;
+ typedef typename impl_tree_t::const_iterator impl_const_iterator;
+ typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
+ typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
+ typedef typename impl_tree_t::allocator_type impl_allocator_type;
+ typedef allocator_traits<A> allocator_traits_type;
+
+ /// @endcond
+
+ public:
+
+ // typedefs:
+ typedef Key key_type;
+ typedef T mapped_type;
+ typedef Pred key_compare;
+ typedef typename std::pair<key_type, mapped_type> value_type;
+ typedef typename allocator_traits_type::pointer pointer;
+ typedef typename allocator_traits_type::const_pointer const_pointer;
+ typedef typename allocator_traits_type::reference reference;
+ typedef typename allocator_traits_type::const_reference const_reference;
+ typedef typename impl_tree_t::size_type size_type;
+ typedef typename impl_tree_t::difference_type difference_type;
+ typedef container_detail::flat_tree_value_compare
+ < Pred
+ , container_detail::select1st< std::pair<Key, T> >
+ , std::pair<Key, T> > value_compare;
+
+ typedef typename container_detail::
+ get_flat_tree_iterators<pointer>::iterator iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators<pointer>::const_iterator const_iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators
+ <pointer>::reverse_iterator reverse_iterator;
+ typedef typename container_detail::
+ get_flat_tree_iterators
+ <pointer>::const_reverse_iterator const_reverse_iterator;
+ typedef A allocator_type;
+ //Non-standard extension
+ typedef A stored_allocator_type;
+
+ //! <b>Effects</b>: Default constructs an empty flat_map.
+ //!
+ //! <b>Complexity</b>: Constant.
+ flat_multimap()
+ : m_flat_tree() {}
+
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
+ //! object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit flat_multimap(const Pred& comp,
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a)) { }
+
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
+ //! and allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ flat_multimap(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
+ { m_flat_tree.insert_equal(first, last); }
+
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object and
+ //! allocator, and inserts elements from the ordered range [first ,last). This function
+ //! is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
+ //!
+ //! <b>Complexity</b>: Linear in N.
+ template <class InputIterator>
+ flat_multimap(ordered_range_t, InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(ordered_range, first, last, comp, a)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a flat_multimap.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multimap(const flat_multimap<Key,T,Pred,A>& x)
+ : m_flat_tree(x.m_flat_tree) { }
+
+ //! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ flat_multimap(BOOST_RV_REF(flat_multimap) x)
+ : m_flat_tree(boost::move(x.m_flat_tree))
+ { }
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multimap<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ flat_multimap<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_multimap) mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return container_detail::force_copy<iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return container_detail::force<const_iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ void swap(flat_multimap& x)
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const value_type& x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(container_detail::force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(BOOST_RV_REF(value_type) x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(BOOST_RV_REF(impl_value_type) x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return container_detail::force_copy<iterator>
+ (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position)
+ , boost::move(x)));
+ }
+
+ //! <b>Effects</b>: Inserts a value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), boost::move(x)));
+ }
+
+ //! <b>Requires</b>: first, last are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) .
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_equal(first, last); }
+
+ #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return container_detail::force_copy<iterator>(m_flat_tree.emplace_equal(boost::forward<Args>(args)...)); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ {
+ return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal
+ (container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...));
+ }
+
+ #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
+ { return container_detail::force_copy<iterator>(m_flat_tree.emplace_equal \
+ (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
+ \
+ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
+ iterator emplace_hint(const_iterator hint \
+ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
+ { return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal \
+ (container_detail::force<impl_const_iterator>(hint) \
+ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return container_detail::force_copy<iterator>
+ (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return container_detail::force_copy<iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: An const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.count(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ {return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key
+ //! not less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ {return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key
+ //! not less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return container_detail::force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator>
+ equal_range(const key_type& x) const
+ { return container_detail::force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x,
+ const flat_multimap<K1, T1, C1, A1>& y);
+
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x,
+ const flat_multimap<K1, T1, C1, A1>& y);
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class A>
+inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator!=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return !(x == y); }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator>(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return y < x; }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator<=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return !(y < x); }
+
+template <class Key, class T, class Pred, class A>
+inline bool operator>=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
+ { return !(x < y); }
+
+template <class Key, class T, class Pred, class A>
+inline void swap(flat_multimap<Key,T,Pred,A>& x, flat_multimap<Key,T,Pred,A>& y)
+ { x.swap(y); }
+
+}}
+
+/// @cond
+
+namespace boost {
+/*
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move< boost::container::flat_multimap<K, T, C, A> >
+{
+ static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
+};
+*/
+} //namespace boost {
+
+/// @endcond
+
+#include <boost/container/detail/config_end.hpp>
+
+#endif /* BOOST_CONTAINER_FLAT_MAP_HPP */