summaryrefslogtreecommitdiff
path: root/boost/container/flat_map.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/container/flat_map.hpp')
-rw-r--r--boost/container/flat_map.hpp823
1 files changed, 479 insertions, 344 deletions
diff --git a/boost/container/flat_map.hpp b/boost/container/flat_map.hpp
index 2d4515b4a4..0142500860 100644
--- a/boost/container/flat_map.hpp
+++ b/boost/container/flat_map.hpp
@@ -1,6 +1,6 @@
//////////////////////////////////////////////////////////////////////////////
//
-// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
+// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
@@ -26,7 +26,7 @@
#include <boost/container/detail/flat_tree.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/container/detail/mpl.hpp>
-#include <boost/container/allocator/allocator_traits.hpp>
+#include <boost/container/allocator_traits.hpp>
#include <boost/move/move.hpp>
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
@@ -47,11 +47,11 @@ template <class Key, class T, class Pred, class A>
class flat_map;
template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_map<Key,T,Pred,A>& x,
+inline bool operator==(const flat_map<Key,T,Pred,A>& x,
const flat_map<Key,T,Pred,A>& y);
template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_map<Key,T,Pred,A>& x,
+inline bool operator<(const flat_map<Key,T,Pred,A>& x,
const flat_map<Key,T,Pred,A>& y);
namespace container_detail{
@@ -73,12 +73,12 @@ static D force_copy(S s)
/// @endcond
//! A flat_map is a kind of associative container that supports unique keys (contains at
-//! most one of each key value) and provides for fast retrieval of values of another
+//! most one of each key value) and provides for fast retrieval of values of another
//! type T based on the keys. The flat_map class supports random-access iterators.
-//!
-//! A flat_map satisfies all of the requirements of a container and of a reversible
-//! container and of an associative container. A flat_map also provides
-//! most operations described for unique keys. For a
+//!
+//! A flat_map satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. A flat_map also provides
+//! most operations described for unique keys. For a
//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
//!
@@ -86,35 +86,35 @@ static D force_copy(S s)
//!
//! A is the allocator to allocate the value_types
//! (e.g. <i>allocator< std::pair<Key, T> ></i>).
-//!
+//!
//! flat_map is similar to std::map but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_map invalidates
//! previous iterators and references
//!
-//! Erasing an element of a flat_map invalidates iterators and references
+//! Erasing an element of a flat_map invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
#else
template <class Key, class T, class Pred, class A>
#endif
-class flat_map
+class flat_map
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(flat_map)
//This is the tree that we should store if pair was movable
- typedef container_detail::flat_tree<Key,
- std::pair<Key, T>,
- container_detail::select1st< std::pair<Key, T> >,
- Pred,
+ typedef container_detail::flat_tree<Key,
+ std::pair<Key, T>,
+ container_detail::select1st< std::pair<Key, T> >,
+ Pred,
A> tree_t;
//This is the real tree stored here. It's based on a movable pair
- typedef container_detail::flat_tree<Key,
- container_detail::pair<Key, T>,
- container_detail::select1st<container_detail::pair<Key, T> >,
- Pred,
+ typedef container_detail::flat_tree<Key,
+ container_detail::pair<Key, T>,
+ container_detail::select1st<container_detail::pair<Key, T> >,
+ Pred,
typename allocator_traits<A>::template portable_rebind_alloc
<container_detail::pair<Key, T> >::type> impl_tree_t;
impl_tree_t m_flat_tree; // flat tree representing flat_map
@@ -165,245 +165,267 @@ class flat_map
get_flat_tree_iterators
<pointer>::const_reverse_iterator const_reverse_iterator;
typedef A allocator_type;
+
+ //!Standard extension
typedef A stored_allocator_type;
+ //!Standard extension for C++03 compilers with non-movable std::pair
+ typedef impl_value_type movable_value_type;
+
public:
//! <b>Effects</b>: Default constructs an empty flat_map.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- flat_map()
+ flat_map()
: m_flat_tree() {}
//! <b>Effects</b>: Constructs an empty flat_map using the specified
//! comparison object and allocator.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- explicit flat_map(const Pred& comp, const allocator_type& a = allocator_type())
+ explicit flat_map(const Pred& comp, const allocator_type& a = allocator_type())
: m_flat_tree(comp, container_detail::force<impl_allocator_type>(a)) {}
- //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
- //!
- //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
{ m_flat_tree.insert_unique(first, last); }
- //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
//! allocator, and inserts elements from the ordered unique range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
//! unique values.
- //!
+ //!
//! <b>Complexity</b>: Linear in N.
+ //!
+ //! <b>Note</b>: Non-standard extension.
template <class InputIterator>
flat_map( ordered_unique_range_t, InputIterator first, InputIterator last
, const Pred& comp = Pred(), const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
+ : m_flat_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a flat_map.
- //!
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_map(const flat_map<Key,T,Pred,A>& x)
+ flat_map(const flat_map& x)
: m_flat_tree(x.m_flat_tree) {}
//! <b>Effects</b>: Move constructs a flat_map.
//! Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
//! <b>Postcondition</b>: x is emptied.
- flat_map(BOOST_RV_REF(flat_map) x)
+ flat_map(BOOST_RV_REF(flat_map) x)
: m_flat_tree(boost::move(x.m_flat_tree))
{}
+ //! <b>Effects</b>: Copy constructs a flat_map using the specified allocator.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_map(const flat_map& x, const allocator_type &a)
+ : m_flat_tree(x.m_flat_tree, a)
+ {}
+
+ //! <b>Effects</b>: Move constructs a flat_map using the specified allocator.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant if x.get_allocator() == a, linear otherwise.
+ flat_map(BOOST_RV_REF(flat_map) x, const allocator_type &a)
+ : m_flat_tree(boost::move(x.m_flat_tree), a)
+ {}
+
//! <b>Effects</b>: Makes *this a copy of x.
- //!
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_map<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x)
+ flat_map& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: Move constructs a flat_map.
//! Constructs *this using x's resources.
- //!
+ //!
//! <b>Complexity</b>: Construct.
- //!
+ //!
//! <b>Postcondition</b>: x is emptied.
- flat_map<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_map) mx)
+ flat_map& operator=(BOOST_RV_REF(flat_map) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- key_compare key_comp() const
- { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
+ key_compare key_comp() const
+ { return container_detail::force_copy<key_compare>(m_flat_tree.key_comp()); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- value_compare value_comp() const
- { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
+ value_compare value_comp() const
+ { return value_compare(container_detail::force_copy<key_compare>(m_flat_tree.key_comp())); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
- { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
+ allocator_type get_allocator() const
+ { return container_detail::force_copy<allocator_type>(m_flat_tree.get_allocator()); }
- const stored_allocator_type &get_stored_allocator() const
+ const stored_allocator_type &get_stored_allocator() const
{ return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
stored_allocator_type &get_stored_allocator()
{ return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator begin()
+ iterator begin()
{ return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator begin() const
- { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cbegin() const
- { return container_detail::force<const_iterator>(m_flat_tree.cbegin()); }
+ const_iterator begin() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator end()
+ iterator end()
{ return container_detail::force_copy<iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator end() const
- { return container_detail::force<const_iterator>(m_flat_tree.end()); }
+ const_iterator end() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.end()); }
- //! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator cend() const
- { return container_detail::force<const_iterator>(m_flat_tree.cend()); }
+ reverse_iterator rbegin()
+ { return container_detail::force_copy<reverse_iterator>(m_flat_tree.rbegin()); }
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
+ const_reverse_iterator rbegin() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.rbegin()); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+ reverse_iterator rend()
+ { return container_detail::force_copy<reverse_iterator>(m_flat_tree.rend()); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.crbegin()); }
+ const_reverse_iterator rend() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.rend()); }
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rend()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
+ const_iterator cbegin() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.cbegin()); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
+ const_iterator cend() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.cend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.crbegin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator crend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.crend()); }
+ const_reverse_iterator crend() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.crend()); }
//! <b>Effects</b>: Returns true if the container contains no elements.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- bool empty() const
+ bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type size() const
+ size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type max_size() const
+ size_type max_size() const
{ return m_flat_tree.max_size(); }
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
- //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
//! value_type(x, T()) into the flat_map.
- //!
+ //!
//! Returns: A reference to the mapped_type corresponding to x in *this.
- //!
+ //!
//! Complexity: Logarithmic.
mapped_type &operator[](const key_type& k);
- //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
//! value_type(move(x), T()) into the flat_map (the key is move-constructed)
- //!
+ //!
//! Returns: A reference to the mapped_type corresponding to x in *this.
- //!
+ //!
//! Complexity: Logarithmic.
mapped_type &operator[](key_type &&k) ;
@@ -443,10 +465,10 @@ class flat_map
void swap(flat_map& x)
{ m_flat_tree.swap(x.m_flat_tree); }
- //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -454,14 +476,14 @@ class flat_map
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(const value_type& x)
- { return container_detail::force<std::pair<iterator,bool> >(
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return container_detail::force_copy<std::pair<iterator,bool> >(
m_flat_tree.insert_unique(container_detail::force<impl_value_type>(x))); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -469,14 +491,14 @@ class flat_map
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
- { return container_detail::force<std::pair<iterator,bool> >(
+ std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
+ { return container_detail::force_copy<std::pair<iterator,bool> >(
m_flat_tree.insert_unique(boost::move(container_detail::force<impl_value_type>(x)))); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -484,13 +506,13 @@ class flat_map
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(BOOST_RV_REF(impl_value_type) x)
+ std::pair<iterator,bool> insert(BOOST_RV_REF(movable_value_type) x)
{
- return container_detail::force<std::pair<iterator,bool> >
+ return container_detail::force_copy<std::pair<iterator,bool> >
(m_flat_tree.insert_unique(boost::move(x)));
}
- //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
@@ -502,8 +524,11 @@ class flat_map
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type& x)
- { return container_detail::force_copy<iterator>(
- m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.insert_unique( container_detail::force_copy<impl_const_iterator>(position)
+ , container_detail::force<impl_value_type>(x)));
+ }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
@@ -515,8 +540,11 @@ class flat_map
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(container_detail::force<impl_value_type>(x)))); }
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.insert_unique( container_detail::force_copy<impl_const_iterator>(position)
+ , boost::move(container_detail::force<impl_value_type>(x))));
+ }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
@@ -527,15 +555,15 @@ class flat_map
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
+ iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x)
{
return container_detail::force_copy<iterator>(
- m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(x)));
+ m_flat_tree.insert_unique(container_detail::force_copy<impl_const_iterator>(position), boost::move(x)));
}
//! <b>Requires</b>: first, last are not iterators into *this.
//!
- //! <b>Effects</b>: inserts each element from the range [first,last) if and only
+ //! <b>Effects</b>: inserts each element from the range [first,last) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
@@ -543,16 +571,33 @@ class flat_map
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
+ void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(first, last); }
+ //! <b>Requires</b>: first, last are not iterators into *this.
+ //!
+ //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
+ //! unique values.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) if and only
+ //! if there is no element with key equivalent to the key of that element. This
+ //! function is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(ordered_unique_range_t, InputIterator first, InputIterator last)
+ { m_flat_tree.insert_unique(ordered_unique_range, first, last); }
+
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object x of type T constructed with
- //! std::forward<Args>(args)... if and only if there is no element in the container
+ //! std::forward<Args>(args)... if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
@@ -565,7 +610,7 @@ class flat_map
{ return container_detail::force_copy< std::pair<iterator, bool> >(m_flat_tree.emplace_unique(boost::forward<Args>(args)...)); }
//! <b>Effects</b>: Inserts an object of type T constructed with
- //! std::forward<Args>(args)... in the container if and only if there is
+ //! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
@@ -578,8 +623,11 @@ class flat_map
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.emplace_hint_unique(container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...)); }
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.emplace_hint_unique( container_detail::force_copy<impl_const_iterator>(hint)
+ , boost::forward<Args>(args)...));
+ }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
@@ -593,7 +641,7 @@ class flat_map
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_unique \
- (container_detail::force<impl_const_iterator>(hint) \
+ (container_detail::force_copy<impl_const_iterator>(hint) \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
@@ -604,15 +652,18 @@ class flat_map
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
+ //! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
- iterator erase(const_iterator position)
- { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
+ iterator erase(const_iterator position)
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.erase(container_detail::force_copy<impl_const_iterator>(position)));
+ }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
@@ -620,7 +671,7 @@ class flat_map
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
+ size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
@@ -632,15 +683,18 @@ class flat_map
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.erase( container_detail::force_copy<impl_const_iterator>(first)
+ , container_detail::force_copy<impl_const_iterator>(last)));
+ }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
- void clear()
+ void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
@@ -656,81 +710,81 @@ class flat_map
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
- iterator find(const key_type& x)
+ iterator find(const key_type& x)
{ return container_detail::force_copy<iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
- const_iterator find(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
+ const_iterator find(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
+ size_type count(const key_type& x) const
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
+ iterator lower_bound(const key_type& x)
{ return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
+ const_iterator lower_bound(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator upper_bound(const key_type& x)
+ iterator upper_bound(const key_type& x)
{ return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
+ const_iterator upper_bound(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator> equal_range(const key_type& x)
- { return container_detail::force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return container_detail::force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
- { return container_detail::force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
+ { return container_detail::force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type capacity() const
+ size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
+ //!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
- void reserve(size_type count)
+ void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
@@ -752,7 +806,7 @@ class flat_map
}
return (*i).second;
}
- mapped_type &priv_subscript(BOOST_RV_REF(key_type) mk)
+ mapped_type &priv_subscript(BOOST_RV_REF(key_type) mk)
{
key_type &k = mk;
iterator i = lower_bound(k);
@@ -767,38 +821,38 @@ class flat_map
};
template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator==(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator<(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class T, class Pred, class A>
-inline bool operator!=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator!=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class A>
-inline bool operator>(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator>(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return y < x; }
template <class Key, class T, class Pred, class A>
-inline bool operator<=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator<=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class A>
-inline bool operator>=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
+inline bool operator>=(const flat_map<Key,T,Pred,A>& x,
+ const flat_map<Key,T,Pred,A>& y)
{ return !(x < y); }
template <class Key, class T, class Pred, class A>
-inline void swap(flat_map<Key,T,Pred,A>& x,
- flat_map<Key,T,Pred,A>& y)
+inline void swap(flat_map<Key,T,Pred,A>& x,
+ flat_map<Key,T,Pred,A>& y)
{ x.swap(y); }
/// @cond
@@ -824,21 +878,21 @@ template <class Key, class T, class Pred, class A>
class flat_multimap;
template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
+inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
const flat_multimap<Key,T,Pred,A>& y);
template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
+inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
const flat_multimap<Key,T,Pred,A>& y);
/// @endcond
-//! A flat_multimap is a kind of associative container that supports equivalent keys
-//! (possibly containing multiple copies of the same key value) and provides for
-//! fast retrieval of values of another type T based on the keys. The flat_multimap
+//! A flat_multimap is a kind of associative container that supports equivalent keys
+//! (possibly containing multiple copies of the same key value) and provides for
+//! fast retrieval of values of another type T based on the keys. The flat_multimap
//! class supports random-access iterators.
-//!
-//! A flat_multimap satisfies all of the requirements of a container and of a reversible
-//! container and of an associative container. For a
+//!
+//! A flat_multimap satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. For a
//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
//!
@@ -851,21 +905,21 @@ template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, clas
#else
template <class Key, class T, class Pred, class A>
#endif
-class flat_multimap
+class flat_multimap
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(flat_multimap)
- typedef container_detail::flat_tree<Key,
- std::pair<Key, T>,
- container_detail::select1st< std::pair<Key, T> >,
- Pred,
+ typedef container_detail::flat_tree<Key,
+ std::pair<Key, T>,
+ container_detail::select1st< std::pair<Key, T> >,
+ Pred,
A> tree_t;
//This is the real tree stored here. It's based on a movable pair
- typedef container_detail::flat_tree<Key,
- container_detail::pair<Key, T>,
- container_detail::select1st<container_detail::pair<Key, T> >,
- Pred,
+ typedef container_detail::flat_tree<Key,
+ container_detail::pair<Key, T>,
+ container_detail::select1st<container_detail::pair<Key, T> >,
+ Pred,
typename allocator_traits<A>::template portable_rebind_alloc
<container_detail::pair<Key, T> >::type> impl_tree_t;
impl_tree_t m_flat_tree; // flat tree representing flat_map
@@ -916,16 +970,18 @@ class flat_multimap
typedef A allocator_type;
//Non-standard extension
typedef A stored_allocator_type;
+ //!Standard extension for C++03 compilers with non-movable std::pair
+ typedef impl_value_type movable_value_type;
//! <b>Effects</b>: Default constructs an empty flat_map.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- flat_multimap()
+ flat_multimap()
: m_flat_tree() {}
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
//! object and allocator.
- //!
+ //!
//! <b>Complexity</b>: Constant.
explicit flat_multimap(const Pred& comp,
const allocator_type& a = allocator_type())
@@ -933,174 +989,225 @@ class flat_multimap
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
//! and allocator, and inserts elements from the range [first ,last ).
- //!
- //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_multimap(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
+ : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
{ m_flat_tree.insert_equal(first, last); }
- //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object and
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object and
//! allocator, and inserts elements from the ordered range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
- //!
+ //!
//! <b>Complexity</b>: Linear in N.
+ //!
+ //! <b>Note</b>: Non-standard extension.
template <class InputIterator>
flat_multimap(ordered_range_t, InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
+ : m_flat_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a flat_multimap.
- //!
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_multimap(const flat_multimap<Key,T,Pred,A>& x)
+ flat_multimap(const flat_multimap& x)
: m_flat_tree(x.m_flat_tree) { }
//! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
//! <b>Postcondition</b>: x is emptied.
- flat_multimap(BOOST_RV_REF(flat_multimap) x)
+ flat_multimap(BOOST_RV_REF(flat_multimap) x)
: m_flat_tree(boost::move(x.m_flat_tree))
{ }
+ //! <b>Effects</b>: Copy constructs a flat_multimap using the specified allocator.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multimap(const flat_multimap& x, const allocator_type &a)
+ : m_flat_tree(x.m_flat_tree, a)
+ {}
+
+ //! <b>Effects</b>: Move constructs a flat_multimap using the specified allocator.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
+ flat_multimap(BOOST_RV_REF(flat_multimap) x, const allocator_type &a)
+ : m_flat_tree(boost::move(x.m_flat_tree), a)
+ { }
+
//! <b>Effects</b>: Makes *this a copy of x.
- //!
+ //!
//! <b>Complexity</b>: Linear in x.size().
- flat_multimap<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x)
+ flat_multimap& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
- //!
+ //!
//! <b>Complexity</b>: Constant.
- flat_multimap<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_multimap) mx)
+ flat_multimap& operator=(BOOST_RV_REF(flat_multimap) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- key_compare key_comp() const
- { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
+ key_compare key_comp() const
+ { return container_detail::force_copy<key_compare>(m_flat_tree.key_comp()); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- value_compare value_comp() const
- { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
+ value_compare value_comp() const
+ { return value_compare(container_detail::force_copy<key_compare>(m_flat_tree.key_comp())); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
- { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
+ allocator_type get_allocator() const
+ { return container_detail::force_copy<allocator_type>(m_flat_tree.get_allocator()); }
- const stored_allocator_type &get_stored_allocator() const
+ const stored_allocator_type &get_stored_allocator() const
{ return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
stored_allocator_type &get_stored_allocator()
{ return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator begin()
+ iterator begin()
{ return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator begin() const
- { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
+ const_iterator begin() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- iterator end()
+ iterator end()
{ return container_detail::force_copy<iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_iterator end() const
- { return container_detail::force<const_iterator>(m_flat_tree.end()); }
+ const_iterator end() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.end()); }
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
+ reverse_iterator rbegin()
+ { return container_detail::force_copy<reverse_iterator>(m_flat_tree.rbegin()); }
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+ const_reverse_iterator rbegin() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.rbegin()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return container_detail::force_copy<reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.cbegin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.cend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- reverse_iterator rend()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
+ const_reverse_iterator crbegin() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.crbegin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
+ //! of the reversed container.
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
+ const_reverse_iterator crend() const
+ { return container_detail::force_copy<const_reverse_iterator>(m_flat_tree.crend()); }
//! <b>Effects</b>: Returns true if the container contains no elements.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- bool empty() const
+ bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type size() const
+ size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type max_size() const
+ size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
@@ -1112,33 +1219,36 @@ class flat_multimap
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
- //! newly inserted element.
+ //! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const value_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(container_detail::force<impl_value_type>(x))); }
+ iterator insert(const value_type& x)
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.insert_equal(container_detail::force<impl_value_type>(x)));
+ }
- //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
- //! the iterator pointing to the newly inserted element.
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(BOOST_RV_REF(value_type) x)
+ iterator insert(BOOST_RV_REF(value_type) x)
{ return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
- //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
- //! the iterator pointing to the newly inserted element.
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(BOOST_RV_REF(impl_value_type) x)
+ iterator insert(BOOST_RV_REF(impl_value_type) x)
{ return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
//! <b>Effects</b>: Inserts a copy of x in the container.
@@ -1152,9 +1262,12 @@ class flat_multimap
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, const value_type& x)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
+ iterator insert(const_iterator position, const value_type& x)
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.insert_equal( container_detail::force_copy<impl_const_iterator>(position)
+ , container_detail::force<impl_value_type>(x)));
+ }
//! <b>Effects</b>: Inserts a value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
@@ -1167,10 +1280,10 @@ class flat_multimap
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
+ iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
{
return container_detail::force_copy<iterator>
- (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position)
+ (m_flat_tree.insert_equal(container_detail::force_copy<impl_const_iterator>(position)
, boost::move(x)));
}
@@ -1185,10 +1298,10 @@ class flat_multimap
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
+ iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
{
return container_detail::force_copy<iterator>(
- m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), boost::move(x)));
+ m_flat_tree.insert_equal(container_detail::force_copy<impl_const_iterator>(position), boost::move(x)));
}
//! <b>Requires</b>: first, last are not iterators into *this.
@@ -1200,14 +1313,30 @@ class flat_multimap
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
+ void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(first, last); }
+ //! <b>Requires</b>: first, last are not iterators into *this.
+ //!
+ //! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [first,last) if and only
+ //! if there is no element with key equivalent to the key of that element. This
+ //! function is more efficient than the normal range creation for ordered ranges.
+ //!
+ //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element is inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(ordered_range_t, InputIterator first, InputIterator last)
+ { m_flat_tree.insert_equal(ordered_range, first, last); }
+
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
- //! newly inserted element.
+ //! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
@@ -1233,7 +1362,7 @@ class flat_multimap
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal
- (container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...));
+ (container_detail::force_copy<impl_const_iterator>(hint), boost::forward<Args>(args)...));
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
@@ -1248,7 +1377,7 @@ class flat_multimap
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal \
- (container_detail::force<impl_const_iterator>(hint) \
+ (container_detail::force_copy<impl_const_iterator>(hint) \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
@@ -1259,15 +1388,18 @@ class flat_multimap
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
+ //! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
- iterator erase(const_iterator position)
- { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
+ iterator erase(const_iterator position)
+ {
+ return container_detail::force_copy<iterator>(
+ m_flat_tree.erase(container_detail::force_copy<impl_const_iterator>(position)));
+ }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
@@ -1275,7 +1407,7 @@ class flat_multimap
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
+ size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
@@ -1287,15 +1419,18 @@ class flat_multimap
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
+ {
+ return container_detail::force_copy<iterator>
+ (m_flat_tree.erase( container_detail::force_copy<impl_const_iterator>(first)
+ , container_detail::force_copy<impl_const_iterator>(last)));
+ }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
- void clear()
+ void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
@@ -1318,75 +1453,75 @@ class flat_multimap
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
- const_iterator find(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
+ const_iterator find(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
+ size_type count(const key_type& x) const
{ return m_flat_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
+ iterator lower_bound(const key_type& x)
{return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key
//! not less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
+ const_iterator lower_bound(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- iterator upper_bound(const key_type& x)
+ iterator upper_bound(const key_type& x)
{return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key
//! not less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
+ const_iterator upper_bound(const key_type& x) const
+ { return container_detail::force_copy<const_iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator> equal_range(const key_type& x)
+ std::pair<iterator,iterator> equal_range(const key_type& x)
{ return container_detail::force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator,const_iterator>
- equal_range(const key_type& x) const
+ std::pair<const_iterator,const_iterator>
+ equal_range(const key_type& x) const
{ return container_detail::force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
- //!
+ //!
//! <b>Throws</b>: Nothing.
- //!
+ //!
//! <b>Complexity</b>: Constant.
- size_type capacity() const
+ size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
+ //!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
- void reserve(size_type count)
+ void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
@@ -1401,37 +1536,37 @@ class flat_multimap
};
template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class T, class Pred, class A>
-inline bool operator!=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator!=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class A>
-inline bool operator>(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator>(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return y < x; }
template <class Key, class T, class Pred, class A>
-inline bool operator<=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator<=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class A>
-inline bool operator>=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
+inline bool operator>=(const flat_multimap<Key,T,Pred,A>& x,
+ const flat_multimap<Key,T,Pred,A>& y)
{ return !(x < y); }
template <class Key, class T, class Pred, class A>
-inline void swap(flat_multimap<Key,T,Pred,A>& x, flat_multimap<Key,T,Pred,A>& y)
+inline void swap(flat_multimap<Key,T,Pred,A>& x, flat_multimap<Key,T,Pred,A>& y)
{ x.swap(y); }
}}
@@ -1448,7 +1583,7 @@ struct has_trivial_destructor_after_move< boost::container::flat_multimap<K, T,
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
-} //namespace boost {
+} //namespace boost {
/// @endcond