summaryrefslogtreecommitdiff
path: root/boost/circular_buffer
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-10-30 12:57:26 -0700
committerAnas Nashif <anas.nashif@intel.com>2012-10-30 12:57:26 -0700
commit1a78a62555be32868418fe52f8e330c9d0f95d5a (patch)
treed3765a80e7d3b9640ec2e930743630cd6b9fce2b /boost/circular_buffer
downloadboost-1a78a62555be32868418fe52f8e330c9d0f95d5a.tar.gz
boost-1a78a62555be32868418fe52f8e330c9d0f95d5a.tar.bz2
boost-1a78a62555be32868418fe52f8e330c9d0f95d5a.zip
Imported Upstream version 1.49.0upstream/1.49.0
Diffstat (limited to 'boost/circular_buffer')
-rw-r--r--boost/circular_buffer/base.hpp2821
-rw-r--r--boost/circular_buffer/debug.hpp227
-rw-r--r--boost/circular_buffer/details.hpp470
-rw-r--r--boost/circular_buffer/space_optimized.hpp1425
4 files changed, 4943 insertions, 0 deletions
diff --git a/boost/circular_buffer/base.hpp b/boost/circular_buffer/base.hpp
new file mode 100644
index 0000000000..3b9886a3d3
--- /dev/null
+++ b/boost/circular_buffer/base.hpp
@@ -0,0 +1,2821 @@
+// Implementation of the base circular buffer.
+
+// Copyright (c) 2003-2008 Jan Gaspar
+
+// Use, modification, and distribution is subject to the Boost Software
+// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP)
+#define BOOST_CIRCULAR_BUFFER_BASE_HPP
+
+#if defined(_MSC_VER) && _MSC_VER >= 1200
+ #pragma once
+#endif
+
+#include <boost/call_traits.hpp>
+#include <boost/concept_check.hpp>
+#include <boost/limits.hpp>
+#include <boost/iterator/reverse_iterator.hpp>
+#include <boost/iterator/iterator_traits.hpp>
+#include <boost/type_traits/is_stateless.hpp>
+#include <boost/type_traits/is_integral.hpp>
+#include <boost/type_traits/is_scalar.hpp>
+#include <algorithm>
+#include <utility>
+#include <deque>
+#if !defined(BOOST_NO_EXCEPTIONS)
+ #include <stdexcept>
+#endif
+#if BOOST_CB_ENABLE_DEBUG
+ #include <cstring>
+#endif
+#if BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3205))
+ #include <stddef.h>
+#endif
+
+#if defined(BOOST_NO_STDC_NAMESPACE)
+namespace std {
+ using ::memset;
+}
+#endif
+
+namespace boost {
+
+/*!
+ \class circular_buffer
+ \brief Circular buffer - a STL compliant container.
+ \param T The type of the elements stored in the <code>circular_buffer</code>.
+ \par Type Requirements T
+ The <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/Assignable.html">
+ SGIAssignable</a> (SGI STL defined combination of <a href="../../utility/Assignable.html">
+ Assignable</a> and <a href="../../utility/CopyConstructible.html">CopyConstructible</a>).
+ Moreover <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">
+ DefaultConstructible</a> if supplied as a default parameter when invoking some of the
+ <code>circular_buffer</code>'s methods e.g.
+ <code>insert(iterator pos, const value_type& item = %value_type())</code>. And
+ <a href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</a> and/or
+ <a href="../../utility/LessThanComparable.html">LessThanComparable</a> if the <code>circular_buffer</code>
+ will be compared with another container.
+ \param Alloc The allocator type used for all internal memory management.
+ \par Type Requirements Alloc
+ The <code>Alloc</code> has to meet the allocator requirements imposed by STL.
+ \par Default Alloc
+ std::allocator<T>
+
+ For detailed documentation of the circular_buffer visit:
+ http://www.boost.org/libs/circular_buffer/doc/circular_buffer.html
+*/
+template <class T, class Alloc>
+class circular_buffer
+/*! \cond */
+#if BOOST_CB_ENABLE_DEBUG
+: public cb_details::debug_iterator_registry
+#endif
+/*! \endcond */
+{
+
+// Requirements
+ BOOST_CLASS_REQUIRE(T, boost, SGIAssignableConcept);
+
+public:
+// Basic types
+
+ //! The type of elements stored in the <code>circular_buffer</code>.
+ typedef typename Alloc::value_type value_type;
+
+ //! A pointer to an element.
+ typedef typename Alloc::pointer pointer;
+
+ //! A const pointer to the element.
+ typedef typename Alloc::const_pointer const_pointer;
+
+ //! A reference to an element.
+ typedef typename Alloc::reference reference;
+
+ //! A const reference to an element.
+ typedef typename Alloc::const_reference const_reference;
+
+ //! The distance type.
+ /*!
+ (A signed integral type used to represent the distance between two iterators.)
+ */
+ typedef typename Alloc::difference_type difference_type;
+
+ //! The size type.
+ /*!
+ (An unsigned integral type that can represent any non-negative value of the container's distance type.)
+ */
+ typedef typename Alloc::size_type size_type;
+
+ //! The type of an allocator used in the <code>circular_buffer</code>.
+ typedef Alloc allocator_type;
+
+// Iterators
+
+ //! A const (random access) iterator used to iterate through the <code>circular_buffer</code>.
+ typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::const_traits<Alloc> > const_iterator;
+
+ //! A (random access) iterator used to iterate through the <code>circular_buffer</code>.
+ typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::nonconst_traits<Alloc> > iterator;
+
+ //! A const iterator used to iterate backwards through a <code>circular_buffer</code>.
+ typedef boost::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ //! An iterator used to iterate backwards through a <code>circular_buffer</code>.
+ typedef boost::reverse_iterator<iterator> reverse_iterator;
+
+// Container specific types
+
+ //! An array range.
+ /*!
+ (A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where
+ its first element is a pointer to a beginning of an array and its second element represents
+ a size of the array.)
+ */
+ typedef std::pair<pointer, size_type> array_range;
+
+ //! A range of a const array.
+ /*!
+ (A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where
+ its first element is a pointer to a beginning of a const array and its second element represents
+ a size of the const array.)
+ */
+ typedef std::pair<const_pointer, size_type> const_array_range;
+
+ //! The capacity type.
+ /*!
+ (Same as <code>size_type</code> - defined for consistency with the
+ <a href="space_optimized.html"><code>circular_buffer_space_optimized</code></a>.)
+ */
+ typedef size_type capacity_type;
+
+// Helper types
+
+ // A type representing the "best" way to pass the value_type to a method.
+ typedef typename call_traits<value_type>::param_type param_value_type;
+
+ // A type representing the "best" way to return the value_type from a const method.
+ typedef typename call_traits<value_type>::param_type return_value_type;
+
+private:
+// Member variables
+
+ //! The internal buffer used for storing elements in the circular buffer.
+ pointer m_buff;
+
+ //! The internal buffer's end (end of the storage space).
+ pointer m_end;
+
+ //! The virtual beginning of the circular buffer.
+ pointer m_first;
+
+ //! The virtual end of the circular buffer (one behind the last element).
+ pointer m_last;
+
+ //! The number of items currently stored in the circular buffer.
+ size_type m_size;
+
+ //! The allocator.
+ allocator_type m_alloc;
+
+// Friends
+#if defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
+ friend iterator;
+ friend const_iterator;
+#else
+ template <class Buff, class Traits> friend struct cb_details::iterator;
+#endif
+
+public:
+// Allocator
+
+ //! Get the allocator.
+ /*!
+ \return The allocator.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>get_allocator()</code> for obtaining an allocator %reference.
+ */
+ allocator_type get_allocator() const { return m_alloc; }
+
+ //! Get the allocator reference.
+ /*!
+ \return A reference to the allocator.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \note This method was added in order to optimize obtaining of the allocator with a state,
+ although use of stateful allocators in STL is discouraged.
+ \sa <code>get_allocator() const</code>
+ */
+ allocator_type& get_allocator() { return m_alloc; }
+
+// Element access
+
+ //! Get the iterator pointing to the beginning of the <code>circular_buffer</code>.
+ /*!
+ \return A random access iterator pointing to the first element of the <code>circular_buffer</code>. If the
+ <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
+ <code>end()</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>end()</code>, <code>rbegin()</code>, <code>rend()</code>
+ */
+ iterator begin() { return iterator(this, empty() ? 0 : m_first); }
+
+ //! Get the iterator pointing to the end of the <code>circular_buffer</code>.
+ /*!
+ \return A random access iterator pointing to the element "one behind" the last element of the <code>
+ circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
+ the one returned by <code>begin()</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>begin()</code>, <code>rbegin()</code>, <code>rend()</code>
+ */
+ iterator end() { return iterator(this, 0); }
+
+ //! Get the const iterator pointing to the beginning of the <code>circular_buffer</code>.
+ /*!
+ \return A const random access iterator pointing to the first element of the <code>circular_buffer</code>. If
+ the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
+ <code>end() const</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>end() const</code>, <code>rbegin() const</code>, <code>rend() const</code>
+ */
+ const_iterator begin() const { return const_iterator(this, empty() ? 0 : m_first); }
+
+ //! Get the const iterator pointing to the end of the <code>circular_buffer</code>.
+ /*!
+ \return A const random access iterator pointing to the element "one behind" the last element of the <code>
+ circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
+ the one returned by <code>begin() const</code> const.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>begin() const</code>, <code>rbegin() const</code>, <code>rend() const</code>
+ */
+ const_iterator end() const { return const_iterator(this, 0); }
+
+ //! Get the iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>.
+ /*!
+ \return A reverse random access iterator pointing to the last element of the <code>circular_buffer</code>.
+ If the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
+ <code>rend()</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>rend()</code>, <code>begin()</code>, <code>end()</code>
+ */
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+
+ //! Get the iterator pointing to the end of the "reversed" <code>circular_buffer</code>.
+ /*!
+ \return A reverse random access iterator pointing to the element "one before" the first element of the <code>
+ circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
+ the one returned by <code>rbegin()</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>rbegin()</code>, <code>begin()</code>, <code>end()</code>
+ */
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+
+ //! Get the const iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>.
+ /*!
+ \return A const reverse random access iterator pointing to the last element of the
+ <code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal
+ to the one returned by <code>rend() const</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>rend() const</code>, <code>begin() const</code>, <code>end() const</code>
+ */
+ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
+
+ //! Get the const iterator pointing to the end of the "reversed" <code>circular_buffer</code>.
+ /*!
+ \return A const reverse random access iterator pointing to the element "one before" the first element of the
+ <code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal
+ to the one returned by <code>rbegin() const</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>rbegin() const</code>, <code>begin() const</code>, <code>end() const</code>
+ */
+ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
+
+ //! Get the element at the <code>index</code> position.
+ /*!
+ \pre <code>0 \<= index \&\& index \< size()</code>
+ \param index The position of the element.
+ \return A reference to the element at the <code>index</code> position.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>at()</code>
+ */
+ reference operator [] (size_type index) {
+ BOOST_CB_ASSERT(index < size()); // check for invalid index
+ return *add(m_first, index);
+ }
+
+ //! Get the element at the <code>index</code> position.
+ /*!
+ \pre <code>0 \<= index \&\& index \< size()</code>
+ \param index The position of the element.
+ \return A const reference to the element at the <code>index</code> position.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>\link at(size_type)const at() const \endlink</code>
+ */
+ return_value_type operator [] (size_type index) const {
+ BOOST_CB_ASSERT(index < size()); // check for invalid index
+ return *add(m_first, index);
+ }
+
+ //! Get the element at the <code>index</code> position.
+ /*!
+ \param index The position of the element.
+ \return A reference to the element at the <code>index</code> position.
+ \throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when
+ <code>index >= size()</code>).
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>\link operator[](size_type) operator[] \endlink</code>
+ */
+ reference at(size_type index) {
+ check_position(index);
+ return (*this)[index];
+ }
+
+ //! Get the element at the <code>index</code> position.
+ /*!
+ \param index The position of the element.
+ \return A const reference to the element at the <code>index</code> position.
+ \throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when
+ <code>index >= size()</code>).
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>\link operator[](size_type)const operator[] const \endlink</code>
+ */
+ return_value_type at(size_type index) const {
+ check_position(index);
+ return (*this)[index];
+ }
+
+ //! Get the first element.
+ /*!
+ \pre <code>!empty()</code>
+ \return A reference to the first element of the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>back()</code>
+ */
+ reference front() {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
+ return *m_first;
+ }
+
+ //! Get the last element.
+ /*!
+ \pre <code>!empty()</code>
+ \return A reference to the last element of the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>front()</code>
+ */
+ reference back() {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
+ return *((m_last == m_buff ? m_end : m_last) - 1);
+ }
+
+ //! Get the first element.
+ /*!
+ \pre <code>!empty()</code>
+ \return A const reference to the first element of the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>back() const</code>
+ */
+ return_value_type front() const {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
+ return *m_first;
+ }
+
+ //! Get the last element.
+ /*!
+ \pre <code>!empty()</code>
+ \return A const reference to the last element of the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>front() const</code>
+ */
+ return_value_type back() const {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
+ return *((m_last == m_buff ? m_end : m_last) - 1);
+ }
+
+ //! Get the first continuous array of the internal buffer.
+ /*!
+ This method in combination with <code>array_two()</code> can be useful when passing the stored data into
+ a legacy C API as an array. Suppose there is a <code>circular_buffer</code> of capacity 10, containing 7
+ characters <code>'a', 'b', ..., 'g'</code> where <code>buff[0] == 'a'</code>, <code>buff[1] == 'b'</code>,
+ ... and <code>buff[6] == 'g'</code>:<br><br>
+ <code>circular_buffer<char> buff(10);</code><br><br>
+ The internal representation is often not linear and the state of the internal buffer may look like this:<br>
+ <br><code>
+ |e|f|g| | | |a|b|c|d|<br>
+ end ---^<br>
+ begin -------^</code><br><br>
+ where <code>|a|b|c|d|</code> represents the "array one", <code>|e|f|g|</code> represents the "array two" and
+ <code>| | | |</code> is a free space.<br>
+ Now consider a typical C style function for writing data into a file:<br><br>
+ <code>int write(int file_desc, char* buff, int num_bytes);</code><br><br>
+ There are two ways how to write the content of the <code>circular_buffer</code> into a file. Either relying
+ on <code>array_one()</code> and <code>array_two()</code> methods and calling the write function twice:<br><br>
+ <code>array_range ar = buff.array_one();<br>
+ write(file_desc, ar.first, ar.second);<br>
+ ar = buff.array_two();<br>
+ write(file_desc, ar.first, ar.second);</code><br><br>
+ Or relying on the <code>linearize()</code> method:<br><br><code>
+ write(file_desc, buff.linearize(), buff.size());</code><br><br>
+ Since the complexity of <code>array_one()</code> and <code>array_two()</code> methods is constant the first
+ option is suitable when calling the write method is "cheap". On the other hand the second option is more
+ suitable when calling the write method is more "expensive" than calling the <code>linearize()</code> method
+ whose complexity is linear.
+ \return The array range of the first continuous array of the internal buffer. In the case the
+ <code>circular_buffer</code> is empty the size of the returned array is <code>0</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \warning In general invoking any method which modifies the internal state of the circular_buffer may
+ delinearize the internal buffer and invalidate the array ranges returned by <code>array_one()</code>
+ and <code>array_two()</code> (and their const versions).
+ \note In the case the internal buffer is linear e.g. <code>|a|b|c|d|e|f|g| | | |</code> the "array one" is
+ represented by <code>|a|b|c|d|e|f|g|</code> and the "array two" does not exist (the
+ <code>array_two()</code> method returns an array with the size <code>0</code>).
+ \sa <code>array_two()</code>, <code>linearize()</code>
+ */
+ array_range array_one() {
+ return array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first);
+ }
+
+ //! Get the second continuous array of the internal buffer.
+ /*!
+ This method in combination with <code>array_one()</code> can be useful when passing the stored data into
+ a legacy C API as an array.
+ \return The array range of the second continuous array of the internal buffer. In the case the internal buffer
+ is linear or the <code>circular_buffer</code> is empty the size of the returned array is
+ <code>0</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>array_one()</code>
+ */
+ array_range array_two() {
+ return array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0);
+ }
+
+ //! Get the first continuous array of the internal buffer.
+ /*!
+ This method in combination with <code>array_two() const</code> can be useful when passing the stored data into
+ a legacy C API as an array.
+ \return The array range of the first continuous array of the internal buffer. In the case the
+ <code>circular_buffer</code> is empty the size of the returned array is <code>0</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>array_two() const</code>; <code>array_one()</code> for more details how to pass data into a legacy C
+ API.
+ */
+ const_array_range array_one() const {
+ return const_array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first);
+ }
+
+ //! Get the second continuous array of the internal buffer.
+ /*!
+ This method in combination with <code>array_one() const</code> can be useful when passing the stored data into
+ a legacy C API as an array.
+ \return The array range of the second continuous array of the internal buffer. In the case the internal buffer
+ is linear or the <code>circular_buffer</code> is empty the size of the returned array is
+ <code>0</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>array_one() const</code>
+ */
+ const_array_range array_two() const {
+ return const_array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0);
+ }
+
+ //! Linearize the internal buffer into a continuous array.
+ /*!
+ This method can be useful when passing the stored data into a legacy C API as an array.
+ \post <code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code>
+ \return A pointer to the beginning of the array or <code>0</code> if empty.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>); does not invalidate any iterators if the postcondition (the <i>Effect</i>) is already
+ met prior calling this method.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>); constant if the postcondition (the
+ <i>Effect</i>) is already met.
+ \warning In general invoking any method which modifies the internal state of the <code>circular_buffer</code>
+ may delinearize the internal buffer and invalidate the returned pointer.
+ \sa <code>array_one()</code> and <code>array_two()</code> for the other option how to pass data into a legacy
+ C API; <code>is_linearized()</code>, <code>rotate(const_iterator)</code>
+ */
+ pointer linearize() {
+ if (empty())
+ return 0;
+ if (m_first < m_last || m_last == m_buff)
+ return m_first;
+ pointer src = m_first;
+ pointer dest = m_buff;
+ size_type moved = 0;
+ size_type constructed = 0;
+ BOOST_TRY {
+ for (pointer first = m_first; dest < src; src = first) {
+ for (size_type ii = 0; src < m_end; ++src, ++dest, ++moved, ++ii) {
+ if (moved == size()) {
+ first = dest;
+ break;
+ }
+ if (dest == first) {
+ first += ii;
+ break;
+ }
+ if (is_uninitialized(dest)) {
+ m_alloc.construct(dest, *src);
+ ++constructed;
+ } else {
+ value_type tmp = *src;
+ replace(src, *dest);
+ replace(dest, tmp);
+ }
+ }
+ }
+ } BOOST_CATCH(...) {
+ m_last += constructed;
+ m_size += constructed;
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ for (src = m_end - constructed; src < m_end; ++src)
+ destroy_item(src);
+ m_first = m_buff;
+ m_last = add(m_buff, size());
+#if BOOST_CB_ENABLE_DEBUG
+ invalidate_iterators_except(end());
+#endif
+ return m_buff;
+ }
+
+ //! Is the <code>circular_buffer</code> linearized?
+ /*!
+ \return <code>true</code> if the internal buffer is linearized into a continuous array (i.e. the
+ <code>circular_buffer</code> meets a condition
+ <code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code>);
+ <code>false</code> otherwise.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>linearize()</code>, <code>array_one()</code>, <code>array_two()</code>
+ */
+ bool is_linearized() const { return m_first < m_last || m_last == m_buff; }
+
+ //! Rotate elements in the <code>circular_buffer</code>.
+ /*!
+ A more effective implementation of
+ <code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code>.
+ \pre <code>new_begin</code> is a valid iterator pointing to the <code>circular_buffer</code> <b>except</b> its
+ end.
+ \post Before calling the method suppose:<br><br>
+ <code>m == std::distance(new_begin, end())</code><br><code>n == std::distance(begin(), new_begin)</code>
+ <br><code>val_0 == *new_begin, val_1 == *(new_begin + 1), ... val_m == *(new_begin + m)</code><br>
+ <code>val_r1 == *(new_begin - 1), val_r2 == *(new_begin - 2), ... val_rn == *(new_begin - n)</code><br>
+ <br>then after call to the method:<br><br>
+ <code>val_0 == (*this)[0] \&\& val_1 == (*this)[1] \&\& ... \&\& val_m == (*this)[m - 1] \&\& val_r1 ==
+ (*this)[m + n - 1] \&\& val_r2 == (*this)[m + n - 2] \&\& ... \&\& val_rn == (*this)[m]</code>
+ \param new_begin The new beginning.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the <code>circular_buffer</code> is full or <code>new_begin</code> points to
+ <code>begin()</code> or if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ If <code>m \< n</code> invalidates iterators pointing to the last <code>m</code> elements
+ (<b>including</b> <code>new_begin</code>, but not iterators equal to <code>end()</code>) else invalidates
+ iterators pointing to the first <code>n</code> elements; does not invalidate any iterators if the
+ <code>circular_buffer</code> is full.
+ \par Complexity
+ Linear (in <code>(std::min)(m, n)</code>); constant if the <code>circular_buffer</code> is full.
+ \sa <code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code>
+ */
+ void rotate(const_iterator new_begin) {
+ BOOST_CB_ASSERT(new_begin.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(new_begin.m_it != 0); // check for iterator pointing to end()
+ if (full()) {
+ m_first = m_last = const_cast<pointer>(new_begin.m_it);
+ } else {
+ difference_type m = end() - new_begin;
+ difference_type n = new_begin - begin();
+ if (m < n) {
+ for (; m > 0; --m) {
+ push_front(back());
+ pop_back();
+ }
+ } else {
+ for (; n > 0; --n) {
+ push_back(front());
+ pop_front();
+ }
+ }
+ }
+ }
+
+// Size and capacity
+
+ //! Get the number of elements currently stored in the <code>circular_buffer</code>.
+ /*!
+ \return The number of elements stored in the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>capacity()</code>, <code>max_size()</code>, <code>reserve()</code>,
+ <code>\link resize() resize(size_type, const_reference)\endlink</code>
+ */
+ size_type size() const { return m_size; }
+
+ /*! \brief Get the largest possible size or capacity of the <code>circular_buffer</code>. (It depends on
+ allocator's %max_size()).
+ \return The maximum size/capacity the <code>circular_buffer</code> can be set to.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>size()</code>, <code>capacity()</code>, <code>reserve()</code>
+ */
+ size_type max_size() const {
+ return (std::min<size_type>)(m_alloc.max_size(), (std::numeric_limits<difference_type>::max)());
+ }
+
+ //! Is the <code>circular_buffer</code> empty?
+ /*!
+ \return <code>true</code> if there are no elements stored in the <code>circular_buffer</code>;
+ <code>false</code> otherwise.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>full()</code>
+ */
+ bool empty() const { return size() == 0; }
+
+ //! Is the <code>circular_buffer</code> full?
+ /*!
+ \return <code>true</code> if the number of elements stored in the <code>circular_buffer</code>
+ equals the capacity of the <code>circular_buffer</code>; <code>false</code> otherwise.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>empty()</code>
+ */
+ bool full() const { return capacity() == size(); }
+
+ /*! \brief Get the maximum number of elements which can be inserted into the <code>circular_buffer</code> without
+ overwriting any of already stored elements.
+ \return <code>capacity() - size()</code>
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>capacity()</code>, <code>size()</code>, <code>max_size()</code>
+ */
+ size_type reserve() const { return capacity() - size(); }
+
+ //! Get the capacity of the <code>circular_buffer</code>.
+ /*!
+ \return The maximum number of elements which can be stored in the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>reserve()</code>, <code>size()</code>, <code>max_size()</code>,
+ <code>set_capacity(capacity_type)</code>
+ */
+ capacity_type capacity() const { return m_end - m_buff; }
+
+ //! Change the capacity of the <code>circular_buffer</code>.
+ /*!
+ \post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br>
+ If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
+ new capacity then number of <code>[size() - new_capacity]</code> <b>last</b> elements will be removed and
+ the new size will be equal to <code>new_capacity</code>.
+ \param new_capacity The new capacity.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>) if the new capacity is different from the original.
+ \par Complexity
+ Linear (in <code>min[size(), new_capacity]</code>).
+ \sa <code>rset_capacity(capacity_type)</code>,
+ <code>\link resize() resize(size_type, const_reference)\endlink</code>
+ */
+ void set_capacity(capacity_type new_capacity) {
+ if (new_capacity == capacity())
+ return;
+ pointer buff = allocate(new_capacity);
+ iterator b = begin();
+ BOOST_TRY {
+ reset(buff,
+ cb_details::uninitialized_copy_with_alloc(b, b + (std::min)(new_capacity, size()), buff, m_alloc),
+ new_capacity);
+ } BOOST_CATCH(...) {
+ deallocate(buff, new_capacity);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ //! Change the size of the <code>circular_buffer</code>.
+ /*!
+ \post <code>size() == new_size \&\& capacity() >= new_size</code><br><br>
+ If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
+ <b>back</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case
+ the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br>
+ If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
+ new size then number of <code>[size() - new_size]</code> <b>last</b> elements will be removed. (The
+ capacity will remain unchanged.)
+ \param new_size The new size.
+ \param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested
+ size. (See the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing
+ to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate
+ any iterator.
+ \par Complexity
+ Linear (in the new size of the <code>circular_buffer</code>).
+ \sa <code>\link rresize() rresize(size_type, const_reference)\endlink</code>,
+ <code>set_capacity(capacity_type)</code>
+ */
+ void resize(size_type new_size, param_value_type item = value_type()) {
+ if (new_size > size()) {
+ if (new_size > capacity())
+ set_capacity(new_size);
+ insert(end(), new_size - size(), item);
+ } else {
+ iterator e = end();
+ erase(e - (size() - new_size), e);
+ }
+ }
+
+ //! Change the capacity of the <code>circular_buffer</code>.
+ /*!
+ \post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br>
+ If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
+ new capacity then number of <code>[size() - new_capacity]</code> <b>first</b> elements will be removed
+ and the new size will be equal to <code>new_capacity</code>.
+ \param new_capacity The new capacity.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>) if the new capacity is different from the original.
+ \par Complexity
+ Linear (in <code>min[size(), new_capacity]</code>).
+ \sa <code>set_capacity(capacity_type)</code>,
+ <code>\link rresize() rresize(size_type, const_reference)\endlink</code>
+ */
+ void rset_capacity(capacity_type new_capacity) {
+ if (new_capacity == capacity())
+ return;
+ pointer buff = allocate(new_capacity);
+ iterator e = end();
+ BOOST_TRY {
+ reset(buff, cb_details::uninitialized_copy_with_alloc(e - (std::min)(new_capacity, size()),
+ e, buff, m_alloc), new_capacity);
+ } BOOST_CATCH(...) {
+ deallocate(buff, new_capacity);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ //! Change the size of the <code>circular_buffer</code>.
+ /*!
+ \post <code>size() == new_size \&\& capacity() >= new_size</code><br><br>
+ If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
+ <b>front</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case
+ the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br>
+ If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
+ new size then number of <code>[size() - new_size]</code> <b>first</b> elements will be removed. (The
+ capacity will remain unchanged.)
+ \param new_size The new size.
+ \param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested
+ size. (See the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing
+ to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate
+ any iterator.
+ \par Complexity
+ Linear (in the new size of the <code>circular_buffer</code>).
+ \sa <code>\link resize() resize(size_type, const_reference)\endlink</code>,
+ <code>rset_capacity(capacity_type)</code>
+ */
+ void rresize(size_type new_size, param_value_type item = value_type()) {
+ if (new_size > size()) {
+ if (new_size > capacity())
+ set_capacity(new_size);
+ rinsert(begin(), new_size - size(), item);
+ } else {
+ rerase(begin(), end() - new_size);
+ }
+ }
+
+// Construction/Destruction
+
+ //! Create an empty <code>circular_buffer</code> with zero capacity.
+ /*!
+ \post <code>capacity() == 0 \&\& size() == 0</code>
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Complexity
+ Constant.
+ \warning Since Boost version 1.36 the behaviour of this constructor has changed. Now the constructor does not
+ allocate any memory and both capacity and size are set to zero. Also note when inserting an element
+ into a <code>circular_buffer</code> with zero capacity (e.g. by
+ <code>\link push_back() push_back(const_reference)\endlink</code> or
+ <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>) nothing
+ will be inserted and the size (as well as capacity) remains zero.
+ \note You can explicitly set the capacity by calling the <code>set_capacity(capacity_type)</code> method or you
+ can use the other constructor with the capacity specified.
+ \sa <code>circular_buffer(capacity_type, const allocator_type& alloc)</code>,
+ <code>set_capacity(capacity_type)</code>
+ */
+ explicit circular_buffer(const allocator_type& alloc = allocator_type())
+ : m_buff(0), m_end(0), m_first(0), m_last(0), m_size(0), m_alloc(alloc) {}
+
+ //! Create an empty <code>circular_buffer</code> with the specified capacity.
+ /*!
+ \post <code>capacity() == buffer_capacity \&\& size() == 0</code>
+ \param buffer_capacity The maximum number of elements which can be stored in the <code>circular_buffer</code>.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Complexity
+ Constant.
+ */
+ explicit circular_buffer(capacity_type buffer_capacity, const allocator_type& alloc = allocator_type())
+ : m_size(0), m_alloc(alloc) {
+ initialize_buffer(buffer_capacity);
+ m_first = m_last = m_buff;
+ }
+
+ /*! \brief Create a full <code>circular_buffer</code> with the specified capacity and filled with <code>n</code>
+ copies of <code>item</code>.
+ \post <code>capacity() == n \&\& full() \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\&
+ (*this)[n - 1] == item </code>
+ \param n The number of elements the created <code>circular_buffer</code> will be filled with.
+ \param item The element the created <code>circular_buffer</code> will be filled with.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>n</code>).
+ */
+ circular_buffer(size_type n, param_value_type item, const allocator_type& alloc = allocator_type())
+ : m_size(n), m_alloc(alloc) {
+ initialize_buffer(n, item);
+ m_first = m_last = m_buff;
+ }
+
+ /*! \brief Create a <code>circular_buffer</code> with the specified capacity and filled with <code>n</code>
+ copies of <code>item</code>.
+ \pre <code>buffer_capacity >= n</code>
+ \post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
+ \&\& ... \&\& (*this)[n - 1] == item</code>
+ \param buffer_capacity The capacity of the created <code>circular_buffer</code>.
+ \param n The number of elements the created <code>circular_buffer</code> will be filled with.
+ \param item The element the created <code>circular_buffer</code> will be filled with.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>n</code>).
+ */
+ circular_buffer(capacity_type buffer_capacity, size_type n, param_value_type item,
+ const allocator_type& alloc = allocator_type())
+ : m_size(n), m_alloc(alloc) {
+ BOOST_CB_ASSERT(buffer_capacity >= size()); // check for capacity lower than size
+ initialize_buffer(buffer_capacity, item);
+ m_first = m_buff;
+ m_last = buffer_capacity == n ? m_buff : m_buff + n;
+ }
+
+ //! The copy constructor.
+ /*!
+ Creates a copy of the specified <code>circular_buffer</code>.
+ \post <code>*this == cb</code>
+ \param cb The <code>circular_buffer</code> to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the size of <code>cb</code>).
+ */
+ circular_buffer(const circular_buffer<T, Alloc>& cb)
+ :
+#if BOOST_CB_ENABLE_DEBUG
+ debug_iterator_registry(),
+#endif
+ m_size(cb.size()), m_alloc(cb.get_allocator()) {
+ initialize_buffer(cb.capacity());
+ m_first = m_buff;
+ BOOST_TRY {
+ m_last = cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), m_buff, m_alloc);
+ } BOOST_CATCH(...) {
+ deallocate(m_buff, cb.capacity());
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ if (m_last == m_end)
+ m_last = m_buff;
+ }
+
+#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
+
+ /*! \cond */
+ template <class InputIterator>
+ circular_buffer(InputIterator first, InputIterator last)
+ : m_alloc(allocator_type()) {
+ initialize(first, last, is_integral<InputIterator>());
+ }
+
+ template <class InputIterator>
+ circular_buffer(capacity_type capacity, InputIterator first, InputIterator last)
+ : m_alloc(allocator_type()) {
+ initialize(capacity, first, last, is_integral<InputIterator>());
+ }
+ /*! \endcond */
+
+#else
+
+ //! Create a full <code>circular_buffer</code> filled with a copy of the range.
+ /*!
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == std::distance(first, last) \&\& full() \&\& (*this)[0]== *first \&\&
+ (*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1] == *(last - 1)</code>
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>std::distance(first, last)</code>).
+ */
+ template <class InputIterator>
+ circular_buffer(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type())
+ : m_alloc(alloc) {
+ initialize(first, last, is_integral<InputIterator>());
+ }
+
+ //! Create a <code>circular_buffer</code> with the specified capacity and filled with a copy of the range.
+ /*!
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\&
+ (*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\&
+ (*this)[buffer_capacity - 1] == *(last - 1)</code><br><br>
+ If the number of items to be copied from the range <code>[first, last)</code> is greater than the
+ specified <code>buffer_capacity</code> then only elements from the range
+ <code>[last - buffer_capacity, last)</code> will be copied.
+ \param buffer_capacity The capacity of the created <code>circular_buffer</code>.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in <code>std::distance(first, last)</code>; in
+ <code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ */
+ template <class InputIterator>
+ circular_buffer(capacity_type buffer_capacity, InputIterator first, InputIterator last,
+ const allocator_type& alloc = allocator_type())
+ : m_alloc(alloc) {
+ initialize(buffer_capacity, first, last, is_integral<InputIterator>());
+ }
+
+#endif // #if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
+
+ //! The destructor.
+ /*!
+ Destroys the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (including iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types.
+ \sa <code>clear()</code>
+ */
+ ~circular_buffer() {
+ destroy();
+#if BOOST_CB_ENABLE_DEBUG
+ invalidate_all_iterators();
+#endif
+ }
+
+public:
+// Assign methods
+
+ //! The assign operator.
+ /*!
+ Makes this <code>circular_buffer</code> to become a copy of the specified <code>circular_buffer</code>.
+ \post <code>*this == cb</code>
+ \param cb The <code>circular_buffer</code> to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to this <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Linear (in the size of <code>cb</code>).
+ \sa <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ circular_buffer<T, Alloc>& operator = (const circular_buffer<T, Alloc>& cb) {
+ if (this == &cb)
+ return *this;
+ pointer buff = allocate(cb.capacity());
+ BOOST_TRY {
+ reset(buff, cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), buff, m_alloc), cb.capacity());
+ } BOOST_CATCH(...) {
+ deallocate(buff, cb.capacity());
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ return *this;
+ }
+
+ //! Assign <code>n</code> items into the <code>circular_buffer</code>.
+ /*!
+ The content of the <code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the
+ <code>item</code>.
+ \post <code>capacity() == n \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\&
+ (*this) [n - 1] == item</code>
+ \param n The number of elements the <code>circular_buffer</code> will be filled with.
+ \param item The element the <code>circular_buffer</code> will be filled with.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>n</code>).
+ \sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ void assign(size_type n, param_value_type item) {
+ assign_n(n, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc));
+ }
+
+ //! Assign <code>n</code> items into the <code>circular_buffer</code> specifying the capacity.
+ /*!
+ The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the
+ <code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the <code>item</code>.
+ \pre <code>capacity >= n</code>
+ \post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
+ \&\& ... \&\& (*this) [n - 1] == item </code>
+ \param buffer_capacity The new capacity.
+ \param n The number of elements the <code>circular_buffer</code> will be filled with.
+ \param item The element the <code>circular_buffer</code> will be filled with.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>n</code>).
+ \sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ void assign(capacity_type buffer_capacity, size_type n, param_value_type item) {
+ BOOST_CB_ASSERT(buffer_capacity >= n); // check for new capacity lower than n
+ assign_n(buffer_capacity, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc));
+ }
+
+ //! Assign a copy of the range into the <code>circular_buffer</code>.
+ /*!
+ The content of the <code>circular_buffer</code> will be removed and replaced with copies of elements from the
+ specified range.
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == std::distance(first, last) \&\& size() == std::distance(first, last) \&\&
+ (*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1]
+ == *(last - 1)</code>
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>std::distance(first, last)</code>).
+ \sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void assign(InputIterator first, InputIterator last) {
+ assign(first, last, is_integral<InputIterator>());
+ }
+
+ //! Assign a copy of the range into the <code>circular_buffer</code> specifying the capacity.
+ /*!
+ The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the
+ <code>circular_buffer</code> will be removed and replaced with copies of elements from the specified range.
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\&
+ (*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\&
+ (*this)[buffer_capacity - 1] == *(last - 1)</code><br><br>
+ If the number of items to be copied from the range <code>[first, last)</code> is greater than the
+ specified <code>buffer_capacity</code> then only elements from the range
+ <code>[last - buffer_capacity, last)</code> will be copied.
+ \param buffer_capacity The new capacity.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Linear (in <code>std::distance(first, last)</code>; in
+ <code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void assign(capacity_type buffer_capacity, InputIterator first, InputIterator last) {
+ assign(buffer_capacity, first, last, is_integral<InputIterator>());
+ }
+
+ //! Swap the contents of two <code>circular_buffer</code>s.
+ /*!
+ \post <code>this</code> contains elements of <code>cb</code> and vice versa; the capacity of <code>this</code>
+ equals to the capacity of <code>cb</code> and vice versa.
+ \param cb The <code>circular_buffer</code> whose content will be swapped.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still
+ point to the same elements but within another container. If you want to rely on this feature you have to
+ turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such
+ invalidated iterator is used.)
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>swap(circular_buffer<T, Alloc>&, circular_buffer<T, Alloc>&)</code>
+ */
+ void swap(circular_buffer<T, Alloc>& cb) {
+ swap_allocator(cb, is_stateless<allocator_type>());
+ std::swap(m_buff, cb.m_buff);
+ std::swap(m_end, cb.m_end);
+ std::swap(m_first, cb.m_first);
+ std::swap(m_last, cb.m_last);
+ std::swap(m_size, cb.m_size);
+#if BOOST_CB_ENABLE_DEBUG
+ invalidate_all_iterators();
+ cb.invalidate_all_iterators();
+#endif
+ }
+
+// push and pop
+
+ //! Insert a new element at the end of the <code>circular_buffer</code>.
+ /*!
+ \post if <code>capacity() > 0</code> then <code>back() == item</code><br>
+ If the <code>circular_buffer</code> is full, the first element will be removed. If the capacity is
+ <code>0</code>, nothing will be inserted.
+ \param item The element to be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Does not invalidate any iterators with the exception of iterators pointing to the overwritten element.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>\link push_front() push_front(const_reference)\endlink</code>,
+ <code>pop_back()</code>, <code>pop_front()</code>
+ */
+ void push_back(param_value_type item = value_type()) {
+ if (full()) {
+ if (empty())
+ return;
+ replace(m_last, item);
+ increment(m_last);
+ m_first = m_last;
+ } else {
+ m_alloc.construct(m_last, item);
+ increment(m_last);
+ ++m_size;
+ }
+ }
+
+ //! Insert a new element at the beginning of the <code>circular_buffer</code>.
+ /*!
+ \post if <code>capacity() > 0</code> then <code>front() == item</code><br>
+ If the <code>circular_buffer</code> is full, the last element will be removed. If the capacity is
+ <code>0</code>, nothing will be inserted.
+ \param item The element to be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Does not invalidate any iterators with the exception of iterators pointing to the overwritten element.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>\link push_back() push_back(const_reference)\endlink</code>,
+ <code>pop_back()</code>, <code>pop_front()</code>
+ */
+ void push_front(param_value_type item = value_type()) {
+ BOOST_TRY {
+ if (full()) {
+ if (empty())
+ return;
+ decrement(m_first);
+ replace(m_first, item);
+ m_last = m_first;
+ } else {
+ decrement(m_first);
+ m_alloc.construct(m_first, item);
+ ++m_size;
+ }
+ } BOOST_CATCH(...) {
+ increment(m_first);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ //! Remove the last element from the <code>circular_buffer</code>.
+ /*!
+ \pre <code>!empty()</code>
+ \post The last element is removed from the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Invalidates only iterators pointing to the removed element.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>pop_front()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
+ <code>\link push_front() push_front(const_reference)\endlink</code>
+ */
+ void pop_back() {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
+ decrement(m_last);
+ destroy_item(m_last);
+ --m_size;
+ }
+
+ //! Remove the first element from the <code>circular_buffer</code>.
+ /*!
+ \pre <code>!empty()</code>
+ \post The first element is removed from the <code>circular_buffer</code>.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Invalidates only iterators pointing to the removed element.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>).
+ \sa <code>pop_back()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
+ <code>\link push_front() push_front(const_reference)\endlink</code>
+ */
+ void pop_front() {
+ BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
+ destroy_item(m_first);
+ increment(m_first);
+ --m_size;
+ }
+
+public:
+// Insert
+
+ //! Insert an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
+ \post The <code>item</code> will be inserted at the position <code>pos</code>.<br>
+ If the <code>circular_buffer</code> is full, the first element will be overwritten. If the
+ <code>circular_buffer</code> is full and the <code>pos</code> points to <code>begin()</code>, then the
+ <code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted.
+ \param pos An iterator specifying the position where the <code>item</code> will be inserted.
+ \param item The element to be inserted.
+ \return Iterator to the inserted element or <code>begin()</code> if the <code>item</code> is not inserted. (See
+ the <i>Effect</i>.)
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
+ iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
+ also invalidates iterators pointing to the overwritten element.
+ \par Complexity
+ Linear (in <code>std::distance(pos, end())</code>).
+ \sa <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ iterator insert(iterator pos, param_value_type item = value_type()) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ iterator b = begin();
+ if (full() && pos == b)
+ return b;
+ return insert_item(pos, item);
+ }
+
+ //! Insert <code>n</code> copies of the <code>item</code> at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
+ \post The number of <code>min[n, (pos - begin()) + reserve()]</code> elements will be inserted at the position
+ <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, n - reserve()]]</code> elements will
+ be overwritten at the beginning of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the
+ explanation.)
+ \param pos An iterator specifying the position where the <code>item</code>s will be inserted.
+ \param n The number of <code>item</code>s the to be inserted.
+ \param item The element whose copies will be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
+ iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
+ also invalidates iterators pointing to the overwritten elements.
+ \par Complexity
+ Linear (in <code>min[capacity(), std::distance(pos, end()) + n]</code>).
+ \par Example
+ Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
+ look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting 5 elements at the position <code>p</code>:<br><br>
+ <code>insert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
+ <code>1</code> and <code>2</code> are overwritten. This is due to the fact the insert operation preserves
+ the capacity. After insertion the internal buffer looks like this:<br><br><code>|0|0|0|0|3|4|</code><br>
+ <br>For comparison if the capacity would not be preserved the internal buffer would then result in
+ <code>|1|2|0|0|0|0|0|3|4|</code>.
+ \sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ void insert(iterator pos, size_type n, param_value_type item) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ if (n == 0)
+ return;
+ size_type copy = capacity() - (end() - pos);
+ if (copy == 0)
+ return;
+ if (n > copy)
+ n = copy;
+ insert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item));
+ }
+
+ //! Insert the range <code>[first, last)</code> at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br>
+ Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
+ requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post Elements from the range
+ <code>[first + max[0, distance(first, last) - (pos - begin()) - reserve()], last)</code> will be
+ inserted at the position <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0,
+ distance(first, last) - reserve()]]</code> elements will be overwritten at the beginning of the
+ <code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)
+ \param pos An iterator specifying the position where the range will be inserted.
+ \param first The beginning of the range to be inserted.
+ \param last The end of the range to be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
+ iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
+ also invalidates iterators pointing to the overwritten elements.
+ \par Complexity
+ Linear (in <code>[std::distance(pos, end()) + std::distance(first, last)]</code>; in
+ <code>min[capacity(), std::distance(pos, end()) + std::distance(first, last)]</code> if the
+ <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \par Example
+ Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
+ look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting a range of elements at the position <code>p</code>:<br><br>
+ <code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
+ actually only elements <code>6</code>, <code>7</code>, <code>8</code> and <code>9</code> from the
+ specified range get inserted and elements <code>1</code> and <code>2</code> are overwritten. This is due
+ to the fact the insert operation preserves the capacity. After insertion the internal buffer looks like
+ this:<br><br><code>|6|7|8|9|3|4|</code><br><br>For comparison if the capacity would not be preserved the
+ internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
+ \sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>, <code>\link rinsert(iterator, param_value_type)
+ rinsert(iterator, value_type)\endlink</code>, <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void insert(iterator pos, InputIterator first, InputIterator last) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ insert(pos, first, last, is_integral<InputIterator>());
+ }
+
+ //! Insert an element before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
+ \post The <code>item</code> will be inserted before the position <code>pos</code>.<br>
+ If the <code>circular_buffer</code> is full, the last element will be overwritten. If the
+ <code>circular_buffer</code> is full and the <code>pos</code> points to <code>end()</code>, then the
+ <code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted.
+ \param pos An iterator specifying the position before which the <code>item</code> will be inserted.
+ \param item The element to be inserted.
+ \return Iterator to the inserted element or <code>end()</code> if the <code>item</code> is not inserted. (See
+ the <i>Effect</i>.)
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
+ excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten element.
+ \par Complexity
+ Linear (in <code>std::distance(begin(), pos)</code>).
+ \sa <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ iterator rinsert(iterator pos, param_value_type item = value_type()) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ if (full() && pos.m_it == 0)
+ return end();
+ if (pos == begin()) {
+ BOOST_TRY {
+ decrement(m_first);
+ construct_or_replace(!full(), m_first, item);
+ } BOOST_CATCH(...) {
+ increment(m_first);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ pos.m_it = m_first;
+ } else {
+ pointer src = m_first;
+ pointer dest = m_first;
+ decrement(dest);
+ pos.m_it = map_pointer(pos.m_it);
+ bool construct = !full();
+ BOOST_TRY {
+ while (src != pos.m_it) {
+ construct_or_replace(construct, dest, *src);
+ increment(src);
+ increment(dest);
+ construct = false;
+ }
+ decrement(pos.m_it);
+ replace(pos.m_it, item);
+ } BOOST_CATCH(...) {
+ if (!construct && !full()) {
+ decrement(m_first);
+ ++m_size;
+ }
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ decrement(m_first);
+ }
+ if (full())
+ m_last = m_first;
+ else
+ ++m_size;
+ return iterator(this, pos.m_it);
+ }
+
+ //! Insert <code>n</code> copies of the <code>item</code> before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
+ \post The number of <code>min[n, (end() - pos) + reserve()]</code> elements will be inserted before the
+ position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, n - reserve()]]</code> elements
+ will be overwritten at the end of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the
+ explanation.)
+ \param pos An iterator specifying the position where the <code>item</code>s will be inserted.
+ \param n The number of <code>item</code>s the to be inserted.
+ \param item The element whose copies will be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
+ excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements.
+ \par Complexity
+ Linear (in <code>min[capacity(), std::distance(begin(), pos) + n]</code>).
+ \par Example
+ Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
+ look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting 5 elements before the position <code>p</code>:<br><br>
+ <code>rinsert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
+ <code>3</code> and <code>4</code> are overwritten. This is due to the fact the rinsert operation preserves
+ the capacity. After insertion the internal buffer looks like this:<br><br><code>|1|2|0|0|0|0|</code><br>
+ <br>For comparison if the capacity would not be preserved the internal buffer would then result in
+ <code>|1|2|0|0|0|0|0|3|4|</code>.
+ \sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ void rinsert(iterator pos, size_type n, param_value_type item) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ rinsert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item));
+ }
+
+ //! Insert the range <code>[first, last)</code> before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br>
+ Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
+ requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post Elements from the range
+ <code>[first, last - max[0, distance(first, last) - (end() - pos) - reserve()])</code> will be inserted
+ before the position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0,
+ distance(first, last) - reserve()]]</code> elements will be overwritten at the end of the
+ <code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)
+ \param pos An iterator specifying the position where the range will be inserted.
+ \param first The beginning of the range to be inserted.
+ \param last The end of the range to be inserted.
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
+ excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements.
+ \par Complexity
+ Linear (in <code>[std::distance(begin(), pos) + std::distance(first, last)]</code>; in
+ <code>min[capacity(), std::distance(begin(), pos) + std::distance(first, last)]</code> if the
+ <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \par Example
+ Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
+ look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting a range of elements before the position <code>p</code>:<br><br>
+ <code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
+ actually only elements <code>5</code>, <code>6</code>, <code>7</code> and <code>8</code> from the
+ specified range get inserted and elements <code>3</code> and <code>4</code> are overwritten. This is due
+ to the fact the rinsert operation preserves the capacity. After insertion the internal buffer looks like
+ this:<br><br><code>|1|2|5|6|7|8|</code><br><br>For comparison if the capacity would not be preserved the
+ internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
+ \sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>, <code>\link insert(iterator, param_value_type)
+ insert(iterator, value_type)\endlink</code>, <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void rinsert(iterator pos, InputIterator first, InputIterator last) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ rinsert(pos, first, last, is_integral<InputIterator>());
+ }
+
+// Erase
+
+ //! Remove an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an
+ <code>end()</code>).
+ \post The element at the position <code>pos</code> is removed.
+ \param pos An iterator pointing at the element to be removed.
+ \return Iterator to the first element remaining beyond the removed element or <code>end()</code> if no such
+ element exists.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the erased element and iterators pointing to the elements behind
+ the erased element (towards the end; except iterators equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>std::distance(pos, end())</code>).
+ \sa <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
+ <code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>,
+ <code>erase_end(size_type)</code>, <code>clear()</code>
+ */
+ iterator erase(iterator pos) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end()
+ pointer next = pos.m_it;
+ increment(next);
+ for (pointer p = pos.m_it; next != m_last; p = next, increment(next))
+ replace(p, *next);
+ decrement(m_last);
+ destroy_item(m_last);
+ --m_size;
+#if BOOST_CB_ENABLE_DEBUG
+ return m_last == pos.m_it ? end() : iterator(this, pos.m_it);
+#else
+ return m_last == pos.m_it ? end() : pos;
+#endif
+ }
+
+ //! Erase the range <code>[first, last)</code>.
+ /*!
+ \pre Valid range <code>[first, last)</code>.
+ \post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
+ nothing is removed.)
+ \param first The beginning of the range to be removed.
+ \param last The end of the range to be removed.
+ \return Iterator to the first element remaining beyond the removed elements or <code>end()</code> if no such
+ element exists.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the erased elements and iterators pointing to the elements behind
+ the erased range (towards the end; except iterators equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>std::distance(first, end())</code>).
+ \sa <code>erase(iterator)</code>, <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
+ <code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code>
+ */
+ iterator erase(iterator first, iterator last) {
+ BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(first <= last); // check for wrong range
+ if (first == last)
+ return first;
+ pointer p = first.m_it;
+ while (last.m_it != 0)
+ replace((first++).m_it, *last++);
+ do {
+ decrement(m_last);
+ destroy_item(m_last);
+ --m_size;
+ } while(m_last != first.m_it);
+ return m_last == p ? end() : iterator(this, p);
+ }
+
+ //! Remove an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an
+ <code>end()</code>).
+ \post The element at the position <code>pos</code> is removed.
+ \param pos An iterator pointing at the element to be removed.
+ \return Iterator to the first element remaining in front of the removed element or <code>begin()</code> if no
+ such element exists.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the erased element and iterators pointing to the elements in front of
+ the erased element (towards the beginning).
+ \par Complexity
+ Linear (in <code>std::distance(begin(), pos)</code>).
+ \note This method is symetric to the <code>erase(iterator)</code> method and is more effective than
+ <code>erase(iterator)</code> if the iterator <code>pos</code> is close to the beginning of the
+ <code>circular_buffer</code>. (See the <i>Complexity</i>.)
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
+ <code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>,
+ <code>erase_end(size_type)</code>, <code>clear()</code>
+ */
+ iterator rerase(iterator pos) {
+ BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end()
+ pointer prev = pos.m_it;
+ pointer p = prev;
+ for (decrement(prev); p != m_first; p = prev, decrement(prev))
+ replace(p, *prev);
+ destroy_item(m_first);
+ increment(m_first);
+ --m_size;
+#if BOOST_CB_ENABLE_DEBUG
+ return p == pos.m_it ? begin() : iterator(this, pos.m_it);
+#else
+ return p == pos.m_it ? begin() : pos;
+#endif
+ }
+
+ //! Erase the range <code>[first, last)</code>.
+ /*!
+ \pre Valid range <code>[first, last)</code>.
+ \post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
+ nothing is removed.)
+ \param first The beginning of the range to be removed.
+ \param last The end of the range to be removed.
+ \return Iterator to the first element remaining in front of the removed elements or <code>begin()</code> if no
+ such element exists.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the erased elements and iterators pointing to the elements in front of
+ the erased range (towards the beginning).
+ \par Complexity
+ Linear (in <code>std::distance(begin(), last)</code>).
+ \note This method is symetric to the <code>erase(iterator, iterator)</code> method and is more effective than
+ <code>erase(iterator, iterator)</code> if <code>std::distance(begin(), first)</code> is lower that
+ <code>std::distance(last, end())</code>.
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
+ <code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code>
+ */
+ iterator rerase(iterator first, iterator last) {
+ BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(first <= last); // check for wrong range
+ if (first == last)
+ return first;
+ pointer p = map_pointer(last.m_it);
+ last.m_it = p;
+ while (first.m_it != m_first) {
+ decrement(first.m_it);
+ decrement(p);
+ replace(p, *first.m_it);
+ }
+ do {
+ destroy_item(m_first);
+ increment(m_first);
+ --m_size;
+ } while(m_first != p);
+ if (m_first == last.m_it)
+ return begin();
+ decrement(last.m_it);
+ return iterator(this, last.m_it);
+ }
+
+ //! Remove first <code>n</code> elements (with constant complexity for scalar types).
+ /*!
+ \pre <code>n \<= size()</code>
+ \post The <code>n</code> elements at the beginning of the <code>circular_buffer</code> will be removed.
+ \param n The number of elements to be removed.
+ \throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.)
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in
+ case of scalars.)
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the first <code>n</code> erased elements.
+ \par Complexity
+ Constant (in <code>n</code>) for scalar types; linear for other types.
+ \note This method has been specially designed for types which do not require an explicit destructruction (e.g.
+ integer, float or a pointer). For these scalar types a call to a destructor is not required which makes
+ it possible to implement the "erase from beginning" operation with a constant complexity. For non-sacalar
+ types the complexity is linear (hence the explicit destruction is needed) and the implementation is
+ actually equivalent to
+ <code>\link circular_buffer::rerase(iterator, iterator) rerase(begin(), begin() + n)\endlink</code>.
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
+ <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
+ <code>erase_end(size_type)</code>, <code>clear()</code>
+ */
+ void erase_begin(size_type n) {
+ BOOST_CB_ASSERT(n <= size()); // check for n greater than size
+#if BOOST_CB_ENABLE_DEBUG
+ erase_begin(n, false_type());
+#else
+ erase_begin(n, is_scalar<value_type>());
+#endif
+ }
+
+ //! Remove last <code>n</code> elements (with constant complexity for scalar types).
+ /*!
+ \pre <code>n \<= size()</code>
+ \post The <code>n</code> elements at the end of the <code>circular_buffer</code> will be removed.
+ \param n The number of elements to be removed.
+ \throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.)
+ \par Exception Safety
+ Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in
+ case of scalars.)
+ \par Iterator Invalidation
+ Invalidates iterators pointing to the last <code>n</code> erased elements.
+ \par Complexity
+ Constant (in <code>n</code>) for scalar types; linear for other types.
+ \note This method has been specially designed for types which do not require an explicit destructruction (e.g.
+ integer, float or a pointer). For these scalar types a call to a destructor is not required which makes
+ it possible to implement the "erase from end" operation with a constant complexity. For non-sacalar
+ types the complexity is linear (hence the explicit destruction is needed) and the implementation is
+ actually equivalent to
+ <code>\link circular_buffer::erase(iterator, iterator) erase(end() - n, end())\endlink</code>.
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
+ <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
+ <code>erase_begin(size_type)</code>, <code>clear()</code>
+ */
+ void erase_end(size_type n) {
+ BOOST_CB_ASSERT(n <= size()); // check for n greater than size
+#if BOOST_CB_ENABLE_DEBUG
+ erase_end(n, false_type());
+#else
+ erase_end(n, is_scalar<value_type>());
+#endif
+ }
+
+ //! Remove all stored elements from the <code>circular_buffer</code>.
+ /*!
+ \post <code>size() == 0</code>
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
+ <code>end()</code>).
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types.
+ \sa <code>~circular_buffer()</code>, <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
+ <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
+ <code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>
+ */
+ void clear() {
+ destroy_content();
+ m_size = 0;
+ }
+
+private:
+// Helper methods
+
+ //! Check if the <code>index</code> is valid.
+ void check_position(size_type index) const {
+ if (index >= size())
+ throw_exception(std::out_of_range("circular_buffer"));
+ }
+
+ //! Increment the pointer.
+ template <class Pointer>
+ void increment(Pointer& p) const {
+ if (++p == m_end)
+ p = m_buff;
+ }
+
+ //! Decrement the pointer.
+ template <class Pointer>
+ void decrement(Pointer& p) const {
+ if (p == m_buff)
+ p = m_end;
+ --p;
+ }
+
+ //! Add <code>n</code> to the pointer.
+ template <class Pointer>
+ Pointer add(Pointer p, difference_type n) const {
+ return p + (n < (m_end - p) ? n : n - capacity());
+ }
+
+ //! Subtract <code>n</code> from the pointer.
+ template <class Pointer>
+ Pointer sub(Pointer p, difference_type n) const {
+ return p - (n > (p - m_buff) ? n - capacity() : n);
+ }
+
+ //! Map the null pointer to virtual end of circular buffer.
+ pointer map_pointer(pointer p) const { return p == 0 ? m_last : p; }
+
+ //! Allocate memory.
+ pointer allocate(size_type n) {
+ if (n > max_size())
+ throw_exception(std::length_error("circular_buffer"));
+#if BOOST_CB_ENABLE_DEBUG
+ pointer p = (n == 0) ? 0 : m_alloc.allocate(n, 0);
+ std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type) * n);
+ return p;
+#else
+ return (n == 0) ? 0 : m_alloc.allocate(n, 0);
+#endif
+ }
+
+ //! Deallocate memory.
+ void deallocate(pointer p, size_type n) {
+ if (p != 0)
+ m_alloc.deallocate(p, n);
+ }
+
+ //! Does the pointer point to the uninitialized memory?
+ bool is_uninitialized(const_pointer p) const {
+ return p >= m_last && (m_first < m_last || p < m_first);
+ }
+
+ //! Replace an element.
+ void replace(pointer pos, param_value_type item) {
+ *pos = item;
+#if BOOST_CB_ENABLE_DEBUG
+ invalidate_iterators(iterator(this, pos));
+#endif
+ }
+
+ //! Construct or replace an element.
+ /*!
+ <code>construct</code> has to be set to <code>true</code> if and only if
+ <code>pos</code> points to an uninitialized memory.
+ */
+ void construct_or_replace(bool construct, pointer pos, param_value_type item) {
+ if (construct)
+ m_alloc.construct(pos, item);
+ else
+ replace(pos, item);
+ }
+
+ //! Destroy an item.
+ void destroy_item(pointer p) {
+ m_alloc.destroy(p);
+#if BOOST_CB_ENABLE_DEBUG
+ invalidate_iterators(iterator(this, p));
+ std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type));
+#endif
+ }
+
+ //! Destroy an item only if it has been constructed.
+ void destroy_if_constructed(pointer pos) {
+ if (is_uninitialized(pos))
+ destroy_item(pos);
+ }
+
+ //! Destroy the whole content of the circular buffer.
+ void destroy_content() {
+#if BOOST_CB_ENABLE_DEBUG
+ destroy_content(false_type());
+#else
+ destroy_content(is_scalar<value_type>());
+#endif
+ }
+
+ //! Specialized destroy_content method.
+ void destroy_content(const true_type&) {
+ m_first = add(m_first, size());
+ }
+
+ //! Specialized destroy_content method.
+ void destroy_content(const false_type&) {
+ for (size_type ii = 0; ii < size(); ++ii, increment(m_first))
+ destroy_item(m_first);
+ }
+
+ //! Destroy content and free allocated memory.
+ void destroy() {
+ destroy_content();
+ deallocate(m_buff, capacity());
+#if BOOST_CB_ENABLE_DEBUG
+ m_buff = 0;
+ m_first = 0;
+ m_last = 0;
+ m_end = 0;
+#endif
+ }
+
+ //! Initialize the internal buffer.
+ void initialize_buffer(capacity_type buffer_capacity) {
+ m_buff = allocate(buffer_capacity);
+ m_end = m_buff + buffer_capacity;
+ }
+
+ //! Initialize the internal buffer.
+ void initialize_buffer(capacity_type buffer_capacity, param_value_type item) {
+ initialize_buffer(buffer_capacity);
+ BOOST_TRY {
+ cb_details::uninitialized_fill_n_with_alloc(m_buff, size(), item, m_alloc);
+ } BOOST_CATCH(...) {
+ deallocate(m_buff, size());
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ //! Specialized initialize method.
+ template <class IntegralType>
+ void initialize(IntegralType n, IntegralType item, const true_type&) {
+ m_size = static_cast<size_type>(n);
+ initialize_buffer(size(), item);
+ m_first = m_last = m_buff;
+ }
+
+ //! Specialized initialize method.
+ template <class Iterator>
+ void initialize(Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ initialize(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ initialize(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized initialize method.
+ template <class InputIterator>
+ void initialize(InputIterator first, InputIterator last, const std::input_iterator_tag&) {
+ BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors
+ // for containers
+ std::deque<value_type, allocator_type> tmp(first, last, m_alloc);
+ size_type distance = tmp.size();
+ initialize(distance, tmp.begin(), tmp.end(), distance);
+ }
+
+ //! Specialized initialize method.
+ template <class ForwardIterator>
+ void initialize(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ size_type distance = std::distance(first, last);
+ initialize(distance, first, last, distance);
+ }
+
+ //! Specialized initialize method.
+ template <class IntegralType>
+ void initialize(capacity_type buffer_capacity, IntegralType n, IntegralType item, const true_type&) {
+ BOOST_CB_ASSERT(buffer_capacity >= static_cast<size_type>(n)); // check for capacity lower than n
+ m_size = static_cast<size_type>(n);
+ initialize_buffer(buffer_capacity, item);
+ m_first = m_buff;
+ m_last = buffer_capacity == size() ? m_buff : m_buff + size();
+ }
+
+ //! Specialized initialize method.
+ template <class Iterator>
+ void initialize(capacity_type buffer_capacity, Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ initialize(buffer_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ initialize(buffer_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized initialize method.
+ template <class InputIterator>
+ void initialize(capacity_type buffer_capacity,
+ InputIterator first,
+ InputIterator last,
+ const std::input_iterator_tag&) {
+ initialize_buffer(buffer_capacity);
+ m_first = m_last = m_buff;
+ m_size = 0;
+ if (buffer_capacity == 0)
+ return;
+ while (first != last && !full()) {
+ m_alloc.construct(m_last, *first++);
+ increment(m_last);
+ ++m_size;
+ }
+ while (first != last) {
+ replace(m_last, *first++);
+ increment(m_last);
+ m_first = m_last;
+ }
+ }
+
+ //! Specialized initialize method.
+ template <class ForwardIterator>
+ void initialize(capacity_type buffer_capacity,
+ ForwardIterator first,
+ ForwardIterator last,
+ const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ initialize(buffer_capacity, first, last, std::distance(first, last));
+ }
+
+ //! Initialize the circular buffer.
+ template <class ForwardIterator>
+ void initialize(capacity_type buffer_capacity,
+ ForwardIterator first,
+ ForwardIterator last,
+ size_type distance) {
+ initialize_buffer(buffer_capacity);
+ m_first = m_buff;
+ if (distance > buffer_capacity) {
+ std::advance(first, distance - buffer_capacity);
+ m_size = buffer_capacity;
+ } else {
+ m_size = distance;
+ }
+ BOOST_TRY {
+ m_last = cb_details::uninitialized_copy_with_alloc(first, last, m_buff, m_alloc);
+ } BOOST_CATCH(...) {
+ deallocate(m_buff, buffer_capacity);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ if (m_last == m_end)
+ m_last = m_buff;
+ }
+
+ //! Reset the circular buffer.
+ void reset(pointer buff, pointer last, capacity_type new_capacity) {
+ destroy();
+ m_size = last - buff;
+ m_first = m_buff = buff;
+ m_end = m_buff + new_capacity;
+ m_last = last == m_end ? m_buff : last;
+ }
+
+ //! Specialized method for swapping the allocator.
+ void swap_allocator(circular_buffer<T, Alloc>& cb, const true_type&) {
+ // Swap is not needed because allocators have no state.
+ }
+
+ //! Specialized method for swapping the allocator.
+ void swap_allocator(circular_buffer<T, Alloc>& cb, const false_type&) {
+ std::swap(m_alloc, cb.m_alloc);
+ }
+
+ //! Specialized assign method.
+ template <class IntegralType>
+ void assign(IntegralType n, IntegralType item, const true_type&) {
+ assign(static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized assign method.
+ template <class Iterator>
+ void assign(Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ assign(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ assign(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized assign method.
+ template <class InputIterator>
+ void assign(InputIterator first, InputIterator last, const std::input_iterator_tag&) {
+ BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors
+ // for containers
+ std::deque<value_type, allocator_type> tmp(first, last, m_alloc);
+ size_type distance = tmp.size();
+ assign_n(distance, distance,
+ cb_details::assign_range<BOOST_DEDUCED_TYPENAME std::deque<value_type, allocator_type>::iterator,
+ allocator_type>(tmp.begin(), tmp.end(), m_alloc));
+ }
+
+ //! Specialized assign method.
+ template <class ForwardIterator>
+ void assign(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ size_type distance = std::distance(first, last);
+ assign_n(distance, distance, cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc));
+ }
+
+ //! Specialized assign method.
+ template <class IntegralType>
+ void assign(capacity_type new_capacity, IntegralType n, IntegralType item, const true_type&) {
+ assign(new_capacity, static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized assign method.
+ template <class Iterator>
+ void assign(capacity_type new_capacity, Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ assign(new_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ assign(new_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized assign method.
+ template <class InputIterator>
+ void assign(capacity_type new_capacity, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
+ if (new_capacity == capacity()) {
+ clear();
+ insert(begin(), first, last);
+ } else {
+#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
+ circular_buffer<value_type, allocator_type> tmp(new_capacity, m_alloc);
+ tmp.insert(begin(), first, last);
+#else
+ circular_buffer<value_type, allocator_type> tmp(new_capacity, first, last, m_alloc);
+#endif
+ tmp.swap(*this);
+ }
+ }
+
+ //! Specialized assign method.
+ template <class ForwardIterator>
+ void assign(capacity_type new_capacity, ForwardIterator first, ForwardIterator last,
+ const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ size_type distance = std::distance(first, last);
+ if (distance > new_capacity) {
+ std::advance(first, distance - new_capacity);
+ distance = new_capacity;
+ }
+ assign_n(new_capacity, distance,
+ cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc));
+ }
+
+ //! Helper assign method.
+ template <class Functor>
+ void assign_n(capacity_type new_capacity, size_type n, const Functor& fnc) {
+ if (new_capacity == capacity()) {
+ destroy_content();
+ BOOST_TRY {
+ fnc(m_buff);
+ } BOOST_CATCH(...) {
+ m_size = 0;
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ } else {
+ pointer buff = allocate(new_capacity);
+ BOOST_TRY {
+ fnc(buff);
+ } BOOST_CATCH(...) {
+ deallocate(buff, new_capacity);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ destroy();
+ m_buff = buff;
+ m_end = m_buff + new_capacity;
+ }
+ m_size = n;
+ m_first = m_buff;
+ m_last = add(m_buff, size());
+ }
+
+ //! Helper insert method.
+ iterator insert_item(const iterator& pos, param_value_type item) {
+ pointer p = pos.m_it;
+ if (p == 0) {
+ construct_or_replace(!full(), m_last, item);
+ p = m_last;
+ } else {
+ pointer src = m_last;
+ pointer dest = m_last;
+ bool construct = !full();
+ BOOST_TRY {
+ while (src != p) {
+ decrement(src);
+ construct_or_replace(construct, dest, *src);
+ decrement(dest);
+ construct = false;
+ }
+ replace(p, item);
+ } BOOST_CATCH(...) {
+ if (!construct && !full()) {
+ increment(m_last);
+ ++m_size;
+ }
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ increment(m_last);
+ if (full())
+ m_first = m_last;
+ else
+ ++m_size;
+ return iterator(this, p);
+ }
+
+ //! Specialized insert method.
+ template <class IntegralType>
+ void insert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
+ insert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized insert method.
+ template <class Iterator>
+ void insert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ insert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ insert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized insert method.
+ template <class InputIterator>
+ void insert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
+ if (!full() || pos != begin()) {
+ for (;first != last; ++pos)
+ pos = insert_item(pos, *first++);
+ }
+ }
+
+ //! Specialized insert method.
+ template <class ForwardIterator>
+ void insert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ size_type n = std::distance(first, last);
+ if (n == 0)
+ return;
+ size_type copy = capacity() - (end() - pos);
+ if (copy == 0)
+ return;
+ if (n > copy) {
+ std::advance(first, n - copy);
+ n = copy;
+ }
+ insert_n(pos, n, cb_details::iterator_wrapper<ForwardIterator>(first));
+ }
+
+ //! Helper insert method.
+ template <class Wrapper>
+ void insert_n(const iterator& pos, size_type n, const Wrapper& wrapper) {
+ size_type construct = reserve();
+ if (construct > n)
+ construct = n;
+ if (pos.m_it == 0) {
+ size_type ii = 0;
+ pointer p = m_last;
+ BOOST_TRY {
+ for (; ii < construct; ++ii, increment(p))
+ m_alloc.construct(p, *wrapper());
+ for (;ii < n; ++ii, increment(p))
+ replace(p, *wrapper());
+ } BOOST_CATCH(...) {
+ size_type constructed = (std::min)(ii, construct);
+ m_last = add(m_last, constructed);
+ m_size += constructed;
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ } else {
+ pointer src = m_last;
+ pointer dest = add(m_last, n - 1);
+ pointer p = pos.m_it;
+ size_type ii = 0;
+ BOOST_TRY {
+ while (src != pos.m_it) {
+ decrement(src);
+ construct_or_replace(is_uninitialized(dest), dest, *src);
+ decrement(dest);
+ }
+ for (; ii < n; ++ii, increment(p))
+ construct_or_replace(is_uninitialized(p), p, *wrapper());
+ } BOOST_CATCH(...) {
+ for (p = add(m_last, n - 1); p != dest; decrement(p))
+ destroy_if_constructed(p);
+ for (n = 0, p = pos.m_it; n < ii; ++n, increment(p))
+ destroy_if_constructed(p);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ m_last = add(m_last, n);
+ m_first = add(m_first, n - construct);
+ m_size += construct;
+ }
+
+ //! Specialized rinsert method.
+ template <class IntegralType>
+ void rinsert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
+ rinsert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized rinsert method.
+ template <class Iterator>
+ void rinsert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ rinsert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ rinsert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized insert method.
+ template <class InputIterator>
+ void rinsert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
+ if (!full() || pos.m_it != 0) {
+ for (;first != last; ++pos) {
+ pos = rinsert(pos, *first++);
+ if (pos.m_it == 0)
+ break;
+ }
+ }
+ }
+
+ //! Specialized rinsert method.
+ template <class ForwardIterator>
+ void rinsert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ rinsert_n(pos, std::distance(first, last), cb_details::iterator_wrapper<ForwardIterator>(first));
+ }
+
+ //! Helper rinsert method.
+ template <class Wrapper>
+ void rinsert_n(const iterator& pos, size_type n, const Wrapper& wrapper) {
+ if (n == 0)
+ return;
+ iterator b = begin();
+ size_type copy = capacity() - (pos - b);
+ if (copy == 0)
+ return;
+ if (n > copy)
+ n = copy;
+ size_type construct = reserve();
+ if (construct > n)
+ construct = n;
+ if (pos == b) {
+ pointer p = sub(m_first, n);
+ size_type ii = n;
+ BOOST_TRY {
+ for (;ii > construct; --ii, increment(p))
+ replace(p, *wrapper());
+ for (; ii > 0; --ii, increment(p))
+ m_alloc.construct(p, *wrapper());
+ } BOOST_CATCH(...) {
+ size_type constructed = ii < construct ? construct - ii : 0;
+ m_last = add(m_last, constructed);
+ m_size += constructed;
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ } else {
+ pointer src = m_first;
+ pointer dest = sub(m_first, n);
+ pointer p = map_pointer(pos.m_it);
+ BOOST_TRY {
+ while (src != p) {
+ construct_or_replace(is_uninitialized(dest), dest, *src);
+ increment(src);
+ increment(dest);
+ }
+ for (size_type ii = 0; ii < n; ++ii, increment(dest))
+ construct_or_replace(is_uninitialized(dest), dest, *wrapper());
+ } BOOST_CATCH(...) {
+ for (src = sub(m_first, n); src != dest; increment(src))
+ destroy_if_constructed(src);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ m_first = sub(m_first, n);
+ m_last = sub(m_last, n - construct);
+ m_size += construct;
+ }
+
+ //! Specialized erase_begin method.
+ void erase_begin(size_type n, const true_type&) {
+ m_first = add(m_first, n);
+ m_size -= n;
+ }
+
+ //! Specialized erase_begin method.
+ void erase_begin(size_type n, const false_type&) {
+ iterator b = begin();
+ rerase(b, b + n);
+ }
+
+ //! Specialized erase_end method.
+ void erase_end(size_type n, const true_type&) {
+ m_last = sub(m_last, n);
+ m_size -= n;
+ }
+
+ //! Specialized erase_end method.
+ void erase_end(size_type n, const false_type&) {
+ iterator e = end();
+ erase(e - n, e);
+ }
+};
+
+// Non-member functions
+
+//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are equal.
+/*!
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code>lhs.\link circular_buffer::size() size()\endlink == rhs.\link circular_buffer::size() size()\endlink
+ && <a href="http://www.sgi.com/tech/stl/equal.html">std::equal</a>(lhs.\link circular_buffer::begin()
+ begin()\endlink, lhs.\link circular_buffer::end() end()\endlink,
+ rhs.\link circular_buffer::begin() begin()\endlink)</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+*/
+template <class T, class Alloc>
+inline bool operator == (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
+}
+
+/*!
+ \brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser than the
+ right one.
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code><a href="http://www.sgi.com/tech/stl/lexicographical_compare.html">
+ std::lexicographical_compare</a>(lhs.\link circular_buffer::begin() begin()\endlink,
+ lhs.\link circular_buffer::end() end()\endlink, rhs.\link circular_buffer::begin() begin()\endlink,
+ rhs.\link circular_buffer::end() end()\endlink)</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+*/
+template <class T, class Alloc>
+inline bool operator < (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
+}
+
+#if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC)
+
+//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are non-equal.
+/*!
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code>!(lhs == rhs)</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \sa <code>operator==(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
+*/
+template <class T, class Alloc>
+inline bool operator != (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return !(lhs == rhs);
+}
+
+/*!
+ \brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater than
+ the right one.
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code>rhs \< lhs</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
+*/
+template <class T, class Alloc>
+inline bool operator > (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return rhs < lhs;
+}
+
+/*!
+ \brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser or equal
+ to the right one.
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code>!(rhs \< lhs)</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
+*/
+template <class T, class Alloc>
+inline bool operator <= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return !(rhs < lhs);
+}
+
+/*!
+ \brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater or
+ equal to the right one.
+ \param lhs The <code>circular_buffer</code> to compare.
+ \param rhs The <code>circular_buffer</code> to compare.
+ \return <code>!(lhs < rhs)</code>
+ \throws Nothing.
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
+*/
+template <class T, class Alloc>
+inline bool operator >= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
+ return !(lhs < rhs);
+}
+
+//! Swap the contents of two <code>circular_buffer</code>s.
+/*!
+ \post <code>lhs</code> contains elements of <code>rhs</code> and vice versa.
+ \param lhs The <code>circular_buffer</code> whose content will be swapped with <code>rhs</code>.
+ \param rhs The <code>circular_buffer</code> whose content will be swapped with <code>lhs</code>.
+ \throws Nothing.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer</code>s).
+ \par Iterator Invalidation
+ Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still
+ point to the same elements but within another container. If you want to rely on this feature you have to
+ turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such
+ invalidated iterator is used.)
+ \sa <code>\link circular_buffer::swap(circular_buffer<T, Alloc>&) swap(circular_buffer<T, Alloc>&)\endlink</code>
+*/
+template <class T, class Alloc>
+inline void swap(circular_buffer<T, Alloc>& lhs, circular_buffer<T, Alloc>& rhs) {
+ lhs.swap(rhs);
+}
+
+#endif // #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC)
+
+} // namespace boost
+
+#endif // #if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP)
diff --git a/boost/circular_buffer/debug.hpp b/boost/circular_buffer/debug.hpp
new file mode 100644
index 0000000000..6eb4515856
--- /dev/null
+++ b/boost/circular_buffer/debug.hpp
@@ -0,0 +1,227 @@
+// Debug support for the circular buffer library.
+
+// Copyright (c) 2003-2008 Jan Gaspar
+
+// Use, modification, and distribution is subject to the Boost Software
+// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#if !defined(BOOST_CIRCULAR_BUFFER_DEBUG_HPP)
+#define BOOST_CIRCULAR_BUFFER_DEBUG_HPP
+
+#if defined(_MSC_VER) && _MSC_VER >= 1200
+ #pragma once
+#endif
+
+namespace boost {
+
+namespace cb_details {
+
+#if BOOST_CB_ENABLE_DEBUG
+
+// The value the uninitialized memory is filled with.
+const int UNINITIALIZED = 0xcc;
+
+class debug_iterator_registry;
+
+/*!
+ \class debug_iterator_base
+ \brief Registers/unregisters iterators into the registry of valid iterators.
+
+ This class is intended to be a base class of an iterator.
+*/
+class debug_iterator_base {
+
+private:
+// Members
+
+ //! Iterator registry.
+ mutable const debug_iterator_registry* m_registry;
+
+ //! Next iterator in the iterator chain.
+ mutable const debug_iterator_base* m_next;
+
+public:
+// Construction/destruction
+
+ //! Default constructor.
+ debug_iterator_base();
+
+ //! Constructor taking the iterator registry as a parameter.
+ debug_iterator_base(const debug_iterator_registry* registry);
+
+ //! Copy constructor.
+ debug_iterator_base(const debug_iterator_base& rhs);
+
+ //! Destructor.
+ ~debug_iterator_base();
+
+// Methods
+
+ //! Assign operator.
+ debug_iterator_base& operator = (const debug_iterator_base& rhs);
+
+ //! Is the iterator valid?
+ bool is_valid(const debug_iterator_registry* registry) const;
+
+ //! Invalidate the iterator.
+ /*!
+ \note The method is const in order to invalidate const iterators, too.
+ */
+ void invalidate() const;
+
+ //! Return the next iterator in the iterator chain.
+ const debug_iterator_base* next() const;
+
+ //! Set the next iterator in the iterator chain.
+ /*!
+ \note The method is const in order to set a next iterator to a const iterator, too.
+ */
+ void set_next(const debug_iterator_base* it) const;
+
+private:
+// Helpers
+
+ //! Register self as a valid iterator.
+ void register_self();
+
+ //! Unregister self from valid iterators.
+ void unregister_self();
+};
+
+/*!
+ \class debug_iterator_registry
+ \brief Registry of valid iterators.
+
+ This class is intended to be a base class of a container.
+*/
+class debug_iterator_registry {
+
+ //! Pointer to the chain of valid iterators.
+ mutable const debug_iterator_base* m_iterators;
+
+public:
+// Methods
+
+ //! Default constructor.
+ debug_iterator_registry() : m_iterators(0) {}
+
+ //! Register an iterator into the list of valid iterators.
+ /*!
+ \note The method is const in order to register iterators into const containers, too.
+ */
+ void register_iterator(const debug_iterator_base* it) const {
+ it->set_next(m_iterators);
+ m_iterators = it;
+ }
+
+ //! Unregister an iterator from the list of valid iterators.
+ /*!
+ \note The method is const in order to unregister iterators from const containers, too.
+ */
+ void unregister_iterator(const debug_iterator_base* it) const {
+ const debug_iterator_base* previous = 0;
+ for (const debug_iterator_base* p = m_iterators; p != it; previous = p, p = p->next()) {}
+ remove(it, previous);
+ }
+
+ //! Invalidate every iterator pointing to the same element as the iterator passed as a parameter.
+ template <class Iterator>
+ void invalidate_iterators(const Iterator& it) {
+ const debug_iterator_base* previous = 0;
+ for (const debug_iterator_base* p = m_iterators; p != 0; p = p->next()) {
+ if (((Iterator*)p)->m_it == it.m_it) {
+ p->invalidate();
+ remove(p, previous);
+ continue;
+ }
+ previous = p;
+ }
+ }
+
+ //! Invalidate all iterators except an iterator poining to the same element as the iterator passed as a parameter.
+ template <class Iterator>
+ void invalidate_iterators_except(const Iterator& it) {
+ const debug_iterator_base* previous = 0;
+ for (const debug_iterator_base* p = m_iterators; p != 0; p = p->next()) {
+ if (((Iterator*)p)->m_it != it.m_it) {
+ p->invalidate();
+ remove(p, previous);
+ continue;
+ }
+ previous = p;
+ }
+ }
+
+ //! Invalidate all iterators.
+ void invalidate_all_iterators() {
+ for (const debug_iterator_base* p = m_iterators; p != 0; p = p->next())
+ p->invalidate();
+ m_iterators = 0;
+ }
+
+private:
+// Helpers
+
+ //! Remove the current iterator from the iterator chain.
+ void remove(const debug_iterator_base* current,
+ const debug_iterator_base* previous) const {
+ if (previous == 0)
+ m_iterators = m_iterators->next();
+ else
+ previous->set_next(current->next());
+ }
+};
+
+// Implementation of the debug_iterator_base methods.
+
+inline debug_iterator_base::debug_iterator_base() : m_registry(0), m_next(0) {}
+
+inline debug_iterator_base::debug_iterator_base(const debug_iterator_registry* registry)
+: m_registry(registry), m_next(0) {
+ register_self();
+}
+
+inline debug_iterator_base::debug_iterator_base(const debug_iterator_base& rhs)
+: m_registry(rhs.m_registry), m_next(0) {
+ register_self();
+}
+
+inline debug_iterator_base::~debug_iterator_base() { unregister_self(); }
+
+inline debug_iterator_base& debug_iterator_base::operator = (const debug_iterator_base& rhs) {
+ if (m_registry == rhs.m_registry)
+ return *this;
+ unregister_self();
+ m_registry = rhs.m_registry;
+ register_self();
+ return *this;
+}
+
+inline bool debug_iterator_base::is_valid(const debug_iterator_registry* registry) const {
+ return m_registry == registry;
+}
+
+inline void debug_iterator_base::invalidate() const { m_registry = 0; }
+
+inline const debug_iterator_base* debug_iterator_base::next() const { return m_next; }
+
+inline void debug_iterator_base::set_next(const debug_iterator_base* it) const { m_next = it; }
+
+inline void debug_iterator_base::register_self() {
+ if (m_registry != 0)
+ m_registry->register_iterator(this);
+}
+
+inline void debug_iterator_base::unregister_self() {
+ if (m_registry != 0)
+ m_registry->unregister_iterator(this);
+}
+
+#endif // #if BOOST_CB_ENABLE_DEBUG
+
+} // namespace cb_details
+
+} // namespace boost
+
+#endif // #if !defined(BOOST_CIRCULAR_BUFFER_DEBUG_HPP)
diff --git a/boost/circular_buffer/details.hpp b/boost/circular_buffer/details.hpp
new file mode 100644
index 0000000000..da25ff07ed
--- /dev/null
+++ b/boost/circular_buffer/details.hpp
@@ -0,0 +1,470 @@
+// Helper classes and functions for the circular buffer.
+
+// Copyright (c) 2003-2008 Jan Gaspar
+
+// Use, modification, and distribution is subject to the Boost Software
+// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#if !defined(BOOST_CIRCULAR_BUFFER_DETAILS_HPP)
+#define BOOST_CIRCULAR_BUFFER_DETAILS_HPP
+
+#if defined(_MSC_VER) && _MSC_VER >= 1200
+ #pragma once
+#endif
+
+#include <boost/iterator.hpp>
+#include <boost/throw_exception.hpp>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <iterator>
+
+namespace boost {
+
+namespace cb_details {
+
+template <class Traits> struct nonconst_traits;
+
+template<class ForwardIterator, class Diff, class T, class Alloc>
+void uninitialized_fill_n_with_alloc(
+ ForwardIterator first, Diff n, const T& item, Alloc& alloc);
+
+template<class InputIterator, class ForwardIterator, class Alloc>
+ForwardIterator uninitialized_copy_with_alloc(
+ InputIterator first, InputIterator last, ForwardIterator dest, Alloc& alloc);
+
+/*!
+ \struct const_traits
+ \brief Defines the data types for a const iterator.
+*/
+template <class Traits>
+struct const_traits {
+ // Basic types
+ typedef typename Traits::value_type value_type;
+ typedef typename Traits::const_pointer pointer;
+ typedef typename Traits::const_reference reference;
+ typedef typename Traits::size_type size_type;
+ typedef typename Traits::difference_type difference_type;
+
+ // Non-const traits
+ typedef nonconst_traits<Traits> nonconst_self;
+};
+
+/*!
+ \struct nonconst_traits
+ \brief Defines the data types for a non-const iterator.
+*/
+template <class Traits>
+struct nonconst_traits {
+ // Basic types
+ typedef typename Traits::value_type value_type;
+ typedef typename Traits::pointer pointer;
+ typedef typename Traits::reference reference;
+ typedef typename Traits::size_type size_type;
+ typedef typename Traits::difference_type difference_type;
+
+ // Non-const traits
+ typedef nonconst_traits<Traits> nonconst_self;
+};
+
+/*!
+ \struct iterator_wrapper
+ \brief Helper iterator dereference wrapper.
+*/
+template <class Iterator>
+struct iterator_wrapper {
+ mutable Iterator m_it;
+ explicit iterator_wrapper(Iterator it) : m_it(it) {}
+ Iterator operator () () const { return m_it++; }
+private:
+ iterator_wrapper<Iterator>& operator = (const iterator_wrapper<Iterator>&); // do not generate
+};
+
+/*!
+ \struct item_wrapper
+ \brief Helper item dereference wrapper.
+*/
+template <class Pointer, class Value>
+struct item_wrapper {
+ Value m_item;
+ explicit item_wrapper(Value item) : m_item(item) {}
+ Pointer operator () () const { return &m_item; }
+private:
+ item_wrapper<Pointer, Value>& operator = (const item_wrapper<Pointer, Value>&); // do not generate
+};
+
+/*!
+ \struct assign_n
+ \brief Helper functor for assigning n items.
+*/
+template <class Value, class Alloc>
+struct assign_n {
+ typedef typename Alloc::size_type size_type;
+ size_type m_n;
+ Value m_item;
+ Alloc& m_alloc;
+ assign_n(size_type n, Value item, Alloc& alloc) : m_n(n), m_item(item), m_alloc(alloc) {}
+ template <class Pointer>
+ void operator () (Pointer p) const {
+ uninitialized_fill_n_with_alloc(p, m_n, m_item, m_alloc);
+ }
+private:
+ assign_n<Value, Alloc>& operator = (const assign_n<Value, Alloc>&); // do not generate
+};
+
+/*!
+ \struct assign_range
+ \brief Helper functor for assigning range of items.
+*/
+template <class Iterator, class Alloc>
+struct assign_range {
+ const Iterator& m_first;
+ const Iterator& m_last;
+ Alloc& m_alloc;
+ assign_range(const Iterator& first, const Iterator& last, Alloc& alloc)
+ : m_first(first), m_last(last), m_alloc(alloc) {}
+ template <class Pointer>
+ void operator () (Pointer p) const {
+ uninitialized_copy_with_alloc(m_first, m_last, p, m_alloc);
+ }
+private:
+ assign_range<Iterator, Alloc>& operator = (const assign_range<Iterator, Alloc>&); // do not generate
+};
+
+/*!
+ \class capacity_control
+ \brief Capacity controller of the space optimized circular buffer.
+*/
+template <class Size>
+class capacity_control {
+
+ //! The capacity of the space optimized circular buffer.
+ Size m_capacity;
+
+ //! The lowest guaranteed capacity of the adapted circular buffer.
+ Size m_min_capacity;
+
+public:
+
+ //! Constructor.
+ capacity_control(Size buffer_capacity, Size min_buffer_capacity = 0)
+ : m_capacity(buffer_capacity), m_min_capacity(min_buffer_capacity) {
+ BOOST_CB_ASSERT(buffer_capacity >= min_buffer_capacity); // check for capacity lower than min_capacity
+ }
+
+ // Default copy constructor.
+
+ // Default assign operator.
+
+ //! Get the capacity of the space optimized circular buffer.
+ Size capacity() const { return m_capacity; }
+
+ //! Get the minimal capacity of the space optimized circular buffer.
+ Size min_capacity() const { return m_min_capacity; }
+
+ //! Size operator - returns the capacity of the space optimized circular buffer.
+ operator Size() const { return m_capacity; }
+};
+
+/*!
+ \struct iterator
+ \brief Random access iterator for the circular buffer.
+ \param Buff The type of the underlying circular buffer.
+ \param Traits Basic iterator types.
+ \note This iterator is not circular. It was designed
+ for iterating from begin() to end() of the circular buffer.
+*/
+template <class Buff, class Traits>
+struct iterator :
+ public boost::iterator<
+ std::random_access_iterator_tag,
+ typename Traits::value_type,
+ typename Traits::difference_type,
+ typename Traits::pointer,
+ typename Traits::reference>
+#if BOOST_CB_ENABLE_DEBUG
+ , public debug_iterator_base
+#endif // #if BOOST_CB_ENABLE_DEBUG
+{
+// Helper types
+
+ //! Base iterator.
+ typedef boost::iterator<
+ std::random_access_iterator_tag,
+ typename Traits::value_type,
+ typename Traits::difference_type,
+ typename Traits::pointer,
+ typename Traits::reference> base_iterator;
+
+ //! Non-const iterator.
+ typedef iterator<Buff, typename Traits::nonconst_self> nonconst_self;
+
+// Basic types
+
+ //! The type of the elements stored in the circular buffer.
+ typedef typename base_iterator::value_type value_type;
+
+ //! Pointer to the element.
+ typedef typename base_iterator::pointer pointer;
+
+ //! Reference to the element.
+ typedef typename base_iterator::reference reference;
+
+ //! Size type.
+ typedef typename Traits::size_type size_type;
+
+ //! Difference type.
+ typedef typename base_iterator::difference_type difference_type;
+
+// Member variables
+
+ //! The circular buffer where the iterator points to.
+ const Buff* m_buff;
+
+ //! An internal iterator.
+ pointer m_it;
+
+// Construction & assignment
+
+ // Default copy constructor.
+
+ //! Default constructor.
+ iterator() : m_buff(0), m_it(0) {}
+
+#if BOOST_CB_ENABLE_DEBUG
+
+ //! Copy constructor (used for converting from a non-const to a const iterator).
+ iterator(const nonconst_self& it) : debug_iterator_base(it), m_buff(it.m_buff), m_it(it.m_it) {}
+
+ //! Internal constructor.
+ /*!
+ \note This constructor is not intended to be used directly by the user.
+ */
+ iterator(const Buff* cb, const pointer p) : debug_iterator_base(cb), m_buff(cb), m_it(p) {}
+
+#else
+
+ iterator(const nonconst_self& it) : m_buff(it.m_buff), m_it(it.m_it) {}
+
+ iterator(const Buff* cb, const pointer p) : m_buff(cb), m_it(p) {}
+
+#endif // #if BOOST_CB_ENABLE_DEBUG
+
+ //! Assign operator.
+ iterator& operator = (const iterator& it) {
+ if (this == &it)
+ return *this;
+#if BOOST_CB_ENABLE_DEBUG
+ debug_iterator_base::operator =(it);
+#endif // #if BOOST_CB_ENABLE_DEBUG
+ m_buff = it.m_buff;
+ m_it = it.m_it;
+ return *this;
+ }
+
+// Random access iterator methods
+
+ //! Dereferencing operator.
+ reference operator * () const {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(m_it != 0); // check for iterator pointing to end()
+ return *m_it;
+ }
+
+ //! Dereferencing operator.
+ pointer operator -> () const { return &(operator*()); }
+
+ //! Difference operator.
+ template <class Traits0>
+ difference_type operator - (const iterator<Buff, Traits0>& it) const {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(it.is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ return linearize_pointer(*this) - linearize_pointer(it);
+ }
+
+ //! Increment operator (prefix).
+ iterator& operator ++ () {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(m_it != 0); // check for iterator pointing to end()
+ m_buff->increment(m_it);
+ if (m_it == m_buff->m_last)
+ m_it = 0;
+ return *this;
+ }
+
+ //! Increment operator (postfix).
+ iterator operator ++ (int) {
+ iterator<Buff, Traits> tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ //! Decrement operator (prefix).
+ iterator& operator -- () {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(m_it != m_buff->m_first); // check for iterator pointing to begin()
+ if (m_it == 0)
+ m_it = m_buff->m_last;
+ m_buff->decrement(m_it);
+ return *this;
+ }
+
+ //! Decrement operator (postfix).
+ iterator operator -- (int) {
+ iterator<Buff, Traits> tmp = *this;
+ --*this;
+ return tmp;
+ }
+
+ //! Iterator addition.
+ iterator& operator += (difference_type n) {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ if (n > 0) {
+ BOOST_CB_ASSERT(m_buff->end() - *this >= n); // check for too large n
+ m_it = m_buff->add(m_it, n);
+ if (m_it == m_buff->m_last)
+ m_it = 0;
+ } else if (n < 0) {
+ *this -= -n;
+ }
+ return *this;
+ }
+
+ //! Iterator addition.
+ iterator operator + (difference_type n) const { return iterator<Buff, Traits>(*this) += n; }
+
+ //! Iterator subtraction.
+ iterator& operator -= (difference_type n) {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ if (n > 0) {
+ BOOST_CB_ASSERT(*this - m_buff->begin() >= n); // check for too large n
+ m_it = m_buff->sub(m_it == 0 ? m_buff->m_last : m_it, n);
+ } else if (n < 0) {
+ *this += -n;
+ }
+ return *this;
+ }
+
+ //! Iterator subtraction.
+ iterator operator - (difference_type n) const { return iterator<Buff, Traits>(*this) -= n; }
+
+ //! Element access operator.
+ reference operator [] (difference_type n) const { return *(*this + n); }
+
+// Equality & comparison
+
+ //! Equality.
+ template <class Traits0>
+ bool operator == (const iterator<Buff, Traits0>& it) const {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(it.is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ return m_it == it.m_it;
+ }
+
+ //! Inequality.
+ template <class Traits0>
+ bool operator != (const iterator<Buff, Traits0>& it) const {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(it.is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ return m_it != it.m_it;
+ }
+
+ //! Less.
+ template <class Traits0>
+ bool operator < (const iterator<Buff, Traits0>& it) const {
+ BOOST_CB_ASSERT(is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ BOOST_CB_ASSERT(it.is_valid(m_buff)); // check for uninitialized or invalidated iterator
+ return linearize_pointer(*this) < linearize_pointer(it);
+ }
+
+ //! Greater.
+ template <class Traits0>
+ bool operator > (const iterator<Buff, Traits0>& it) const { return it < *this; }
+
+ //! Less or equal.
+ template <class Traits0>
+ bool operator <= (const iterator<Buff, Traits0>& it) const { return !(it < *this); }
+
+ //! Greater or equal.
+ template <class Traits0>
+ bool operator >= (const iterator<Buff, Traits0>& it) const { return !(*this < it); }
+
+// Helpers
+
+ //! Get a pointer which would point to the same element as the iterator in case the circular buffer is linearized.
+ template <class Traits0>
+ typename Traits0::pointer linearize_pointer(const iterator<Buff, Traits0>& it) const {
+ return it.m_it == 0 ? m_buff->m_buff + m_buff->size() :
+ (it.m_it < m_buff->m_first ? it.m_it + (m_buff->m_end - m_buff->m_first)
+ : m_buff->m_buff + (it.m_it - m_buff->m_first));
+ }
+};
+
+//! Iterator addition.
+template <class Buff, class Traits>
+inline iterator<Buff, Traits>
+operator + (typename Traits::difference_type n, const iterator<Buff, Traits>& it) {
+ return it + n;
+}
+
+#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR)
+
+//! Iterator category.
+template <class Buff, class Traits>
+inline std::random_access_iterator_tag iterator_category(const iterator<Buff, Traits>&) {
+ return std::random_access_iterator_tag();
+}
+
+//! The type of the elements stored in the circular buffer.
+template <class Buff, class Traits>
+inline typename Traits::value_type* value_type(const iterator<Buff, Traits>&) { return 0; }
+
+//! Distance type.
+template <class Buff, class Traits>
+inline typename Traits::difference_type* distance_type(const iterator<Buff, Traits>&) { return 0; }
+
+#endif // #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR)
+
+/*!
+ \fn ForwardIterator uninitialized_copy_with_alloc(InputIterator first, InputIterator last, ForwardIterator dest,
+ Alloc& alloc)
+ \brief Equivalent of <code>std::uninitialized_copy</code> with allocator.
+*/
+template<class InputIterator, class ForwardIterator, class Alloc>
+inline ForwardIterator uninitialized_copy_with_alloc(InputIterator first, InputIterator last, ForwardIterator dest,
+ Alloc& alloc) {
+ ForwardIterator next = dest;
+ BOOST_TRY {
+ for (; first != last; ++first, ++dest)
+ alloc.construct(dest, *first);
+ } BOOST_CATCH(...) {
+ for (; next != dest; ++next)
+ alloc.destroy(next);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ return dest;
+}
+
+/*!
+ \fn void uninitialized_fill_n_with_alloc(ForwardIterator first, Diff n, const T& item, Alloc& alloc)
+ \brief Equivalent of <code>std::uninitialized_fill_n</code> with allocator.
+*/
+template<class ForwardIterator, class Diff, class T, class Alloc>
+inline void uninitialized_fill_n_with_alloc(ForwardIterator first, Diff n, const T& item, Alloc& alloc) {
+ ForwardIterator next = first;
+ BOOST_TRY {
+ for (; n > 0; ++first, --n)
+ alloc.construct(first, item);
+ } BOOST_CATCH(...) {
+ for (; next != first; ++next)
+ alloc.destroy(next);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+}
+
+} // namespace cb_details
+
+} // namespace boost
+
+#endif // #if !defined(BOOST_CIRCULAR_BUFFER_DETAILS_HPP)
diff --git a/boost/circular_buffer/space_optimized.hpp b/boost/circular_buffer/space_optimized.hpp
new file mode 100644
index 0000000000..9c76afe7a5
--- /dev/null
+++ b/boost/circular_buffer/space_optimized.hpp
@@ -0,0 +1,1425 @@
+// Implementation of the circular buffer adaptor.
+
+// Copyright (c) 2003-2008 Jan Gaspar
+
+// Use, modification, and distribution is subject to the Boost Software
+// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#if !defined(BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP)
+#define BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP
+
+#if defined(_MSC_VER) && _MSC_VER >= 1200
+ #pragma once
+#endif
+
+#include <boost/type_traits/is_same.hpp>
+#include <boost/detail/workaround.hpp>
+
+namespace boost {
+
+/*!
+ \class circular_buffer_space_optimized
+ \brief Space optimized circular buffer container adaptor.
+
+ For detailed documentation of the space_optimized_circular_buffer visit:
+ http://www.boost.org/libs/circular_buffer/doc/space_optimized.html
+*/
+template <class T, class Alloc>
+class circular_buffer_space_optimized :
+/*! \cond */
+#if BOOST_CB_ENABLE_DEBUG
+public
+#endif
+/*! \endcond */
+circular_buffer<T, Alloc> {
+public:
+// Typedefs
+
+ typedef typename circular_buffer<T, Alloc>::value_type value_type;
+ typedef typename circular_buffer<T, Alloc>::pointer pointer;
+ typedef typename circular_buffer<T, Alloc>::const_pointer const_pointer;
+ typedef typename circular_buffer<T, Alloc>::reference reference;
+ typedef typename circular_buffer<T, Alloc>::const_reference const_reference;
+ typedef typename circular_buffer<T, Alloc>::size_type size_type;
+ typedef typename circular_buffer<T, Alloc>::difference_type difference_type;
+ typedef typename circular_buffer<T, Alloc>::allocator_type allocator_type;
+ typedef typename circular_buffer<T, Alloc>::const_iterator const_iterator;
+ typedef typename circular_buffer<T, Alloc>::iterator iterator;
+ typedef typename circular_buffer<T, Alloc>::const_reverse_iterator const_reverse_iterator;
+ typedef typename circular_buffer<T, Alloc>::reverse_iterator reverse_iterator;
+ typedef typename circular_buffer<T, Alloc>::array_range array_range;
+ typedef typename circular_buffer<T, Alloc>::const_array_range const_array_range;
+ typedef typename circular_buffer<T, Alloc>::param_value_type param_value_type;
+ typedef typename circular_buffer<T, Alloc>::return_value_type return_value_type;
+
+ //! Capacity controller of the space optimized circular buffer.
+ /*!
+ <p><pre>
+class capacity_control {
+ size_type m_capacity;
+ size_type m_min_capacity;
+public:
+ capacity_control(size_type capacity, size_type min_capacity = 0) : m_capacity(capacity), m_min_capacity(min_capacity) {};
+ size_type %capacity() const { return m_capacity; }
+ size_type min_capacity() const { return m_min_capacity; }
+ operator size_type() const { return m_capacity; }
+};</pre></p>
+ \pre <code>capacity >= min_capacity</code>
+ <p>The <code>capacity()</code> represents the capacity of the <code>circular_buffer_space_optimized</code> and
+ the <code>min_capacity()</code> determines the minimal allocated size of its internal buffer.</p>
+ <p>The converting constructor of the <code>capacity_control</code> allows implicit conversion from
+ <code>size_type</code>-like types which ensures compatibility of creating an instance of the
+ <code>circular_buffer_space_optimized</code> with other STL containers. On the other hand the operator
+ <code>%size_type()</code> provides implicit conversion to the <code>size_type</code> which allows to treat the
+ capacity of the <code>circular_buffer_space_optimized</code> the same way as in the
+ <code><a href="circular_buffer.html">circular_buffer</a></code>.</p>
+ */
+ typedef cb_details::capacity_control<size_type> capacity_type;
+
+// Inherited
+
+ using circular_buffer<T, Alloc>::get_allocator;
+ using circular_buffer<T, Alloc>::begin;
+ using circular_buffer<T, Alloc>::end;
+ using circular_buffer<T, Alloc>::rbegin;
+ using circular_buffer<T, Alloc>::rend;
+ using circular_buffer<T, Alloc>::at;
+ using circular_buffer<T, Alloc>::front;
+ using circular_buffer<T, Alloc>::back;
+ using circular_buffer<T, Alloc>::array_one;
+ using circular_buffer<T, Alloc>::array_two;
+ using circular_buffer<T, Alloc>::linearize;
+ using circular_buffer<T, Alloc>::is_linearized;
+ using circular_buffer<T, Alloc>::rotate;
+ using circular_buffer<T, Alloc>::size;
+ using circular_buffer<T, Alloc>::max_size;
+ using circular_buffer<T, Alloc>::empty;
+
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
+ reference operator [] (size_type n) { return circular_buffer<T, Alloc>::operator[](n); }
+ return_value_type operator [] (size_type n) const { return circular_buffer<T, Alloc>::operator[](n); }
+#else
+ using circular_buffer<T, Alloc>::operator[];
+#endif
+
+private:
+// Member variables
+
+ //! The capacity controller of the space optimized circular buffer.
+ capacity_type m_capacity_ctrl;
+
+public:
+// Overridden
+
+ //! Is the <code>circular_buffer_space_optimized</code> full?
+ /*!
+ \return <code>true</code> if the number of elements stored in the <code>circular_buffer_space_optimized</code>
+ equals the capacity of the <code>circular_buffer_space_optimized</code>; <code>false</code> otherwise.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>empty()</code>
+ */
+ bool full() const { return m_capacity_ctrl == size(); }
+
+ /*! \brief Get the maximum number of elements which can be inserted into the
+ <code>circular_buffer_space_optimized</code> without overwriting any of already stored elements.
+ \return <code>capacity().%capacity() - size()</code>
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>capacity()</code>, <code>size()</code>, <code>max_size()</code>
+ */
+ size_type reserve() const { return m_capacity_ctrl - size(); }
+
+ //! Get the capacity of the <code>circular_buffer_space_optimized</code>.
+ /*!
+ \return The capacity controller representing the maximum number of elements which can be stored in the
+ <code>circular_buffer_space_optimized</code> and the minimal allocated size of the internal buffer.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Does not invalidate any iterators.
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>reserve()</code>, <code>size()</code>, <code>max_size()</code>,
+ <code>set_capacity(const capacity_type&)</code>
+ */
+ const capacity_type& capacity() const { return m_capacity_ctrl; }
+
+#if defined(BOOST_CB_TEST)
+
+ // Return the current capacity of the adapted circular buffer.
+ /*
+ \note This method is not intended to be used directly by the user.
+ It is defined only for testing purposes.
+ */
+ size_type internal_capacity() const { return circular_buffer<T, Alloc>::capacity(); }
+
+#endif // #if defined(BOOST_CB_TEST)
+
+ /*! \brief Change the capacity (and the minimal guaranteed amount of allocated memory) of the
+ <code>circular_buffer_space_optimized</code>.
+ \post <code>capacity() == capacity_ctrl \&\& size() \<= capacity_ctrl.capacity()</code><br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
+ than the desired new capacity then number of <code>[size() - capacity_ctrl.capacity()]</code> <b>last</b>
+ elements will be removed and the new size will be equal to <code>capacity_ctrl.capacity()</code>.<br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is lower
+ than the new capacity then the amount of allocated memory in the internal buffer may be accommodated as
+ necessary but it will never drop below <code>capacity_ctrl.min_capacity()</code>.
+ \param capacity_ctrl The new capacity controller.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>min[size(), capacity_ctrl.%capacity()]</code>).
+ \note To explicitly clear the extra allocated memory use the <b>shrink-to-fit</b> technique:<br><br>
+ <code>%boost::%circular_buffer_space_optimized\<int\> cb(1000);<br>
+ ...<br>
+ %boost::%circular_buffer_space_optimized\<int\>(cb).swap(cb);</code><br><br>
+ For more information about the shrink-to-fit technique in STL see
+ <a href="http://www.gotw.ca/gotw/054.htm">http://www.gotw.ca/gotw/054.htm</a>.
+ \sa <code>rset_capacity(const capacity_type&)</code>,
+ <code>\link resize() resize(size_type, const_reference)\endlink</code>
+ */
+ void set_capacity(const capacity_type& capacity_ctrl) {
+ m_capacity_ctrl = capacity_ctrl;
+ if (capacity_ctrl < size()) {
+ iterator e = end();
+ circular_buffer<T, Alloc>::erase(e - (size() - capacity_ctrl), e);
+ }
+ adjust_min_capacity();
+ }
+
+ //! Change the size of the <code>circular_buffer_space_optimized</code>.
+ /*!
+ \post <code>size() == new_size \&\& capacity().%capacity() >= new_size</code><br><br>
+ If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
+ <b>back</b> of the of the <code>circular_buffer_space_optimized</code> in order to achieve the desired
+ size. In the case the resulting size exceeds the current capacity the capacity will be set to
+ <code>new_size</code>.<br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
+ than the desired new size then number of <code>[size() - new_size]</code> <b>last</b> elements will be
+ removed. (The capacity will remain unchanged.)<br><br>
+ The amount of allocated memory in the internal buffer may be accommodated as necessary.
+ \param new_size The new size.
+ \param item The element the <code>circular_buffer_space_optimized</code> will be filled with in order to gain
+ the requested size. (See the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the new size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link rresize() rresize(size_type, const_reference)\endlink</code>,
+ <code>set_capacity(const capacity_type&)</code>
+ */
+ void resize(size_type new_size, param_value_type item = value_type()) {
+ if (new_size > size()) {
+ if (new_size > m_capacity_ctrl)
+ m_capacity_ctrl = capacity_type(new_size, m_capacity_ctrl.min_capacity());
+ insert(end(), new_size - size(), item);
+ } else {
+ iterator e = end();
+ erase(e - (size() - new_size), e);
+ }
+ }
+
+ /*! \brief Change the capacity (and the minimal guaranteed amount of allocated memory) of the
+ <code>circular_buffer_space_optimized</code>.
+ \post <code>capacity() == capacity_ctrl \&\& size() \<= capacity_ctrl</code><br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
+ than the desired new capacity then number of <code>[size() - capacity_ctrl.capacity()]</code>
+ <b>first</b> elements will be removed and the new size will be equal to
+ <code>capacity_ctrl.capacity()</code>.<br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is lower
+ than the new capacity then the amount of allocated memory in the internal buffer may be accommodated as
+ necessary but it will never drop below <code>capacity_ctrl.min_capacity()</code>.
+ \param capacity_ctrl The new capacity controller.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>min[size(), capacity_ctrl.%capacity()]</code>).
+ \sa <code>set_capacity(const capacity_type&)</code>,
+ <code>\link rresize() rresize(size_type, const_reference)\endlink</code>
+ */
+ void rset_capacity(const capacity_type& capacity_ctrl) {
+ m_capacity_ctrl = capacity_ctrl;
+ if (capacity_ctrl < size()) {
+ iterator b = begin();
+ circular_buffer<T, Alloc>::rerase(b, b + (size() - capacity_ctrl));
+ }
+ adjust_min_capacity();
+ }
+
+ //! Change the size of the <code>circular_buffer_space_optimized</code>.
+ /*!
+ \post <code>size() == new_size \&\& capacity().%capacity() >= new_size</code><br><br>
+ If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
+ <b>front</b> of the of the <code>circular_buffer_space_optimized</code> in order to achieve the desired
+ size. In the case the resulting size exceeds the current capacity the capacity will be set to
+ <code>new_size</code>.<br><br>
+ If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
+ than the desired new size then number of <code>[size() - new_size]</code> <b>first</b> elements will be
+ removed. (The capacity will remain unchanged.)<br><br>
+ The amount of allocated memory in the internal buffer may be accommodated as necessary.
+ \param new_size The new size.
+ \param item The element the <code>circular_buffer_space_optimized</code> will be filled with in order to gain
+ the requested size. (See the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the new size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link resize() resize(size_type, const_reference)\endlink</code>,
+ <code>rset_capacity(const capacity_type&)</code>
+ */
+ void rresize(size_type new_size, param_value_type item = value_type()) {
+ if (new_size > size()) {
+ if (new_size > m_capacity_ctrl)
+ m_capacity_ctrl = capacity_type(new_size, m_capacity_ctrl.min_capacity());
+ rinsert(begin(), new_size - size(), item);
+ } else {
+ rerase(begin(), end() - new_size);
+ }
+ }
+
+ //! Create an empty space optimized circular buffer with zero capacity.
+ /*!
+ \post <code>capacity().%capacity() == 0 \&\& capacity().min_capacity() == 0 \&\& size() == 0</code>
+ \param alloc The allocator.
+ \throws Nothing.
+ \par Complexity
+ Constant.
+ \warning Since Boost version 1.36 the behaviour of this constructor has changed. Now it creates a space
+ optimized circular buffer with zero capacity.
+ */
+ explicit circular_buffer_space_optimized(const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(0, alloc)
+ , m_capacity_ctrl(0) {}
+
+ //! Create an empty space optimized circular buffer with the specified capacity.
+ /*!
+ \post <code>capacity() == capacity_ctrl \&\& size() == 0</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>capacity_ctrl.min_capacity()</code>.
+ \param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
+ the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
+ internal buffer.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Complexity
+ Constant.
+ */
+ explicit circular_buffer_space_optimized(capacity_type capacity_ctrl,
+ const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(capacity_ctrl.min_capacity(), alloc)
+ , m_capacity_ctrl(capacity_ctrl) {}
+
+ /*! \brief Create a full space optimized circular buffer with the specified capacity filled with
+ <code>capacity_ctrl.%capacity()</code> copies of <code>item</code>.
+ \post <code>capacity() == capacity_ctrl \&\& full() \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ...
+ \&\& (*this) [capacity_ctrl.%capacity() - 1] == item </code><br><br>
+ The amount of allocated memory in the internal buffer is <code>capacity_ctrl.capacity()</code>.
+ \param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
+ the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
+ internal buffer.
+ \param item The element the created <code>circular_buffer_space_optimized</code> will be filled with.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>capacity_ctrl.%capacity()</code>).
+ */
+ circular_buffer_space_optimized(capacity_type capacity_ctrl, param_value_type item,
+ const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(capacity_ctrl.capacity(), item, alloc)
+ , m_capacity_ctrl(capacity_ctrl) {}
+
+ /*! \brief Create a space optimized circular buffer with the specified capacity filled with <code>n</code> copies
+ of <code>item</code>.
+ \pre <code>capacity_ctrl.%capacity() >= n</code>
+ \post <code>capacity() == capacity_ctrl \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
+ \&\& ... \&\& (*this)[n - 1] == item</code><br><br>
+ The amount of allocated memory in the internal buffer is
+ <code>max[n, capacity_ctrl.min_capacity()]</code>.
+ \param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
+ the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
+ internal buffer.
+ \param n The number of elements the created <code>circular_buffer_space_optimized</code> will be filled with.
+ \param item The element the created <code>circular_buffer_space_optimized</code> will be filled with.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>n</code>).
+ */
+ circular_buffer_space_optimized(capacity_type capacity_ctrl, size_type n, param_value_type item,
+ const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(init_capacity(capacity_ctrl, n), n, item, alloc)
+ , m_capacity_ctrl(capacity_ctrl) {}
+
+#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
+
+ /*! \cond */
+ circular_buffer_space_optimized(const circular_buffer_space_optimized<T, Alloc>& cb)
+ : circular_buffer<T, Alloc>(cb.begin(), cb.end())
+ , m_capacity_ctrl(cb.m_capacity_ctrl) {}
+
+ template <class InputIterator>
+ circular_buffer_space_optimized(InputIterator first, InputIterator last)
+ : circular_buffer<T, Alloc>(first, last)
+ , m_capacity_ctrl(circular_buffer<T, Alloc>::capacity()) {}
+
+ template <class InputIterator>
+ circular_buffer_space_optimized(capacity_type capacity_ctrl, InputIterator first, InputIterator last)
+ : circular_buffer<T, Alloc>(
+ init_capacity(capacity_ctrl, first, last, is_integral<InputIterator>()),
+ first, last)
+ , m_capacity_ctrl(capacity_ctrl) {
+ reduce_capacity(
+ is_same< BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<InputIterator>::type, std::input_iterator_tag >());
+ }
+ /*! \endcond */
+
+#else
+
+ //! The copy constructor.
+ /*!
+ Creates a copy of the specified <code>circular_buffer_space_optimized</code>.
+ \post <code>*this == cb</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>cb.size()</code>.
+ \param cb The <code>circular_buffer_space_optimized</code> to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the size of <code>cb</code>).
+ */
+ circular_buffer_space_optimized(const circular_buffer_space_optimized<T, Alloc>& cb)
+ : circular_buffer<T, Alloc>(cb.begin(), cb.end(), cb.get_allocator())
+ , m_capacity_ctrl(cb.m_capacity_ctrl) {}
+
+ //! Create a full space optimized circular buffer filled with a copy of the range.
+ /*!
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity().%capacity() == std::distance(first, last) \&\& capacity().min_capacity() == 0 \&\&
+ full() \&\& (*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ... \&\&
+ (*this)[std::distance(first, last) - 1] == *(last - 1)</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>std::distance(first, last)</code>.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in the <code>std::distance(first, last)</code>).
+ */
+ template <class InputIterator>
+ circular_buffer_space_optimized(InputIterator first, InputIterator last,
+ const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(first, last, alloc)
+ , m_capacity_ctrl(circular_buffer<T, Alloc>::capacity()) {}
+
+ /*! \brief Create a space optimized circular buffer with the specified capacity (and the minimal guaranteed amount
+ of allocated memory) filled with a copy of the range.
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == capacity_ctrl \&\& size() \<= std::distance(first, last) \&\& (*this)[0]==
+ *(last - capacity_ctrl.%capacity()) \&\& (*this)[1] == *(last - capacity_ctrl.%capacity() + 1) \&\& ...
+ \&\& (*this)[capacity_ctrl.%capacity() - 1] == *(last - 1)</code><br><br>
+ If the number of items to be copied from the range <code>[first, last)</code> is greater than the
+ specified <code>capacity_ctrl.%capacity()</code> then only elements from the range
+ <code>[last - capacity_ctrl.%capacity(), last)</code> will be copied.<br><br>
+ The amount of allocated memory in the internal buffer is <code>max[capacity_ctrl.min_capacity(),
+ min[capacity_ctrl.%capacity(), std::distance(first, last)]]</code>.
+ \param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
+ the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
+ internal buffer.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \param alloc The allocator.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Complexity
+ Linear (in <code>std::distance(first, last)</code>; in
+ <code>min[capacity_ctrl.%capacity(), std::distance(first, last)]</code> if the <code>InputIterator</code>
+ is a <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ */
+ template <class InputIterator>
+ circular_buffer_space_optimized(capacity_type capacity_ctrl, InputIterator first, InputIterator last,
+ const allocator_type& alloc = allocator_type())
+ : circular_buffer<T, Alloc>(
+ init_capacity(capacity_ctrl, first, last, is_integral<InputIterator>()),
+ first, last, alloc)
+ , m_capacity_ctrl(capacity_ctrl) {
+ reduce_capacity(
+ is_same< BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<InputIterator>::type, std::input_iterator_tag >());
+ }
+
+#endif // #if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
+
+#if defined(BOOST_CB_NEVER_DEFINED)
+// This section will never be compiled - the default destructor will be generated instead.
+// Declared only for documentation purpose.
+
+ //! The destructor.
+ /*!
+ Destroys the <code>circular_buffer_space_optimized</code>.
+ \throws Nothing.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (including
+ iterators equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>clear()</code>
+ */
+ ~circular_buffer_space_optimized();
+
+ //! no-comment
+ void erase_begin(size_type n);
+
+ //! no-comment
+ void erase_end(size_type n);
+
+#endif // #if defined(BOOST_CB_NEVER_DEFINED)
+
+ //! The assign operator.
+ /*!
+ Makes this <code>circular_buffer_space_optimized</code> to become a copy of the specified
+ <code>circular_buffer_space_optimized</code>.
+ \post <code>*this == cb</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>cb.size()</code>.
+ \param cb The <code>circular_buffer_space_optimized</code> to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Strong.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to this <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of <code>cb</code>).
+ \sa <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ circular_buffer_space_optimized<T, Alloc>& operator = (const circular_buffer_space_optimized<T, Alloc>& cb) {
+ if (this == &cb)
+ return *this;
+ circular_buffer<T, Alloc>::assign(cb.begin(), cb.end());
+ m_capacity_ctrl = cb.m_capacity_ctrl;
+ return *this;
+ }
+
+ //! Assign <code>n</code> items into the space optimized circular buffer.
+ /*!
+ The content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with
+ <code>n</code> copies of the <code>item</code>.
+ \post <code>capacity().%capacity() == n \&\& capacity().min_capacity() == 0 \&\& size() == n \&\& (*this)[0] ==
+ item \&\& (*this)[1] == item \&\& ... \&\& (*this) [n - 1] == item</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>n</code>.
+ \param n The number of elements the <code>circular_buffer_space_optimized</code> will be filled with.
+ \param item The element the <code>circular_buffer_space_optimized</code> will be filled with.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>n</code>).
+ \sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ void assign(size_type n, param_value_type item) {
+ circular_buffer<T, Alloc>::assign(n, item);
+ m_capacity_ctrl = capacity_type(n);
+ }
+
+ //! Assign <code>n</code> items into the space optimized circular buffer specifying the capacity.
+ /*!
+ The capacity of the <code>circular_buffer_space_optimized</code> will be set to the specified value and the
+ content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with <code>n</code>
+ copies of the <code>item</code>.
+ \pre <code>capacity_ctrl.%capacity() >= n</code>
+ \post <code>capacity() == capacity_ctrl \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
+ \&\& ... \&\& (*this) [n - 1] == item </code><br><br>
+ The amount of allocated memory will be <code>max[n, capacity_ctrl.min_capacity()]</code>.
+ \param capacity_ctrl The new capacity controller.
+ \param n The number of elements the <code>circular_buffer_space_optimized</code> will be filled with.
+ \param item The element the <code>circular_buffer_space_optimized</code> will be filled with.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>n</code>).
+ \sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ void assign(capacity_type capacity_ctrl, size_type n, param_value_type item) {
+ BOOST_CB_ASSERT(capacity_ctrl.capacity() >= n); // check for new capacity lower than n
+ circular_buffer<T, Alloc>::assign((std::max)(capacity_ctrl.min_capacity(), n), n, item);
+ m_capacity_ctrl = capacity_ctrl;
+ }
+
+ //! Assign a copy of the range into the space optimized circular buffer.
+ /*!
+ The content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with copies of
+ elements from the specified range.
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity().%capacity() == std::distance(first, last) \&\& capacity().min_capacity() == 0 \&\&
+ size() == std::distance(first, last) \&\& (*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ...
+ \&\& (*this)[std::distance(first, last) - 1] == *(last - 1)</code><br><br>
+ The amount of allocated memory in the internal buffer is <code>std::distance(first, last)</code>.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the <code>std::distance(first, last)</code>).
+ \sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(capacity_type, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void assign(InputIterator first, InputIterator last) {
+ circular_buffer<T, Alloc>::assign(first, last);
+ m_capacity_ctrl = capacity_type(circular_buffer<T, Alloc>::capacity());
+ }
+
+ //! Assign a copy of the range into the space optimized circular buffer specifying the capacity.
+ /*!
+ The capacity of the <code>circular_buffer_space_optimized</code> will be set to the specified value and the
+ content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with copies of
+ elements from the specified range.
+ \pre Valid range <code>[first, last)</code>.<br>
+ <code>first</code> and <code>last</code> have to meet the requirements of
+ <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post <code>capacity() == capacity_ctrl \&\& size() \<= std::distance(first, last) \&\&
+ (*this)[0]== *(last - capacity) \&\& (*this)[1] == *(last - capacity + 1) \&\& ... \&\&
+ (*this)[capacity - 1] == *(last - 1)</code><br><br>
+ If the number of items to be copied from the range <code>[first, last)</code> is greater than the
+ specified <code>capacity</code> then only elements from the range <code>[last - capacity, last)</code>
+ will be copied.<br><br> The amount of allocated memory in the internal buffer is
+ <code>max[std::distance(first, last), capacity_ctrl.min_capacity()]</code>.
+ \param capacity_ctrl The new capacity controller.
+ \param first The beginning of the range to be copied.
+ \param last The end of the range to be copied.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>std::distance(first, last)</code>; in
+ <code>min[capacity_ctrl.%capacity(), std::distance(first, last)]</code> if the <code>InputIterator</code>
+ is a <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
+ <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
+ <code>\link assign(capacity_type, size_type, param_value_type)
+ assign(capacity_type, size_type, const_reference)\endlink</code>,
+ <code>assign(InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void assign(capacity_type capacity_ctrl, InputIterator first, InputIterator last) {
+ m_capacity_ctrl = capacity_ctrl;
+ circular_buffer<T, Alloc>::assign(capacity_ctrl, first, last);
+ }
+
+ //! Swap the contents of two space optimized circular buffers.
+ /*!
+ \post <code>this</code> contains elements of <code>cb</code> and vice versa; the capacity and the amount of
+ allocated memory in the internal buffer of <code>this</code> equal to the capacity and the amount of
+ allocated memory of <code>cb</code> and vice versa.
+ \param cb The <code>circular_buffer_space_optimized</code> whose content will be swapped.
+ \throws Nothing.
+ \par Exception Safety
+ No-throw.
+ \par Iterator Invalidation
+ Invalidates all iterators of both <code>circular_buffer_space_optimized</code> containers. (On the other
+ hand the iterators still point to the same elements but within another container. If you want to rely on
+ this feature you have to turn the <a href="circular_buffer.html#debug">Debug Support</a> off otherwise an
+ assertion will report an error if such invalidated iterator is used.)
+ \par Complexity
+ Constant (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link swap(circular_buffer<T, Alloc>&, circular_buffer<T, Alloc>&)
+ swap(circular_buffer_space_optimized<T, Alloc>&, circular_buffer_space_optimized<T, Alloc>&)\endlink</code>
+ */
+ void swap(circular_buffer_space_optimized<T, Alloc>& cb) {
+ std::swap(m_capacity_ctrl, cb.m_capacity_ctrl);
+ circular_buffer<T, Alloc>::swap(cb);
+ }
+
+ //! Insert a new element at the end of the space optimized circular buffer.
+ /*!
+ \post if <code>capacity().%capacity() > 0</code> then <code>back() == item</code><br>
+ If the <code>circular_buffer_space_optimized</code> is full, the first element will be removed. If the
+ capacity is <code>0</code>, nothing will be inserted.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param item The element to be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link push_front() push_front(const_reference)\endlink</code>, <code>pop_back()</code>,
+ <code>pop_front()</code>
+ */
+ void push_back(param_value_type item = value_type()) {
+ check_low_capacity();
+ circular_buffer<T, Alloc>::push_back(item);
+ }
+
+ //! Insert a new element at the beginning of the space optimized circular buffer.
+ /*!
+ \post if <code>capacity().%capacity() > 0</code> then <code>front() == item</code><br>
+ If the <code>circular_buffer_space_optimized</code> is full, the last element will be removed. If the
+ capacity is <code>0</code>, nothing will be inserted.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param item The element to be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link push_back() push_back(const_reference)\endlink</code>, <code>pop_back()</code>,
+ <code>pop_front()</code>
+ */
+ void push_front(param_value_type item = value_type()) {
+ check_low_capacity();
+ circular_buffer<T, Alloc>::push_front(item);
+ }
+
+ //! Remove the last element from the space optimized circular buffer.
+ /*!
+ \pre <code>!empty()</code>
+ \post The last element is removed from the <code>circular_buffer_space_optimized</code>.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>pop_front()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
+ <code>\link push_front() push_front(const_reference)\endlink</code>
+ */
+ void pop_back() {
+ circular_buffer<T, Alloc>::pop_back();
+ check_high_capacity();
+ }
+
+ //! Remove the first element from the space optimized circular buffer.
+ /*!
+ \pre <code>!empty()</code>
+ \post The first element is removed from the <code>circular_buffer_space_optimized</code>.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>pop_back()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
+ <code>\link push_front() push_front(const_reference)\endlink</code>
+ */
+ void pop_front() {
+ circular_buffer<T, Alloc>::pop_front();
+ check_high_capacity();
+ }
+
+ //! Insert an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.
+ \post The <code>item</code> will be inserted at the position <code>pos</code>.<br>
+ If the <code>circular_buffer_space_optimized</code> is full, the first element will be overwritten. If
+ the <code>circular_buffer_space_optimized</code> is full and the <code>pos</code> points to
+ <code>begin()</code>, then the <code>item</code> will not be inserted. If the capacity is <code>0</code>,
+ nothing will be inserted.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position where the <code>item</code> will be inserted.
+ \param item The element to be inserted.
+ \return Iterator to the inserted element or <code>begin()</code> if the <code>item</code> is not inserted. (See
+ the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ iterator insert(iterator pos, param_value_type item = value_type()) {
+ size_type index = pos - begin();
+ check_low_capacity();
+ return circular_buffer<T, Alloc>::insert(begin() + index, item);
+ }
+
+ //! Insert <code>n</code> copies of the <code>item</code> at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.
+ \post The number of <code>min[n, (pos - begin()) + reserve()]</code> elements will be inserted at the position
+ <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, n - reserve()]]</code> elements will
+ be overwritten at the beginning of the <code>circular_buffer_space_optimized</code>.<br>(See
+ <i>Example</i> for the explanation.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position where the <code>item</code>s will be inserted.
+ \param n The number of <code>item</code>s the to be inserted.
+ \param item The element whose copies will be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>min[capacity().%capacity(), size() + n]</code>).
+ \par Example
+ Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
+ internal buffer may look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting 5 elements at the position <code>p</code>:<br><br>
+ <code>insert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
+ <code>1</code> and <code>2</code> are overwritten. This is due to the fact the insert operation preserves
+ the capacity. After insertion the internal buffer looks like this:<br><br><code>|0|0|0|0|3|4|</code><br>
+ <br>For comparison if the capacity would not be preserved the internal buffer would then result in
+ <code>|1|2|0|0|0|0|0|3|4|</code>.
+ \sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ void insert(iterator pos, size_type n, param_value_type item) {
+ size_type index = pos - begin();
+ check_low_capacity(n);
+ circular_buffer<T, Alloc>::insert(begin() + index, n, item);
+ }
+
+ //! Insert the range <code>[first, last)</code> at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.<br>Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
+ requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post Elements from the range
+ <code>[first + max[0, distance(first, last) - (pos - begin()) - reserve()], last)</code> will be
+ inserted at the position <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0,
+ distance(first, last) - reserve()]]</code> elements will be overwritten at the beginning of the
+ <code>circular_buffer_space_optimized</code>.<br>(See <i>Example</i> for the explanation.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position where the range will be inserted.
+ \param first The beginning of the range to be inserted.
+ \param last The end of the range to be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>[size() + std::distance(first, last)]</code>; in
+ <code>min[capacity().%capacity(), size() + std::distance(first, last)]</code> if the
+ <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \par Example
+ Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
+ internal buffer may look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting a range of elements at the position <code>p</code>:<br><br>
+ <code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
+ actually only elements <code>6</code>, <code>7</code>, <code>8</code> and <code>9</code> from the
+ specified range get inserted and elements <code>1</code> and <code>2</code> are overwritten. This is due
+ to the fact the insert operation preserves the capacity. After insertion the internal buffer looks like
+ this:<br><br><code>|6|7|8|9|3|4|</code><br><br>For comparison if the capacity would not be preserved the
+ internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
+ \sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>, <code>\link rinsert(iterator, param_value_type)
+ rinsert(iterator, value_type)\endlink</code>, <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void insert(iterator pos, InputIterator first, InputIterator last) {
+ insert(pos, first, last, is_integral<InputIterator>());
+ }
+
+ //! Insert an element before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.
+ \post The <code>item</code> will be inserted before the position <code>pos</code>.<br>
+ If the <code>circular_buffer_space_optimized</code> is full, the last element will be overwritten. If the
+ <code>circular_buffer_space_optimized</code> is full and the <code>pos</code> points to
+ <code>end()</code>, then the <code>item</code> will not be inserted. If the capacity is <code>0</code>,
+ nothing will be inserted.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position before which the <code>item</code> will be inserted.
+ \param item The element to be inserted.
+ \return Iterator to the inserted element or <code>end()</code> if the <code>item</code> is not inserted. (See
+ the <i>Effect</i>.)
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ iterator rinsert(iterator pos, param_value_type item = value_type()) {
+ size_type index = pos - begin();
+ check_low_capacity();
+ return circular_buffer<T, Alloc>::rinsert(begin() + index, item);
+ }
+
+ //! Insert <code>n</code> copies of the <code>item</code> before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.
+ \post The number of <code>min[n, (end() - pos) + reserve()]</code> elements will be inserted before the
+ position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, n - reserve()]]</code> elements
+ will be overwritten at the end of the <code>circular_buffer_space_optimized</code>.<br>(See
+ <i>Example</i> for the explanation.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position where the <code>item</code>s will be inserted.
+ \param n The number of <code>item</code>s the to be inserted.
+ \param item The element whose copies will be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>min[capacity().%capacity(), size() + n]</code>).
+ \par Example
+ Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
+ internal buffer may look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting 5 elements before the position <code>p</code>:<br><br>
+ <code>rinsert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
+ <code>3</code> and <code>4</code> are overwritten. This is due to the fact the rinsert operation preserves
+ the capacity. After insertion the internal buffer looks like this:<br><br><code>|1|2|0|0|0|0|</code><br>
+ <br>For comparison if the capacity would not be preserved the internal buffer would then result in
+ <code>|1|2|0|0|0|0|0|3|4|</code>.
+ \sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>rinsert(iterator, InputIterator, InputIterator)</code>,
+ <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
+ <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ void rinsert(iterator pos, size_type n, param_value_type item) {
+ size_type index = pos - begin();
+ check_low_capacity(n);
+ circular_buffer<T, Alloc>::rinsert(begin() + index, n, item);
+ }
+
+ //! Insert the range <code>[first, last)</code> before the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
+ end.<br>
+ Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
+ requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
+ \post Elements from the range
+ <code>[first, last - max[0, distance(first, last) - (end() - pos) - reserve()])</code> will be inserted
+ before the position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0,
+ distance(first, last) - reserve()]]</code> elements will be overwritten at the end of the
+ <code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively increased.
+ \param pos An iterator specifying the position where the range will be inserted.
+ \param first The beginning of the range to be inserted.
+ \param last The end of the range to be inserted.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::T(const T&)</code> throws.
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in <code>[size() + std::distance(first, last)]</code>; in
+ <code>min[capacity().%capacity(), size() + std::distance(first, last)]</code> if the
+ <code>InputIterator</code> is a
+ <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
+ \par Example
+ Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
+ internal buffer may look like the one below.<br><br>
+ <code>|1|2|3|4| | |</code><br>
+ <code>p ---^</code><br><br>After inserting a range of elements before the position <code>p</code>:<br><br>
+ <code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
+ actually only elements <code>5</code>, <code>6</code>, <code>7</code> and <code>8</code> from the
+ specified range get inserted and elements <code>3</code> and <code>4</code> are overwritten. This is due
+ to the fact the rinsert operation preserves the capacity. After insertion the internal buffer looks like
+ this:<br><br><code>|1|2|5|6|7|8|</code><br><br>For comparison if the capacity would not be preserved the
+ internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
+ \sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
+ <code>\link rinsert(iterator, size_type, param_value_type)
+ rinsert(iterator, size_type, value_type)\endlink</code>, <code>\link insert(iterator, param_value_type)
+ insert(iterator, value_type)\endlink</code>, <code>\link insert(iterator, size_type, param_value_type)
+ insert(iterator, size_type, value_type)\endlink</code>,
+ <code>insert(iterator, InputIterator, InputIterator)</code>
+ */
+ template <class InputIterator>
+ void rinsert(iterator pos, InputIterator first, InputIterator last) {
+ rinsert(pos, first, last, is_integral<InputIterator>());
+ }
+
+ //! Remove an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> (but not
+ an <code>end()</code>).
+ \post The element at the position <code>pos</code> is removed.<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \param pos An iterator pointing at the element to be removed.
+ \return Iterator to the first element remaining beyond the removed element or <code>end()</code> if no such
+ element exists.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
+ <code>rerase(iterator, iterator)</code>, <code>clear()</code>
+ */
+ iterator erase(iterator pos) {
+ iterator it = circular_buffer<T, Alloc>::erase(pos);
+ size_type index = it - begin();
+ check_high_capacity();
+ return begin() + index;
+ }
+
+ //! Erase the range <code>[first, last)</code>.
+ /*!
+ \pre Valid range <code>[first, last)</code>.
+ \post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
+ nothing is removed.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \param first The beginning of the range to be removed.
+ \param last The end of the range to be removed.
+ \return Iterator to the first element remaining beyond the removed elements or <code>end()</code> if no such
+ element exists.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>erase(iterator)</code>, <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
+ <code>clear()</code>
+ */
+ iterator erase(iterator first, iterator last) {
+ iterator it = circular_buffer<T, Alloc>::erase(first, last);
+ size_type index = it - begin();
+ check_high_capacity();
+ return begin() + index;
+ }
+
+ //! Remove an element at the specified position.
+ /*!
+ \pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> (but not
+ an <code>end()</code>).<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \post The element at the position <code>pos</code> is removed.
+ \param pos An iterator pointing at the element to be removed.
+ \return Iterator to the first element remaining in front of the removed element or <code>begin()</code> if no
+ such element exists.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \note Basically there is no difference between <code>erase(iterator)</code> and this method. It is implemented
+ only for consistency with the base <code><a href="circular_buffer.html">circular_buffer</a></code>.
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
+ <code>rerase(iterator, iterator)</code>, <code>clear()</code>
+ */
+ iterator rerase(iterator pos) {
+ iterator it = circular_buffer<T, Alloc>::rerase(pos);
+ size_type index = it - begin();
+ check_high_capacity();
+ return begin() + index;
+ }
+
+ //! Erase the range <code>[first, last)</code>.
+ /*!
+ \pre Valid range <code>[first, last)</code>.
+ \post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
+ nothing is removed.)<br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \param first The beginning of the range to be removed.
+ \param last The end of the range to be removed.
+ \return Iterator to the first element remaining in front of the removed elements or <code>begin()</code> if no
+ such element exists.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \throws Whatever <code>T::operator = (const T&)</code> throws.
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \note Basically there is no difference between <code>erase(iterator, iterator)</code> and this method. It is
+ implemented only for consistency with the base
+ <code><a href="circular_buffer.html">circular_buffer</a></code>.
+ \sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
+ <code>clear()</code>
+ */
+ iterator rerase(iterator first, iterator last) {
+ iterator it = circular_buffer<T, Alloc>::rerase(first, last);
+ size_type index = it - begin();
+ check_high_capacity();
+ return begin() + index;
+ }
+
+ //! Remove all stored elements from the space optimized circular buffer.
+ /*!
+ \post <code>size() == 0</code><br><br>
+ The amount of allocated memory in the internal buffer may be predictively decreased.
+ \throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
+ used).
+ \par Exception Safety
+ Basic.
+ \par Iterator Invalidation
+ Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
+ equal to <code>end()</code>).
+ \par Complexity
+ Linear (in the size of the <code>circular_buffer_space_optimized</code>).
+ \sa <code>~circular_buffer_space_optimized()</code>, <code>erase(iterator)</code>,
+ <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
+ <code>rerase(iterator, iterator)</code>
+ */
+ void clear() { erase(begin(), end()); }
+
+private:
+// Helper methods
+
+ //! Adjust the amount of allocated memory.
+ void adjust_min_capacity() {
+ if (m_capacity_ctrl.min_capacity() > circular_buffer<T, Alloc>::capacity())
+ circular_buffer<T, Alloc>::set_capacity(m_capacity_ctrl.min_capacity());
+ else
+ check_high_capacity();
+ }
+
+ //! Ensure the reserve for possible growth up.
+ size_type ensure_reserve(size_type new_capacity, size_type buffer_size) const {
+ if (buffer_size + new_capacity / 5 >= new_capacity)
+ new_capacity *= 2; // ensure at least 20% reserve
+ if (new_capacity > m_capacity_ctrl)
+ return m_capacity_ctrl;
+ return new_capacity;
+ }
+
+ //! Check for low capacity.
+ /*
+ \post If the capacity is low it will be increased.
+ */
+ void check_low_capacity(size_type n = 1) {
+ size_type new_size = size() + n;
+ size_type new_capacity = circular_buffer<T, Alloc>::capacity();
+ if (new_size > new_capacity) {
+ if (new_capacity == 0)
+ new_capacity = 1;
+ for (; new_size > new_capacity; new_capacity *= 2) {}
+ circular_buffer<T, Alloc>::set_capacity(
+ ensure_reserve(new_capacity, new_size));
+ }
+#if BOOST_CB_ENABLE_DEBUG
+ this->invalidate_iterators_except(end());
+#endif
+ }
+
+ //! Check for high capacity.
+ /*
+ \post If the capacity is high it will be decreased.
+ */
+ void check_high_capacity() {
+ size_type new_capacity = circular_buffer<T, Alloc>::capacity();
+ while (new_capacity / 3 >= size()) { // (new_capacity / 3) -> avoid oscillations
+ new_capacity /= 2;
+ if (new_capacity <= m_capacity_ctrl.min_capacity()) {
+ new_capacity = m_capacity_ctrl.min_capacity();
+ break;
+ }
+ }
+ circular_buffer<T, Alloc>::set_capacity(
+ ensure_reserve(new_capacity, size()));
+#if BOOST_CB_ENABLE_DEBUG
+ this->invalidate_iterators_except(end());
+#endif
+ }
+
+ //! Specialized method for reducing the capacity.
+ void reduce_capacity(const true_type&) {
+ circular_buffer<T, Alloc>::set_capacity((std::max)(m_capacity_ctrl.min_capacity(), size()));
+ }
+
+ //! Specialized method for reducing the capacity.
+ void reduce_capacity(const false_type&) {}
+
+ //! Determine the initial capacity.
+ static size_type init_capacity(const capacity_type& capacity_ctrl, size_type n) {
+ BOOST_CB_ASSERT(capacity_ctrl.capacity() >= n); // check for capacity lower than n
+ return (std::max)(capacity_ctrl.min_capacity(), n);
+ }
+
+ //! Specialized method for determining the initial capacity.
+ template <class IntegralType>
+ static size_type init_capacity(const capacity_type& capacity_ctrl, IntegralType n, IntegralType item,
+ const true_type&) {
+ return init_capacity(capacity_ctrl, static_cast<size_type>(n));
+ }
+
+ //! Specialized method for determining the initial capacity.
+ template <class Iterator>
+ static size_type init_capacity(const capacity_type& capacity_ctrl, Iterator first, Iterator last,
+ const false_type&) {
+ BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
+ return init_capacity(capacity_ctrl, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#else
+ return init_capacity(
+ capacity_ctrl, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
+#endif
+ }
+
+ //! Specialized method for determining the initial capacity.
+ template <class InputIterator>
+ static size_type init_capacity(const capacity_type& capacity_ctrl, InputIterator first, InputIterator last,
+ const std::input_iterator_tag&) {
+ return capacity_ctrl.capacity();
+ }
+
+ //! Specialized method for determining the initial capacity.
+ template <class ForwardIterator>
+ static size_type init_capacity(const capacity_type& capacity_ctrl, ForwardIterator first, ForwardIterator last,
+ const std::forward_iterator_tag&) {
+ BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
+ return (std::max)(capacity_ctrl.min_capacity(),
+ (std::min)(capacity_ctrl.capacity(), static_cast<size_type>(std::distance(first, last))));
+ }
+
+ //! Specialized insert method.
+ template <class IntegralType>
+ void insert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
+ insert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized insert method.
+ template <class Iterator>
+ void insert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
+ size_type index = pos - begin();
+ check_low_capacity(std::distance(first, last));
+ circular_buffer<T, Alloc>::insert(begin() + index, first, last);
+ }
+
+ //! Specialized rinsert method.
+ template <class IntegralType>
+ void rinsert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
+ rinsert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
+ }
+
+ //! Specialized rinsert method.
+ template <class Iterator>
+ void rinsert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
+ size_type index = pos - begin();
+ check_low_capacity(std::distance(first, last));
+ circular_buffer<T, Alloc>::rinsert(begin() + index, first, last);
+ }
+};
+
+// Non-member functions
+
+//! Test two space optimized circular buffers for equality.
+template <class T, class Alloc>
+inline bool operator == (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return lhs.size() == rhs.size() &&
+ std::equal(lhs.begin(), lhs.end(), rhs.begin());
+}
+
+//! Lexicographical comparison.
+template <class T, class Alloc>
+inline bool operator < (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return std::lexicographical_compare(
+ lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
+}
+
+#if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
+
+//! Test two space optimized circular buffers for non-equality.
+template <class T, class Alloc>
+inline bool operator != (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return !(lhs == rhs);
+}
+
+//! Lexicographical comparison.
+template <class T, class Alloc>
+inline bool operator > (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return rhs < lhs;
+}
+
+//! Lexicographical comparison.
+template <class T, class Alloc>
+inline bool operator <= (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return !(rhs < lhs);
+}
+
+//! Lexicographical comparison.
+template <class T, class Alloc>
+inline bool operator >= (const circular_buffer_space_optimized<T, Alloc>& lhs,
+ const circular_buffer_space_optimized<T, Alloc>& rhs) {
+ return !(lhs < rhs);
+}
+
+//! Swap the contents of two space optimized circular buffers.
+template <class T, class Alloc>
+inline void swap(circular_buffer_space_optimized<T, Alloc>& lhs,
+ circular_buffer_space_optimized<T, Alloc>& rhs) {
+ lhs.swap(rhs);
+}
+
+#endif // #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
+
+} // namespace boost
+
+#endif // #if !defined(BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP)