/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include #include #include #include "private/gc_priv.h" extern void * GC_clear_stack(void *); /* in misc.c, behaves like identity */ void GC_extend_size_map(size_t); /* in misc.c. */ /* Allocate reclaim list for kind: */ /* Return TRUE on success */ GC_bool GC_alloc_reclaim_list(struct obj_kind *kind) { struct hblk ** result = (struct hblk **) GC_scratch_alloc((MAXOBJGRANULES+1) * sizeof(struct hblk *)); if (result == 0) return(FALSE); BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *)); kind -> ok_reclaim_list = result; return(TRUE); } /* Allocate a large block of size lb bytes. */ /* The block is not cleared. */ /* Flags is 0 or IGNORE_OFF_PAGE. */ /* We hold the allocation lock. */ /* EXTRA_BYTES were already added to lb. */ ptr_t GC_alloc_large(size_t lb, int k, unsigned flags) { struct hblk * h; word n_blocks; ptr_t result; /* Round up to a multiple of a granule. */ lb = (lb + GRANULE_BYTES - 1) & ~(GRANULE_BYTES - 1); n_blocks = OBJ_SZ_TO_BLOCKS(lb); if (!GC_is_initialized) GC_init_inner(); /* Do our share of marking work */ if(GC_incremental && !GC_dont_gc) GC_collect_a_little_inner((int)n_blocks); h = GC_allochblk(lb, k, flags); # ifdef USE_MUNMAP if (0 == h) { GC_merge_unmapped(); h = GC_allochblk(lb, k, flags); } # endif while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) { h = GC_allochblk(lb, k, flags); } if (h == 0) { result = 0; } else { size_t total_bytes = n_blocks * HBLKSIZE; if (n_blocks > 1) { GC_large_allocd_bytes += total_bytes; if (GC_large_allocd_bytes > GC_max_large_allocd_bytes) GC_max_large_allocd_bytes = GC_large_allocd_bytes; } result = h -> hb_body; } return result; } /* Allocate a large block of size lb bytes. Clear if appropriate. */ /* We hold the allocation lock. */ /* EXTRA_BYTES were already added to lb. */ ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags) { ptr_t result = GC_alloc_large(lb, k, flags); word n_blocks = OBJ_SZ_TO_BLOCKS(lb); if (0 == result) return 0; if (GC_debugging_started || GC_obj_kinds[k].ok_init) { /* Clear the whole block, in case of GC_realloc call. */ BZERO(result, n_blocks * HBLKSIZE); } return result; } /* allocate lb bytes for an object of kind k. */ /* Should not be used to directly to allocate */ /* objects such as STUBBORN objects that */ /* require special handling on allocation. */ /* First a version that assumes we already */ /* hold lock: */ void * GC_generic_malloc_inner(size_t lb, int k) { void *op; if(SMALL_OBJ(lb)) { struct obj_kind * kind = GC_obj_kinds + k; size_t lg = GC_size_map[lb]; void ** opp = &(kind -> ok_freelist[lg]); if( (op = *opp) == 0 ) { if (GC_size_map[lb] == 0) { if (!GC_is_initialized) GC_init_inner(); if (GC_size_map[lb] == 0) GC_extend_size_map(lb); return(GC_generic_malloc_inner(lb, k)); } if (kind -> ok_reclaim_list == 0) { if (!GC_alloc_reclaim_list(kind)) goto out; } op = GC_allocobj(lg, k); if (op == 0) goto out; } *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); } else { op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0); GC_bytes_allocd += lb; } out: return op; } /* Allocate a composite object of size n bytes. The caller guarantees */ /* that pointers past the first page are not relevant. Caller holds */ /* allocation lock. */ void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k) { word lb_adjusted; void * op; if (lb <= HBLKSIZE) return(GC_generic_malloc_inner(lb, k)); lb_adjusted = ADD_SLOP(lb); op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE); GC_bytes_allocd += lb_adjusted; return op; } void * GC_generic_malloc(size_t lb, int k) { void * result; DCL_LOCK_STATE; if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); if (SMALL_OBJ(lb)) { LOCK(); result = GC_generic_malloc_inner((word)lb, k); UNLOCK(); } else { size_t lw; size_t lb_rounded; word n_blocks; GC_bool init; lw = ROUNDED_UP_WORDS(lb); lb_rounded = WORDS_TO_BYTES(lw); n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded); init = GC_obj_kinds[k].ok_init; LOCK(); result = (ptr_t)GC_alloc_large(lb_rounded, k, 0); if (0 != result) { if (GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } else { # ifdef THREADS /* Clear any memory that might be used for GC descriptors */ /* before we release the lock. */ ((word *)result)[0] = 0; ((word *)result)[1] = 0; ((word *)result)[lw-1] = 0; ((word *)result)[lw-2] = 0; # endif } } GC_bytes_allocd += lb_rounded; UNLOCK(); if (init && !GC_debugging_started && 0 != result) { BZERO(result, n_blocks * HBLKSIZE); } } if (0 == result) { return((*GC_oom_fn)(lb)); } else { return(result); } } #define GENERAL_MALLOC(lb,k) \ GC_clear_stack(GC_generic_malloc(lb, k)) /* We make the GC_clear_stack_call a tail call, hoping to get more of */ /* the stack. */ /* Allocate lb bytes of atomic (pointerfree) data */ #ifdef THREAD_LOCAL_ALLOC void * GC_core_malloc_atomic(size_t lb) #else void * GC_malloc_atomic(size_t lb) #endif { void *op; void ** opp; size_t lg; DCL_LOCK_STATE; if(SMALL_OBJ(lb)) { lg = GC_size_map[lb]; opp = &(GC_aobjfreelist[lg]); LOCK(); if( EXPECT((op = *opp) == 0, 0) ) { UNLOCK(); return(GENERAL_MALLOC((word)lb, PTRFREE)); } *opp = obj_link(op); GC_bytes_allocd += GRANULES_TO_BYTES(lg); UNLOCK(); return((void *) op); } else { return(GENERAL_MALLOC((word)lb, PTRFREE)); } } /* provide a version of strdup() that uses the collector to allocate the copy of the string */ # ifdef __STDC__ char *GC_strdup(const char *s) # else char *GC_strdup(s) char *s; #endif { char *copy; if (s == NULL) return NULL; if ((copy = GC_malloc_atomic(strlen(s) + 1)) == NULL) { errno = ENOMEM; return NULL; } strcpy(copy, s); return copy; } /* Allocate lb bytes of composite (pointerful) data */ #ifdef THREAD_LOCAL_ALLOC void * GC_core_malloc(size_t lb) #else void * GC_malloc(size_t lb) #endif { void *op; void **opp; size_t lg; DCL_LOCK_STATE; if(SMALL_OBJ(lb)) { lg = GC_size_map[lb]; opp = (void **)&(GC_objfreelist[lg]); LOCK(); if( EXPECT((op = *opp) == 0, 0) ) { UNLOCK(); return(GENERAL_MALLOC((word)lb, NORMAL)); } /* See above comment on signals. */ GC_ASSERT(0 == obj_link(op) || (word)obj_link(op) <= (word)GC_greatest_plausible_heap_addr && (word)obj_link(op) >= (word)GC_least_plausible_heap_addr); *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); UNLOCK(); return op; } else { return(GENERAL_MALLOC(lb, NORMAL)); } } # ifdef REDIRECT_MALLOC /* Avoid unnecessary nested procedure calls here, by #defining some */ /* malloc replacements. Otherwise we end up saving a */ /* meaningless return address in the object. It also speeds things up, */ /* but it is admittedly quite ugly. */ # ifdef GC_ADD_CALLER # define RA GC_RETURN_ADDR, # else # define RA # endif # define GC_debug_malloc_replacement(lb) \ GC_debug_malloc(lb, RA "unknown", 0) void * malloc(size_t lb) { /* It might help to manually inline the GC_malloc call here. */ /* But any decent compiler should reduce the extra procedure call */ /* to at most a jump instruction in this case. */ # if defined(I386) && defined(GC_SOLARIS_THREADS) /* * Thread initialisation can call malloc before * we're ready for it. * It's not clear that this is enough to help matters. * The thread implementation may well call malloc at other * inopportune times. */ if (!GC_is_initialized) return sbrk(lb); # endif /* I386 && GC_SOLARIS_THREADS */ return((void *)REDIRECT_MALLOC(lb)); } #ifdef GC_LINUX_THREADS static ptr_t GC_libpthread_start = 0; static ptr_t GC_libpthread_end = 0; static ptr_t GC_libld_start = 0; static ptr_t GC_libld_end = 0; extern GC_bool GC_text_mapping(char *nm, ptr_t *startp, ptr_t *endp); /* From os_dep.c */ void GC_init_lib_bounds(void) { if (GC_libpthread_start != 0) return; if (!GC_text_mapping("/lib/tls/libpthread-", &GC_libpthread_start, &GC_libpthread_end) && !GC_text_mapping("/lib/libpthread-", &GC_libpthread_start, &GC_libpthread_end)) { WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0); /* This might still work with some versions of libpthread, */ /* so we don't abort. Perhaps we should. */ /* Generate message only once: */ GC_libpthread_start = (ptr_t)1; } if (!GC_text_mapping("/lib/ld-", &GC_libld_start, &GC_libld_end)) { WARN("Failed to find ld.so text mapping: Expect crash\n", 0); } } #endif void * calloc(size_t n, size_t lb) { # if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES) /* libpthread allocated some memory that is only pointed to by */ /* mmapped thread stacks. Make sure it's not collectable. */ { static GC_bool lib_bounds_set = FALSE; ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (!lib_bounds_set) { GC_init_lib_bounds(); lib_bounds_set = TRUE; } if (caller >= GC_libpthread_start && caller < GC_libpthread_end || (caller >= GC_libld_start && caller < GC_libld_end)) return GC_malloc_uncollectable(n*lb); /* The two ranges are actually usually adjacent, so there may */ /* be a way to speed this up. */ } # endif return((void *)REDIRECT_MALLOC(n*lb)); } #ifndef strdup # include char *strdup(const char *s) { size_t len = strlen(s) + 1; char * result = ((char *)REDIRECT_MALLOC(len+1)); if (result == 0) { errno = ENOMEM; return 0; } BCOPY(s, result, len+1); return result; } #endif /* !defined(strdup) */ /* If strdup is macro defined, we assume that it actually calls malloc, */ /* and thus the right thing will happen even without overriding it. */ /* This seems to be true on most Linux systems. */ #undef GC_debug_malloc_replacement # endif /* REDIRECT_MALLOC */ /* Explicitly deallocate an object p. */ void GC_free(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* In bytes */ size_t ngranules; /* sz in granules */ void **flh; int knd; struct obj_kind * ok; DCL_LOCK_STATE; if (p == 0) return; /* Required by ANSI. It's not my fault ... */ h = HBLKPTR(p); hhdr = HDR(h); sz = hhdr -> hb_sz; ngranules = BYTES_TO_GRANULES(sz); GC_ASSERT(GC_base(p) == p); # if defined(REDIRECT_MALLOC) && \ (defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \ || defined(MSWIN32)) /* For Solaris, we have to redirect malloc calls during */ /* initialization. For the others, this seems to happen */ /* implicitly. */ /* Don't try to deallocate that memory. */ if (0 == hhdr) return; # endif knd = hhdr -> hb_obj_kind; ok = &GC_obj_kinds[knd]; if (EXPECT((ngranules <= MAXOBJGRANULES), 1)) { LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; /* Its unnecessary to clear the mark bit. If the */ /* object is reallocated, it doesn't matter. O.w. the */ /* collector will do it, since it's on a free list. */ if (ok -> ok_init) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; UNLOCK(); } else { LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; GC_freehblk(h); UNLOCK(); } } /* Explicitly deallocate an object p when we already hold lock. */ /* Only used for internally allocated objects, so we can take some */ /* shortcuts. */ #ifdef THREADS void GC_free_inner(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* bytes */ size_t ngranules; /* sz in granules */ void ** flh; int knd; struct obj_kind * ok; DCL_LOCK_STATE; h = HBLKPTR(p); hhdr = HDR(h); knd = hhdr -> hb_obj_kind; sz = hhdr -> hb_sz; ngranules = BYTES_TO_GRANULES(sz); ok = &GC_obj_kinds[knd]; if (ngranules <= MAXOBJGRANULES) { GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (ok -> ok_init) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; } else { GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; GC_freehblk(h); } } #endif /* THREADS */ # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE) # define REDIRECT_FREE GC_free # endif # ifdef REDIRECT_FREE void free(void * p) { # if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES) { /* Don't bother with initialization checks. If nothing */ /* has been initialized, the check fails, and that's safe, */ /* since we haven't allocated uncollectable objects either. */ ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (caller >= GC_libpthread_start && caller > GC_libpthread_end) { GC_free(p); return; } } # endif # ifndef IGNORE_FREE REDIRECT_FREE(p); # endif } # endif /* REDIRECT_MALLOC */