summaryrefslogtreecommitdiff
path: root/boehm_gc/include/gc.h
diff options
context:
space:
mode:
Diffstat (limited to 'boehm_gc/include/gc.h')
-rw-r--r--boehm_gc/include/gc.h1139
1 files changed, 1139 insertions, 0 deletions
diff --git a/boehm_gc/include/gc.h b/boehm_gc/include/gc.h
new file mode 100644
index 0000000..cc95088
--- /dev/null
+++ b/boehm_gc/include/gc.h
@@ -0,0 +1,1139 @@
+/*
+ * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
+ * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
+ * Copyright 1996-1999 by Silicon Graphics. All rights reserved.
+ * Copyright 1999 by Hewlett-Packard Company. All rights reserved.
+ * Copyright (C) 2007 Free Software Foundation, Inc
+ *
+ * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
+ * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
+ *
+ * Permission is hereby granted to use or copy this program
+ * for any purpose, provided the above notices are retained on all copies.
+ * Permission to modify the code and to distribute modified code is granted,
+ * provided the above notices are retained, and a notice that the code was
+ * modified is included with the above copyright notice.
+ */
+
+/*
+ * Note that this defines a large number of tuning hooks, which can
+ * safely be ignored in nearly all cases. For normal use it suffices
+ * to call only GC_MALLOC and perhaps GC_REALLOC.
+ * For better performance, also look at GC_MALLOC_ATOMIC, and
+ * GC_enable_incremental. If you need an action to be performed
+ * immediately before an object is collected, look at GC_register_finalizer.
+ * If you are using Solaris threads, look at the end of this file.
+ * Everything else is best ignored unless you encounter performance
+ * problems.
+ */
+
+#ifndef _GC_H
+
+# define _GC_H
+
+# include "gc_config_macros.h"
+
+# ifdef __cplusplus
+ extern "C" {
+# endif
+
+
+/* Define word and signed_word to be unsigned and signed types of the */
+/* size as char * or void *. There seems to be no way to do this */
+/* even semi-portably. The following is probably no better/worse */
+/* than almost anything else. */
+/* The ANSI standard suggests that size_t and ptr_diff_t might be */
+/* better choices. But those had incorrect definitions on some older */
+/* systems. Notably "typedef int size_t" is WRONG. */
+#ifndef _WIN64
+ typedef unsigned long GC_word;
+ typedef long GC_signed_word;
+#else
+ /* Win64 isn't really supported yet, but this is the first step. And */
+ /* it might cause error messages to show up in more plausible places. */
+ /* This needs basetsd.h, which is included by windows.h. */
+ typedef unsigned long long GC_word;
+ typedef long long GC_signed_word;
+#endif
+
+/* Public read-only variables */
+
+GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
+ /* Includes empty GCs at startup. */
+
+GC_API int GC_parallel; /* GC is parallelized for performance on */
+ /* multiprocessors. Currently set only */
+ /* implicitly if collector is built with */
+ /* -DPARALLEL_MARK and if either: */
+ /* Env variable GC_NPROC is set to > 1, or */
+ /* GC_NPROC is not set and this is an MP. */
+ /* If GC_parallel is set, incremental */
+ /* collection is only partially functional, */
+ /* and may not be desirable. */
+
+
+/* Public R/W variables */
+
+GC_API void * (*GC_oom_fn) (size_t bytes_requested);
+ /* When there is insufficient memory to satisfy */
+ /* an allocation request, we return */
+ /* (*GC_oom_fn)(). By default this just */
+ /* returns 0. */
+ /* If it returns, it must return 0 or a valid */
+ /* pointer to a previously allocated heap */
+ /* object. */
+
+GC_API int GC_find_leak;
+ /* Do not actually garbage collect, but simply */
+ /* report inaccessible memory that was not */
+ /* deallocated with GC_free. Initial value */
+ /* is determined by FIND_LEAK macro. */
+
+GC_API int GC_all_interior_pointers;
+ /* Arrange for pointers to object interiors to */
+ /* be recognized as valid. May not be changed */
+ /* after GC initialization. */
+ /* Initial value is determined by */
+ /* -DALL_INTERIOR_POINTERS. */
+ /* Unless DONT_ADD_BYTE_AT_END is defined, this */
+ /* also affects whether sizes are increased by */
+ /* at least a byte to allow "off the end" */
+ /* pointer recognition. */
+ /* MUST BE 0 or 1. */
+
+GC_API int GC_finalize_on_demand;
+ /* If nonzero, finalizers will only be run in */
+ /* response to an explicit GC_invoke_finalizers */
+ /* call. The default is determined by whether */
+ /* the FINALIZE_ON_DEMAND macro is defined */
+ /* when the collector is built. */
+
+GC_API int GC_java_finalization;
+ /* Mark objects reachable from finalizable */
+ /* objects in a separate postpass. This makes */
+ /* it a bit safer to use non-topologically- */
+ /* ordered finalization. Default value is */
+ /* determined by JAVA_FINALIZATION macro. */
+ /* Enables register_finalizer_unreachable to */
+ /* work correctly. */
+
+GC_API void (* GC_finalizer_notifier)(void);
+ /* Invoked by the collector when there are */
+ /* objects to be finalized. Invoked at most */
+ /* once per GC cycle. Never invoked unless */
+ /* GC_finalize_on_demand is set. */
+ /* Typically this will notify a finalization */
+ /* thread, which will call GC_invoke_finalizers */
+ /* in response. */
+
+GC_API int GC_dont_gc; /* != 0 ==> Dont collect. In versions 6.2a1+, */
+ /* this overrides explicit GC_gcollect() calls. */
+ /* Used as a counter, so that nested enabling */
+ /* and disabling work correctly. Should */
+ /* normally be updated with GC_enable() and */
+ /* GC_disable() calls. */
+ /* Direct assignment to GC_dont_gc is */
+ /* deprecated. */
+
+GC_API int GC_dont_expand;
+ /* Dont expand heap unless explicitly requested */
+ /* or forced to. */
+
+GC_API int GC_use_entire_heap;
+ /* Causes the nonincremental collector to use the */
+ /* entire heap before collecting. This was the only */
+ /* option for GC versions < 5.0. This sometimes */
+ /* results in more large block fragmentation, since */
+ /* very larg blocks will tend to get broken up */
+ /* during each GC cycle. It is likely to result in a */
+ /* larger working set, but lower collection */
+ /* frequencies, and hence fewer instructions executed */
+ /* in the collector. */
+
+GC_API int GC_full_freq; /* Number of partial collections between */
+ /* full collections. Matters only if */
+ /* GC_incremental is set. */
+ /* Full collections are also triggered if */
+ /* the collector detects a substantial */
+ /* increase in the number of in-use heap */
+ /* blocks. Values in the tens are now */
+ /* perfectly reasonable, unlike for */
+ /* earlier GC versions. */
+
+GC_API GC_word GC_non_gc_bytes;
+ /* Bytes not considered candidates for collection. */
+ /* Used only to control scheduling of collections. */
+ /* Updated by GC_malloc_uncollectable and GC_free. */
+ /* Wizards only. */
+
+GC_API int GC_no_dls;
+ /* Don't register dynamic library data segments. */
+ /* Wizards only. Should be used only if the */
+ /* application explicitly registers all roots. */
+ /* In Microsoft Windows environments, this will */
+ /* usually also prevent registration of the */
+ /* main data segment as part of the root set. */
+
+GC_API GC_word GC_free_space_divisor;
+ /* We try to make sure that we allocate at */
+ /* least N/GC_free_space_divisor bytes between */
+ /* collections, where N is twice the number */
+ /* of traced bytes, plus the number of untraced */
+ /* bytes (bytes in "atomic" objects), plus */
+ /* a rough estimate of the root set size. */
+ /* N approximates GC tracing work per GC. */
+ /* Initially, GC_free_space_divisor = 3. */
+ /* Increasing its value will use less space */
+ /* but more collection time. Decreasing it */
+ /* will appreciably decrease collection time */
+ /* at the expense of space. */
+
+GC_API GC_word GC_max_retries;
+ /* The maximum number of GCs attempted before */
+ /* reporting out of memory after heap */
+ /* expansion fails. Initially 0. */
+
+
+GC_API char *GC_stackbottom; /* Cool end of user stack. */
+ /* May be set in the client prior to */
+ /* calling any GC_ routines. This */
+ /* avoids some overhead, and */
+ /* potentially some signals that can */
+ /* confuse debuggers. Otherwise the */
+ /* collector attempts to set it */
+ /* automatically. */
+ /* For multithreaded code, this is the */
+ /* cold end of the stack for the */
+ /* primordial thread. */
+
+GC_API int GC_dont_precollect; /* Don't collect as part of */
+ /* initialization. Should be set only */
+ /* if the client wants a chance to */
+ /* manually initialize the root set */
+ /* before the first collection. */
+ /* Interferes with blacklisting. */
+ /* Wizards only. */
+
+GC_API unsigned long GC_time_limit;
+ /* If incremental collection is enabled, */
+ /* We try to terminate collections */
+ /* after this many milliseconds. Not a */
+ /* hard time bound. Setting this to */
+ /* GC_TIME_UNLIMITED will essentially */
+ /* disable incremental collection while */
+ /* leaving generational collection */
+ /* enabled. */
+# define GC_TIME_UNLIMITED 999999
+ /* Setting GC_time_limit to this value */
+ /* will disable the "pause time exceeded"*/
+ /* tests. */
+
+/* Public procedures */
+
+/* Initialize the collector. This is only required when using thread-local
+ * allocation, since unlike the regular allocation routines, GC_local_malloc
+ * is not self-initializing. If you use GC_local_malloc you should arrange
+ * to call this somehow (e.g. from a constructor) before doing any allocation.
+ * For win32 threads, it needs to be called explicitly.
+ */
+GC_API void GC_init(void);
+
+/*
+ * general purpose allocation routines, with roughly malloc calling conv.
+ * The atomic versions promise that no relevant pointers are contained
+ * in the object. The nonatomic versions guarantee that the new object
+ * is cleared. GC_malloc_stubborn promises that no changes to the object
+ * will occur after GC_end_stubborn_change has been called on the
+ * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
+ * that is scanned for pointers to collectable objects, but is not itself
+ * collectable. The object is scanned even if it does not appear to
+ * be reachable. GC_malloc_uncollectable and GC_free called on the resulting
+ * object implicitly update GC_non_gc_bytes appropriately.
+ *
+ * Note that the GC_malloc_stubborn support is stubbed out by default
+ * starting in 6.0. GC_malloc_stubborn is an alias for GC_malloc unless
+ * the collector is built with STUBBORN_ALLOC defined.
+ */
+GC_API void * GC_malloc(size_t size_in_bytes);
+GC_API void * GC_malloc_atomic(size_t size_in_bytes);
+GC_API char * GC_strdup (const char *str);
+GC_API void * GC_malloc_uncollectable(size_t size_in_bytes);
+GC_API void * GC_malloc_stubborn(size_t size_in_bytes);
+
+/* The following is only defined if the library has been suitably */
+/* compiled: */
+GC_API void * GC_malloc_atomic_uncollectable(size_t size_in_bytes);
+
+/* Explicitly deallocate an object. Dangerous if used incorrectly. */
+/* Requires a pointer to the base of an object. */
+/* If the argument is stubborn, it should not be changeable when freed. */
+/* An object should not be enable for finalization when it is */
+/* explicitly deallocated. */
+/* GC_free(0) is a no-op, as required by ANSI C for free. */
+GC_API void GC_free(void * object_addr);
+
+/*
+ * Stubborn objects may be changed only if the collector is explicitly informed.
+ * The collector is implicitly informed of coming change when such
+ * an object is first allocated. The following routines inform the
+ * collector that an object will no longer be changed, or that it will
+ * once again be changed. Only nonNIL pointer stores into the object
+ * are considered to be changes. The argument to GC_end_stubborn_change
+ * must be exacly the value returned by GC_malloc_stubborn or passed to
+ * GC_change_stubborn. (In the second case it may be an interior pointer
+ * within 512 bytes of the beginning of the objects.)
+ * There is a performance penalty for allowing more than
+ * one stubborn object to be changed at once, but it is acceptable to
+ * do so. The same applies to dropping stubborn objects that are still
+ * changeable.
+ */
+GC_API void GC_change_stubborn(void *);
+GC_API void GC_end_stubborn_change(void *);
+
+/* Return a pointer to the base (lowest address) of an object given */
+/* a pointer to a location within the object. */
+/* I.e. map an interior pointer to the corresponding bas pointer. */
+/* Note that with debugging allocation, this returns a pointer to the */
+/* actual base of the object, i.e. the debug information, not to */
+/* the base of the user object. */
+/* Return 0 if displaced_pointer doesn't point to within a valid */
+/* object. */
+/* Note that a deallocated object in the garbage collected heap */
+/* may be considered valid, even if it has been deallocated with */
+/* GC_free. */
+GC_API void * GC_base(void * displaced_pointer);
+
+/* Given a pointer to the base of an object, return its size in bytes. */
+/* The returned size may be slightly larger than what was originally */
+/* requested. */
+GC_API size_t GC_size(void * object_addr);
+
+/* For compatibility with C library. This is occasionally faster than */
+/* a malloc followed by a bcopy. But if you rely on that, either here */
+/* or with the standard C library, your code is broken. In my */
+/* opinion, it shouldn't have been invented, but now we're stuck. -HB */
+/* The resulting object has the same kind as the original. */
+/* If the argument is stubborn, the result will have changes enabled. */
+/* It is an error to have changes enabled for the original object. */
+/* Follows ANSI comventions for NULL old_object. */
+GC_API void * GC_realloc(void * old_object, size_t new_size_in_bytes);
+
+/* Explicitly increase the heap size. */
+/* Returns 0 on failure, 1 on success. */
+GC_API int GC_expand_hp(size_t number_of_bytes);
+
+/* Limit the heap size to n bytes. Useful when you're debugging, */
+/* especially on systems that don't handle running out of memory well. */
+/* n == 0 ==> unbounded. This is the default. */
+GC_API void GC_set_max_heap_size(GC_word n);
+
+/* Inform the collector that a certain section of statically allocated */
+/* memory contains no pointers to garbage collected memory. Thus it */
+/* need not be scanned. This is sometimes important if the application */
+/* maps large read/write files into the address space, which could be */
+/* mistaken for dynamic library data segments on some systems. */
+GC_API void GC_exclude_static_roots(void * low_address,
+ void * high_address_plus_1);
+
+/* Clear the set of root segments. Wizards only. */
+GC_API void GC_clear_roots(void);
+
+/* Add a root segment. Wizards only. */
+GC_API void GC_add_roots(void * low_address, void * high_address_plus_1);
+
+/* Remove a root segment. Wizards only. */
+GC_API void GC_remove_roots(void * low_address, void * high_address_plus_1);
+
+/* Add a displacement to the set of those considered valid by the */
+/* collector. GC_register_displacement(n) means that if p was returned */
+/* by GC_malloc, then (char *)p + n will be considered to be a valid */
+/* pointer to p. N must be small and less than the size of p. */
+/* (All pointers to the interior of objects from the stack are */
+/* considered valid in any case. This applies to heap objects and */
+/* static data.) */
+/* Preferably, this should be called before any other GC procedures. */
+/* Calling it later adds to the probability of excess memory */
+/* retention. */
+/* This is a no-op if the collector has recognition of */
+/* arbitrary interior pointers enabled, which is now the default. */
+GC_API void GC_register_displacement(size_t n);
+
+/* The following version should be used if any debugging allocation is */
+/* being done. */
+GC_API void GC_debug_register_displacement(size_t n);
+
+/* Explicitly trigger a full, world-stop collection. */
+GC_API void GC_gcollect(void);
+
+/* Trigger a full world-stopped collection. Abort the collection if */
+/* and when stop_func returns a nonzero value. Stop_func will be */
+/* called frequently, and should be reasonably fast. This works even */
+/* if virtual dirty bits, and hence incremental collection is not */
+/* available for this architecture. Collections can be aborted faster */
+/* than normal pause times for incremental collection. However, */
+/* aborted collections do no useful work; the next collection needs */
+/* to start from the beginning. */
+/* Return 0 if the collection was aborted, 1 if it succeeded. */
+typedef int (* GC_stop_func)(void);
+GC_API int GC_try_to_collect(GC_stop_func stop_func);
+
+/* Return the number of bytes in the heap. Excludes collector private */
+/* data structures. Includes empty blocks and fragmentation loss. */
+/* Includes some pages that were allocated but never written. */
+GC_API size_t GC_get_heap_size(void);
+
+/* Return a lower bound on the number of free bytes in the heap. */
+GC_API size_t GC_get_free_bytes(void);
+
+/* Return the number of bytes allocated since the last collection. */
+GC_API size_t GC_get_bytes_since_gc(void);
+
+/* Return the total number of bytes allocated in this process. */
+/* Never decreases, except due to wrapping. */
+GC_API size_t GC_get_total_bytes(void);
+
+/* Disable garbage collection. Even GC_gcollect calls will be */
+/* ineffective. */
+GC_API void GC_disable(void);
+
+/* Reenable garbage collection. GC_disable() and GC_enable() calls */
+/* nest. Garbage collection is enabled if the number of calls to both */
+/* both functions is equal. */
+GC_API void GC_enable(void);
+
+/* Enable incremental/generational collection. */
+/* Not advisable unless dirty bits are */
+/* available or most heap objects are */
+/* pointerfree(atomic) or immutable. */
+/* Don't use in leak finding mode. */
+/* Ignored if GC_dont_gc is true. */
+/* Only the generational piece of this is */
+/* functional if GC_parallel is TRUE */
+/* or if GC_time_limit is GC_TIME_UNLIMITED. */
+/* Causes GC_local_gcj_malloc() to revert to */
+/* locked allocation. Must be called */
+/* before any GC_local_gcj_malloc() calls. */
+/* For best performance, should be called as early as possible. */
+/* On some platforms, calling it later may have adverse effects.*/
+/* Safe to call before GC_INIT(). Includes a GC_init() call. */
+GC_API void GC_enable_incremental(void);
+
+/* Does incremental mode write-protect pages? Returns zero or */
+/* more of the following, or'ed together: */
+#define GC_PROTECTS_POINTER_HEAP 1 /* May protect non-atomic objs. */
+#define GC_PROTECTS_PTRFREE_HEAP 2
+#define GC_PROTECTS_STATIC_DATA 4 /* Currently never. */
+#define GC_PROTECTS_STACK 8 /* Probably impractical. */
+
+#define GC_PROTECTS_NONE 0
+GC_API int GC_incremental_protection_needs(void);
+
+/* Perform some garbage collection work, if appropriate. */
+/* Return 0 if there is no more work to be done. */
+/* Typically performs an amount of work corresponding roughly */
+/* to marking from one page. May do more work if further */
+/* progress requires it, e.g. if incremental collection is */
+/* disabled. It is reasonable to call this in a wait loop */
+/* until it returns 0. */
+GC_API int GC_collect_a_little(void);
+
+/* Allocate an object of size lb bytes. The client guarantees that */
+/* as long as the object is live, it will be referenced by a pointer */
+/* that points to somewhere within the first 256 bytes of the object. */
+/* (This should normally be declared volatile to prevent the compiler */
+/* from invalidating this assertion.) This routine is only useful */
+/* if a large array is being allocated. It reduces the chance of */
+/* accidentally retaining such an array as a result of scanning an */
+/* integer that happens to be an address inside the array. (Actually, */
+/* it reduces the chance of the allocator not finding space for such */
+/* an array, since it will try hard to avoid introducing such a false */
+/* reference.) On a SunOS 4.X or MS Windows system this is recommended */
+/* for arrays likely to be larger than 100K or so. For other systems, */
+/* or if the collector is not configured to recognize all interior */
+/* pointers, the threshold is normally much higher. */
+GC_API void * GC_malloc_ignore_off_page(size_t lb);
+GC_API void * GC_malloc_atomic_ignore_off_page(size_t lb);
+
+#if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
+# define GC_ADD_CALLER
+# define GC_RETURN_ADDR (GC_word)__return_address
+#endif
+
+#if defined(__linux__) || defined(__GLIBC__)
+# include <features.h>
+# if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
+ && !defined(__ia64__)
+# ifndef GC_HAVE_BUILTIN_BACKTRACE
+# define GC_HAVE_BUILTIN_BACKTRACE
+# endif
+# endif
+# if defined(__i386__) || defined(__x86_64__)
+# define GC_CAN_SAVE_CALL_STACKS
+# endif
+#endif
+
+#if defined(_MSC_VER) && _MSC_VER >= 1200 /* version 12.0+ (MSVC 6.0+) */ \
+ && !defined(_AMD64_)
+# ifndef GC_HAVE_NO_BUILTIN_BACKTRACE
+# define GC_HAVE_BUILTIN_BACKTRACE
+# endif
+#endif
+
+#if defined(GC_HAVE_BUILTIN_BACKTRACE) && !defined(GC_CAN_SAVE_CALL_STACKS)
+# define GC_CAN_SAVE_CALL_STACKS
+#endif
+
+#if defined(__sparc__)
+# define GC_CAN_SAVE_CALL_STACKS
+#endif
+
+/* If we're on an a platform on which we can't save call stacks, but */
+/* gcc is normally used, we go ahead and define GC_ADD_CALLER. */
+/* We make this decision independent of whether gcc is actually being */
+/* used, in order to keep the interface consistent, and allow mixing */
+/* of compilers. */
+/* This may also be desirable if it is possible but expensive to */
+/* retrieve the call chain. */
+#if (defined(__linux__) || defined(__NetBSD__) || defined(__OpenBSD__) \
+ || defined(__FreeBSD__) || defined(__DragonFly__)) & !defined(GC_CAN_SAVE_CALL_STACKS)
+# define GC_ADD_CALLER
+# if __GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)
+ /* gcc knows how to retrieve return address, but we don't know */
+ /* how to generate call stacks. */
+# define GC_RETURN_ADDR (GC_word)__builtin_return_address(0)
+# else
+ /* Just pass 0 for gcc compatibility. */
+# define GC_RETURN_ADDR 0
+# endif
+#endif
+
+#ifdef GC_ADD_CALLER
+# define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
+# define GC_EXTRA_PARAMS GC_word ra, const char * s, int i
+#else
+# define GC_EXTRAS __FILE__, __LINE__
+# define GC_EXTRA_PARAMS const char * s, int i
+#endif
+
+/* Debugging (annotated) allocation. GC_gcollect will check */
+/* objects allocated in this way for overwrites, etc. */
+GC_API void * GC_debug_malloc(size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void * GC_debug_malloc_atomic(size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API char * GC_debug_strdup(const char *str, GC_EXTRA_PARAMS);
+GC_API void * GC_debug_malloc_uncollectable
+ (size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void * GC_debug_malloc_stubborn
+ (size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void * GC_debug_malloc_ignore_off_page
+ (size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void * GC_debug_malloc_atomic_ignore_off_page
+ (size_t size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void GC_debug_free (void * object_addr);
+GC_API void * GC_debug_realloc
+ (void * old_object, size_t new_size_in_bytes, GC_EXTRA_PARAMS);
+GC_API void GC_debug_change_stubborn(void *);
+GC_API void GC_debug_end_stubborn_change(void *);
+
+/* Routines that allocate objects with debug information (like the */
+/* above), but just fill in dummy file and line number information. */
+/* Thus they can serve as drop-in malloc/realloc replacements. This */
+/* can be useful for two reasons: */
+/* 1) It allows the collector to be built with DBG_HDRS_ALL defined */
+/* even if some allocation calls come from 3rd party libraries */
+/* that can't be recompiled. */
+/* 2) On some platforms, the file and line information is redundant, */
+/* since it can be reconstructed from a stack trace. On such */
+/* platforms it may be more convenient not to recompile, e.g. for */
+/* leak detection. This can be accomplished by instructing the */
+/* linker to replace malloc/realloc with these. */
+GC_API void * GC_debug_malloc_replacement (size_t size_in_bytes);
+GC_API void * GC_debug_realloc_replacement
+ (void * object_addr, size_t size_in_bytes);
+
+# ifdef GC_DEBUG
+# define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
+# define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
+# define GC_STRDUP(s) GC_debug_strdup((s), GC_EXTRAS)
+# define GC_MALLOC_UNCOLLECTABLE(sz) \
+ GC_debug_malloc_uncollectable(sz, GC_EXTRAS)
+# define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
+ GC_debug_malloc_ignore_off_page(sz, GC_EXTRAS)
+# define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
+ GC_debug_malloc_atomic_ignore_off_page(sz, GC_EXTRAS)
+# define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
+# define GC_FREE(p) GC_debug_free(p)
+# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
+ GC_debug_register_finalizer(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
+ GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
+ GC_debug_register_finalizer_no_order(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
+ GC_debug_register_finalizer_unreachable(p, f, d, of, od)
+# define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
+# define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
+# define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
+# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
+ GC_general_register_disappearing_link(link, GC_base(obj))
+# define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
+# else
+# define GC_MALLOC(sz) GC_malloc(sz)
+# define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
+# define GC_STRDUP(s) GC_strdup(s)
+# define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
+# define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
+ GC_malloc_ignore_off_page(sz)
+# define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
+ GC_malloc_atomic_ignore_off_page(sz)
+# define GC_REALLOC(old, sz) GC_realloc(old, sz)
+# define GC_FREE(p) GC_free(p)
+# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
+ GC_register_finalizer(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
+ GC_register_finalizer_ignore_self(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
+ GC_register_finalizer_no_order(p, f, d, of, od)
+# define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
+ GC_register_finalizer_unreachable(p, f, d, of, od)
+# define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
+# define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
+# define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
+# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
+ GC_general_register_disappearing_link(link, obj)
+# define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
+# endif
+/* The following are included because they are often convenient, and */
+/* reduce the chance for a misspecifed size argument. But calls may */
+/* expand to something syntactically incorrect if t is a complicated */
+/* type expression. */
+# define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
+# define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
+# define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
+# define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
+
+/* Finalization. Some of these primitives are grossly unsafe. */
+/* The idea is to make them both cheap, and sufficient to build */
+/* a safer layer, closer to Modula-3, Java, or PCedar finalization. */
+/* The interface represents my conclusions from a long discussion */
+/* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
+/* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
+/* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
+typedef void (*GC_finalization_proc) (void * obj, void * client_data);
+
+GC_API void GC_register_finalizer(void * obj, GC_finalization_proc fn,
+ void * cd, GC_finalization_proc *ofn,
+ void * *ocd);
+GC_API void GC_debug_register_finalizer
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+ /* When obj is no longer accessible, invoke */
+ /* (*fn)(obj, cd). If a and b are inaccessible, and */
+ /* a points to b (after disappearing links have been */
+ /* made to disappear), then only a will be */
+ /* finalized. (If this does not create any new */
+ /* pointers to b, then b will be finalized after the */
+ /* next collection.) Any finalizable object that */
+ /* is reachable from itself by following one or more */
+ /* pointers will not be finalized (or collected). */
+ /* Thus cycles involving finalizable objects should */
+ /* be avoided, or broken by disappearing links. */
+ /* All but the last finalizer registered for an object */
+ /* is ignored. */
+ /* Finalization may be removed by passing 0 as fn. */
+ /* Finalizers are implicitly unregistered just before */
+ /* they are invoked. */
+ /* The old finalizer and client data are stored in */
+ /* *ofn and *ocd. */
+ /* Fn is never invoked on an accessible object, */
+ /* provided hidden pointers are converted to real */
+ /* pointers only if the allocation lock is held, and */
+ /* such conversions are not performed by finalization */
+ /* routines. */
+ /* If GC_register_finalizer is aborted as a result of */
+ /* a signal, the object may be left with no */
+ /* finalization, even if neither the old nor new */
+ /* finalizer were NULL. */
+ /* Obj should be the nonNULL starting address of an */
+ /* object allocated by GC_malloc or friends. */
+ /* Note that any garbage collectable object referenced */
+ /* by cd will be considered accessible until the */
+ /* finalizer is invoked. */
+
+/* Another versions of the above follow. It ignores */
+/* self-cycles, i.e. pointers from a finalizable object to */
+/* itself. There is a stylistic argument that this is wrong, */
+/* but it's unavoidable for C++, since the compiler may */
+/* silently introduce these. It's also benign in that specific */
+/* case. And it helps if finalizable objects are split to */
+/* avoid cycles. */
+/* Note that cd will still be viewed as accessible, even if it */
+/* refers to the object itself. */
+GC_API void GC_register_finalizer_ignore_self
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+GC_API void GC_debug_register_finalizer_ignore_self
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+
+/* Another version of the above. It ignores all cycles. */
+/* It should probably only be used by Java implementations. */
+/* Note that cd will still be viewed as accessible, even if it */
+/* refers to the object itself. */
+GC_API void GC_register_finalizer_no_order
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+GC_API void GC_debug_register_finalizer_no_order
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+
+/* This is a special finalizer that is useful when an object's */
+/* finalizer must be run when the object is known to be no */
+/* longer reachable, not even from other finalizable objects. */
+/* It behaves like "normal" finalization, except that the */
+/* finalizer is not run while the object is reachable from */
+/* other objects specifying unordered finalization. */
+/* Effectively it allows an object referenced, possibly */
+/* indirectly, from an unordered finalizable object to override */
+/* the unordered finalization request. */
+/* This can be used in combination with finalizer_no_order so */
+/* as to release resources that must not be released while an */
+/* object can still be brought back to life by other */
+/* finalizers. */
+/* Only works if GC_java_finalization is set. Probably only */
+/* of interest when implementing a language that requires */
+/* unordered finalization (e.g. Java, C#). */
+GC_API void GC_register_finalizer_unreachable
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+GC_API void GC_debug_register_finalizer_unreachable
+ (void * obj, GC_finalization_proc fn, void * cd,
+ GC_finalization_proc *ofn, void * *ocd);
+
+/* The following routine may be used to break cycles between */
+/* finalizable objects, thus causing cyclic finalizable */
+/* objects to be finalized in the correct order. Standard */
+/* use involves calling GC_register_disappearing_link(&p), */
+/* where p is a pointer that is not followed by finalization */
+/* code, and should not be considered in determining */
+/* finalization order. */
+GC_API int GC_register_disappearing_link(void * * link );
+ /* Link should point to a field of a heap allocated */
+ /* object obj. *link will be cleared when obj is */
+ /* found to be inaccessible. This happens BEFORE any */
+ /* finalization code is invoked, and BEFORE any */
+ /* decisions about finalization order are made. */
+ /* This is useful in telling the finalizer that */
+ /* some pointers are not essential for proper */
+ /* finalization. This may avoid finalization cycles. */
+ /* Note that obj may be resurrected by another */
+ /* finalizer, and thus the clearing of *link may */
+ /* be visible to non-finalization code. */
+ /* There's an argument that an arbitrary action should */
+ /* be allowed here, instead of just clearing a pointer. */
+ /* But this causes problems if that action alters, or */
+ /* examines connectivity. */
+ /* Returns 1 if link was already registered, 0 */
+ /* otherwise. */
+ /* Only exists for backward compatibility. See below: */
+
+GC_API int GC_general_register_disappearing_link (void * * link, void * obj);
+ /* A slight generalization of the above. *link is */
+ /* cleared when obj first becomes inaccessible. This */
+ /* can be used to implement weak pointers easily and */
+ /* safely. Typically link will point to a location */
+ /* holding a disguised pointer to obj. (A pointer */
+ /* inside an "atomic" object is effectively */
+ /* disguised.) In this way soft */
+ /* pointers are broken before any object */
+ /* reachable from them are finalized. Each link */
+ /* May be registered only once, i.e. with one obj */
+ /* value. This was added after a long email discussion */
+ /* with John Ellis. */
+ /* Obj must be a pointer to the first word of an object */
+ /* we allocated. It is unsafe to explicitly deallocate */
+ /* the object containing link. Explicitly deallocating */
+ /* obj may or may not cause link to eventually be */
+ /* cleared. */
+ /* This can be used to implement certain types of */
+ /* weak pointers. Note however that this generally */
+ /* requires that thje allocation lock is held (see */
+ /* GC_call_with_allock_lock() below) when the disguised */
+ /* pointer is accessed. Otherwise a strong pointer */
+ /* could be recreated between the time the collector */
+ /* decides to reclaim the object and the link is */
+ /* cleared. */
+
+GC_API int GC_unregister_disappearing_link (void * * link);
+ /* Returns 0 if link was not actually registered. */
+ /* Undoes a registration by either of the above two */
+ /* routines. */
+
+/* Returns !=0 if GC_invoke_finalizers has something to do. */
+GC_API int GC_should_invoke_finalizers(void);
+
+GC_API int GC_invoke_finalizers(void);
+ /* Run finalizers for all objects that are ready to */
+ /* be finalized. Return the number of finalizers */
+ /* that were run. Normally this is also called */
+ /* implicitly during some allocations. If */
+ /* GC-finalize_on_demand is nonzero, it must be called */
+ /* explicitly. */
+
+/* Explicitly tell the collector that an object is reachable */
+/* at a particular program point. This prevents the argument */
+/* pointer from being optimized away, even it is otherwise no */
+/* longer needed. It should have no visible effect in the */
+/* absence of finalizers or disappearing links. But it may be */
+/* needed to prevent finalizers from running while the */
+/* associated external resource is still in use. */
+/* The function is sometimes called keep_alive in other */
+/* settings. */
+# if defined(__GNUC__) && !defined(__INTEL_COMPILER)
+# define GC_reachable_here(ptr) \
+ __asm__ volatile(" " : : "X"(ptr) : "memory");
+# else
+ GC_API void GC_noop1(GC_word x);
+# define GC_reachable_here(ptr) GC_noop1((GC_word)(ptr));
+#endif
+
+/* GC_set_warn_proc can be used to redirect or filter warning messages. */
+/* p may not be a NULL pointer. */
+typedef void (*GC_warn_proc) (char *msg, GC_word arg);
+GC_API GC_warn_proc GC_set_warn_proc(GC_warn_proc p);
+ /* Returns old warning procedure. */
+
+GC_API GC_word GC_set_free_space_divisor(GC_word value);
+ /* Set free_space_divisor. See above for definition. */
+ /* Returns old value. */
+
+/* The following is intended to be used by a higher level */
+/* (e.g. Java-like) finalization facility. It is expected */
+/* that finalization code will arrange for hidden pointers to */
+/* disappear. Otherwise objects can be accessed after they */
+/* have been collected. */
+/* Note that putting pointers in atomic objects or in */
+/* nonpointer slots of "typed" objects is equivalent to */
+/* disguising them in this way, and may have other advantages. */
+# if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
+ typedef GC_word GC_hidden_pointer;
+# define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
+# define REVEAL_POINTER(p) ((void *)(HIDE_POINTER(p)))
+ /* Converting a hidden pointer to a real pointer requires verifying */
+ /* that the object still exists. This involves acquiring the */
+ /* allocator lock to avoid a race with the collector. */
+# endif /* I_HIDE_POINTERS */
+
+typedef void * (*GC_fn_type) (void * client_data);
+GC_API void * GC_call_with_alloc_lock (GC_fn_type fn, void * client_data);
+
+/* These routines are intended to explicitly notify the collector */
+/* of new threads. Often this is unnecessary because thread creation */
+/* is implicitly intercepted by the collector, using header-file */
+/* defines, or linker-based interception. In the long run the intent */
+/* is to always make redundant registration safe. In the short run, */
+/* this is being implemented a platform at a time. */
+/* The interface is complicated by the fact that we probably will not */
+/* ever be able to automatically determine the stack base for thread */
+/* stacks on all platforms. */
+
+/* Structure representing the base of a thread stack. On most */
+/* platforms this contains just a single address. */
+struct GC_stack_base {
+ void * mem_base; /* Base of memory stack. */
+# if defined(__ia64) || defined(__ia64__)
+ void * reg_base; /* Base of separate register stack. */
+# endif
+};
+
+typedef void * (*GC_stack_base_func)(struct GC_stack_base *sb, void *arg);
+
+/* Call a function with a stack base structure corresponding to */
+/* somewhere in the GC_call_with_stack_base frame. This often can */
+/* be used to provide a sufficiently accurate stack base. And we */
+/* implement it everywhere. */
+void * GC_call_with_stack_base(GC_stack_base_func fn, void *arg);
+
+/* Register the current thread, with the indicated stack base, as */
+/* a new thread whose stack(s) should be traced by the GC. If a */
+/* platform does not implicitly do so, this must be called before a */
+/* thread can allocate garbage collected memory, or assign pointers */
+/* to the garbage collected heap. Once registered, a thread will be */
+/* stopped during garbage collections. */
+/* Return codes: */
+#define GC_SUCCESS 0
+#define GC_DUPLICATE 1 /* Was already registered. */
+#define GC_NO_THREADS 2 /* No thread support in GC. */
+#define GC_UNIMPLEMENTED 3 /* Not yet implemented on this platform. */
+int GC_register_my_thread(struct GC_stack_base *);
+
+/* Unregister the current thread. The thread may no longer allocate */
+/* garbage collected memory or manipulate pointers to the */
+/* garbage collected heap after making this call. */
+/* Specifically, if it wants to return or otherwise communicate a */
+/* pointer to the garbage-collected heap to another thread, it must */
+/* do this before calling GC_unregister_my_thread, most probably */
+/* by saving it in a global data structure. */
+int GC_unregister_my_thread(void);
+
+/* Attempt to fill in the GC_stack_base structure with the stack base */
+/* for this thread. This appears to be required to implement anything */
+/* like the JNI AttachCurrentThread in an environment in which new */
+/* threads are not automatically registered with the collector. */
+/* It is also unfortunately hard to implement well on many platforms. */
+/* Returns GC_SUCCESS or GC_UNIMPLEMENTED. */
+int GC_get_stack_base(struct GC_stack_base *);
+
+/* The following routines are primarily intended for use with a */
+/* preprocessor which inserts calls to check C pointer arithmetic. */
+/* They indicate failure by invoking the corresponding _print_proc. */
+
+/* Check that p and q point to the same object. */
+/* Fail conspicuously if they don't. */
+/* Returns the first argument. */
+/* Succeeds if neither p nor q points to the heap. */
+/* May succeed if both p and q point to between heap objects. */
+GC_API void * GC_same_obj (void * p, void * q);
+
+/* Checked pointer pre- and post- increment operations. Note that */
+/* the second argument is in units of bytes, not multiples of the */
+/* object size. This should either be invoked from a macro, or the */
+/* call should be automatically generated. */
+GC_API void * GC_pre_incr (void * *p, size_t how_much);
+GC_API void * GC_post_incr (void * *p, size_t how_much);
+
+/* Check that p is visible */
+/* to the collector as a possibly pointer containing location. */
+/* If it isn't fail conspicuously. */
+/* Returns the argument in all cases. May erroneously succeed */
+/* in hard cases. (This is intended for debugging use with */
+/* untyped allocations. The idea is that it should be possible, though */
+/* slow, to add such a call to all indirect pointer stores.) */
+/* Currently useless for multithreaded worlds. */
+GC_API void * GC_is_visible (void * p);
+
+/* Check that if p is a pointer to a heap page, then it points to */
+/* a valid displacement within a heap object. */
+/* Fail conspicuously if this property does not hold. */
+/* Uninteresting with GC_all_interior_pointers. */
+/* Always returns its argument. */
+GC_API void * GC_is_valid_displacement (void * p);
+
+/* Explicitly dump the GC state. This is most often called from the */
+/* debugger, or by setting the GC_DUMP_REGULARLY environment variable, */
+/* but it may be useful to call it from client code during debugging. */
+void GC_dump(void);
+
+/* Safer, but slow, pointer addition. Probably useful mainly with */
+/* a preprocessor. Useful only for heap pointers. */
+#ifdef GC_DEBUG
+# define GC_PTR_ADD3(x, n, type_of_result) \
+ ((type_of_result)GC_same_obj((x)+(n), (x)))
+# define GC_PRE_INCR3(x, n, type_of_result) \
+ ((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
+# define GC_POST_INCR2(x, type_of_result) \
+ ((type_of_result)GC_post_incr(&(x), sizeof(*x))
+# ifdef __GNUC__
+# define GC_PTR_ADD(x, n) \
+ GC_PTR_ADD3(x, n, typeof(x))
+# define GC_PRE_INCR(x, n) \
+ GC_PRE_INCR3(x, n, typeof(x))
+# define GC_POST_INCR(x, n) \
+ GC_POST_INCR3(x, typeof(x))
+# else
+ /* We can't do this right without typeof, which ANSI */
+ /* decided was not sufficiently useful. Repeatedly */
+ /* mentioning the arguments seems too dangerous to be */
+ /* useful. So does not casting the result. */
+# define GC_PTR_ADD(x, n) ((x)+(n))
+# endif
+#else /* !GC_DEBUG */
+# define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
+# define GC_PTR_ADD(x, n) ((x)+(n))
+# define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
+# define GC_PRE_INCR(x, n) ((x) += (n))
+# define GC_POST_INCR2(x, n, type_of_result) ((x)++)
+# define GC_POST_INCR(x, n) ((x)++)
+#endif
+
+/* Safer assignment of a pointer to a nonstack location. */
+#ifdef GC_DEBUG
+# define GC_PTR_STORE(p, q) \
+ (*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
+#else /* !GC_DEBUG */
+# define GC_PTR_STORE(p, q) *((p) = (q))
+#endif
+
+/* Functions called to report pointer checking errors */
+GC_API void (*GC_same_obj_print_proc) (void * p, void * q);
+
+GC_API void (*GC_is_valid_displacement_print_proc) (void * p);
+
+GC_API void (*GC_is_visible_print_proc) (void * p);
+
+
+/* For pthread support, we generally need to intercept a number of */
+/* thread library calls. We do that here by macro defining them. */
+
+#if !defined(GC_USE_LD_WRAP) && \
+ (defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS))
+# include "gc_pthread_redirects.h"
+#endif
+
+# if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
+ defined(GC_PTHREADS) || defined(GC_WIN32_THREADS)
+ /* Any flavor of threads. */
+/* This returns a list of objects, linked through their first */
+/* word. Its use can greatly reduce lock contention problems, since */
+/* the allocation lock can be acquired and released many fewer times. */
+/* It is used internally by gc_local_alloc.h, which provides a simpler */
+/* programming interface on Linux. */
+void * GC_malloc_many(size_t lb);
+#define GC_NEXT(p) (*(void * *)(p)) /* Retrieve the next element */
+ /* in returned list. */
+extern void GC_thr_init(void); /* Needed for Solaris/X86 ?? */
+
+#endif /* THREADS */
+
+/* Register a callback to control the scanning of dynamic libraries.
+ When the GC scans the static data of a dynamic library, it will
+ first call a user-supplied routine with filename of the library and
+ the address and length of the memory region. This routine should
+ return nonzero if that region should be scanned. */
+GC_API void
+GC_register_has_static_roots_callback
+ (int (*callback)(const char *, void *, size_t));
+
+
+#if defined(GC_WIN32_THREADS) && !defined(__CYGWIN32__) \
+ && !defined(__CYGWIN__) \
+ && !defined(GC_PTHREADS)
+
+#ifdef __cplusplus
+ } /* Including windows.h in an extern "C" context no longer works. */
+#endif
+
+# include <windows.h>
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+ /*
+ * All threads must be created using GC_CreateThread or GC_beginthreadex,
+ * or must explicitly call GC_register_my_thread,
+ * so that they will be recorded in the thread table.
+ * For backwards compatibility, it is possible to build the GC
+ * with GC_DLL defined, and to call GC_use_DllMain().
+ * This implicitly registers all created threads, but appears to be
+ * less robust.
+ *
+ * Currently the collector expects all threads to fall through and
+ * terminate normally, or call GC_endthreadex() or GC_ExitThread,
+ * so that the thread is properly unregistered. (An explicit call
+ * to GC_unregister_my_thread() should also work, but risks unregistering
+ * the thread twice.)
+ */
+ GC_API HANDLE WINAPI GC_CreateThread(
+ LPSECURITY_ATTRIBUTES lpThreadAttributes,
+ DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
+ LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
+
+
+ GC_API uintptr_t GC_beginthreadex(
+ void *security, unsigned stack_size,
+ unsigned ( __stdcall *start_address )( void * ),
+ void *arglist, unsigned initflag, unsigned *thrdaddr);
+
+ GC_API void GC_endthreadex(unsigned retval);
+
+ GC_API void WINAPI GC_ExitThread(DWORD dwExitCode);
+
+# if defined(_WIN32_WCE)
+ /*
+ * win32_threads.c implements the real WinMain, which will start a new thread
+ * to call GC_WinMain after initializing the garbage collector.
+ */
+ GC_API int WINAPI GC_WinMain(
+ HINSTANCE hInstance,
+ HINSTANCE hPrevInstance,
+ LPWSTR lpCmdLine,
+ int nCmdShow );
+# ifndef GC_BUILD
+# define WinMain GC_WinMain
+# endif
+# endif /* defined(_WIN32_WCE) */
+
+ /*
+ * Use implicit thread registration via DllMain.
+ */
+GC_API void GC_use_DllMain(void);
+
+# define CreateThread GC_CreateThread
+# define ExitThread GC_ExitThread
+# define _beginthreadex GC_beginthreadex
+# define _endthreadex GC_endthreadex
+# define _beginthread { > "Please use _beginthreadex instead of _beginthread" < }
+
+#endif /* defined(GC_WIN32_THREADS) && !cygwin */
+
+ /*
+ * Fully portable code should call GC_INIT() from the main program
+ * before making any other GC_ calls. On most platforms this is a
+ * no-op and the collector self-initializes. But a number of platforms
+ * make that too hard.
+ * A GC_INIT call is required if the collector is built with THREAD_LOCAL_ALLOC
+ * defined and the initial allocation call is not to GC_malloc().
+ */
+#if defined(__CYGWIN32__) || defined (_AIX)
+ /*
+ * Similarly gnu-win32 DLLs need explicit initialization from
+ * the main program, as does AIX.
+ */
+# ifdef __CYGWIN32__
+ extern int _data_start__[];
+ extern int _data_end__[];
+ extern int _bss_start__[];
+ extern int _bss_end__[];
+# define GC_MAX(x,y) ((x) > (y) ? (x) : (y))
+# define GC_MIN(x,y) ((x) < (y) ? (x) : (y))
+# define GC_DATASTART ((void *) GC_MIN(_data_start__, _bss_start__))
+# define GC_DATAEND ((void *) GC_MAX(_data_end__, _bss_end__))
+# if defined(GC_DLL)
+# define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); \
+ GC_gcollect(); /* For blacklisting. */}
+# else
+ /* Main program init not required */
+# define GC_INIT() { GC_init(); }
+# endif
+# endif
+# if defined(_AIX)
+ extern int _data[], _end[];
+# define GC_DATASTART ((void *)((ulong)_data))
+# define GC_DATAEND ((void *)((ulong)_end))
+# define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); }
+# endif
+#else
+# define GC_INIT() { GC_init(); }
+#endif
+
+#if !defined(_WIN32_WCE) \
+ && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
+ || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
+ /* win32S may not free all resources on process exit. */
+ /* This explicitly deallocates the heap. */
+ GC_API void GC_win32_free_heap ();
+#endif
+
+#if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
+ /* Allocation really goes through GC_amiga_allocwrapper_do */
+# include "gc_amiga_redirects.h"
+#endif
+
+#if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
+# include "gc_local_alloc.h"
+#endif
+
+#ifdef __cplusplus
+ } /* end of extern "C" */
+#endif
+
+#endif /* _GC_H */