diff options
author | Jan Eilers <jan.eilers@arm.com> | 2021-02-03 09:14:30 +0000 |
---|---|---|
committer | KeithARM <keith.davis@arm.com> | 2021-02-15 12:32:46 +0000 |
commit | 2ffddda9d9f890a041bcdcc80948d2de1e627832 (patch) | |
tree | 84f789b1a2536418186e92ccb0661e341dfdfdfd | |
parent | 800b281e506e921006c23cd4309781b6508c0fcb (diff) | |
download | armnn-2ffddda9d9f890a041bcdcc80948d2de1e627832.tar.gz armnn-2ffddda9d9f890a041bcdcc80948d2de1e627832.tar.bz2 armnn-2ffddda9d9f890a041bcdcc80948d2de1e627832.zip |
IVGCVSW-5386 TfLiteDelegate: Add Strided Slice operator
Signed-off-by: Jan Eilers <jan.eilers@arm.com>
Change-Id: Icd87b1c54e1a5de84893882da30840a9097f6d84
-rw-r--r-- | delegate/CMakeLists.txt | 2 | ||||
-rw-r--r-- | delegate/src/Slice.hpp | 125 | ||||
-rw-r--r-- | delegate/src/test/SliceTest.cpp | 243 | ||||
-rw-r--r-- | delegate/src/test/SliceTestHelper.hpp | 241 |
4 files changed, 605 insertions, 6 deletions
diff --git a/delegate/CMakeLists.txt b/delegate/CMakeLists.txt index f792821d1..7de168fa9 100644 --- a/delegate/CMakeLists.txt +++ b/delegate/CMakeLists.txt @@ -157,6 +157,8 @@ if(BUILD_UNIT_TESTS) src/test/SoftmaxTestHelper.hpp src/test/SpaceDepthTest.cpp src/test/SpaceDepthTestHelper.hpp + src/test/SliceTest.cpp + src/test/SliceTestHelper.hpp src/test/SplitTest.cpp src/test/SplitTestHelper.hpp src/test/TestUtils.hpp diff --git a/delegate/src/Slice.hpp b/delegate/src/Slice.hpp index 0311abf41..a237034bb 100644 --- a/delegate/src/Slice.hpp +++ b/delegate/src/Slice.hpp @@ -21,13 +21,126 @@ TfLiteStatus VisitSliceOperator(DelegateData& delegateData, int nodeIndex, int32_t sliceOperatorCode) { - armnn::IgnoreUnused(delegateData, - tfLiteContext, - tfLiteNode, - nodeIndex, - sliceOperatorCode); + TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 4, nodeIndex)); + TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); - return kTfLiteError; + // Read inputs [input, begin, end, strides] + int numInputs = tfLiteNode->inputs->size; + std::vector<const TfLiteTensor*> tfLiteInputs; + tfLiteInputs.reserve(numInputs); + const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors; + for (int i = 0; i < numInputs; i++) + { + const TfLiteTensor* inputTensor = &tfLiteTensors[tfLiteNode->inputs->data[i]]; + tfLiteInputs.push_back(inputTensor); + if (!IsValid(tfLiteContext, *inputTensor, sliceOperatorCode, nodeIndex)) + { + return kTfLiteError; + } + } + + // We save the begin, end and strides tensors in our descriptor. Therefore we have to read those values from inputs + int inputRank = tfLiteInputs[0]->dims->size; + auto ReadInt32Input = [&](int inputIndex, std::vector<int32_t>& outputData) -> TfLiteStatus + { + if (tfLiteInputs[inputIndex]->type != kTfLiteInt32) + { + TF_LITE_MAYBE_KERNEL_LOG( + tfLiteContext, + "TfLiteArmnnDelegate: The Begin-, End- and Stride-Tensors of the StridedSlice operation need to " + "be of type int32. Operator: #%d node #%d: ", + sliceOperatorCode, nodeIndex); + return kTfLiteError; + } + int rank = tfLiteInputs[inputIndex]->dims->size; + if (rank != 1) + { + TF_LITE_MAYBE_KERNEL_LOG( + tfLiteContext, + "TfLiteArmnnDelegate: The Begin-, End- and Stride-Tensors of the StridedSlice operation need to " + "be a 1D-Tensor. Operator: #%d node #%d: ", + sliceOperatorCode, nodeIndex); + return kTfLiteError; + } + int numValues = tfLiteInputs[inputIndex]->dims->data[0]; + if (numValues != inputRank) + { + TF_LITE_MAYBE_KERNEL_LOG( + tfLiteContext, + "TfLiteArmnnDelegate: The number of values in the Begin-, End- and Stride-Tensors of the " + "StridedSlice operation need to be equal to the rank of the Input-Tensor. Operator: #%d node #%d: ", + sliceOperatorCode, nodeIndex); + return kTfLiteError; + } + // return tensor data + auto* tensorDataPtr = tflite::GetTensorData<int32_t>(tfLiteInputs[inputIndex]); + outputData.assign(tensorDataPtr, tensorDataPtr+numValues); + return kTfLiteOk; + }; + + std::vector<int32_t> beginData; + if (ReadInt32Input(1, beginData) != kTfLiteOk) + return kTfLiteError; + std::vector<int32_t> endData; + if (ReadInt32Input(2, endData) != kTfLiteOk) + return kTfLiteError; + std::vector<int32_t> strideData; + if (ReadInt32Input(3, strideData) != kTfLiteOk) + return kTfLiteError; + + // parse built in options + auto* stridedSliceParams = reinterpret_cast<TfLiteStridedSliceParams*>(tfLiteNode->builtin_data); + + // Write all data to the descriptor + armnn::StridedSliceDescriptor descriptor; + descriptor.m_Begin = std::move(beginData); + descriptor.m_End = std::move(endData); + descriptor.m_Stride = std::move(strideData); + descriptor.m_BeginMask = stridedSliceParams->begin_mask; + descriptor.m_EllipsisMask = stridedSliceParams->ellipsis_mask; + descriptor.m_EndMask = stridedSliceParams->end_mask; + descriptor.m_NewAxisMask = stridedSliceParams->new_axis_mask; + descriptor.m_ShrinkAxisMask = stridedSliceParams->shrink_axis_mask; + descriptor.m_DataLayout = armnn::DataLayout::NHWC; + + // Validate output + const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]]; + if (!IsValid(tfLiteContext, tfLiteOutputTensor, sliceOperatorCode, nodeIndex)) + { + return kTfLiteError; + } + + const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(*tfLiteInputs[0]); + const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor); + + bool isSupported = false; + auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) + { + FORWARD_LAYER_SUPPORT_FUNC(__func__, + tfLiteContext, + IsStridedSliceSupported, + delegateData.m_Backends, + isSupported, + inputTensorInfo, + outInfo, + descriptor); + }; + + if (!delegateData.m_Network) + { + validateFunc(outputTensorInfo, isSupported); + return isSupported ? kTfLiteOk : kTfLiteError; + } + + // Add a StridedSlice layer + armnn::IConnectableLayer* layer = delegateData.m_Network->AddStridedSliceLayer(descriptor); + ARMNN_ASSERT(layer != nullptr); + + armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); + outputSlot.SetTensorInfo(outputTensorInfo); + + // Connect + return Connect(layer, tfLiteNode, delegateData); } } // namespace armnnDelegate diff --git a/delegate/src/test/SliceTest.cpp b/delegate/src/test/SliceTest.cpp new file mode 100644 index 000000000..bd0584936 --- /dev/null +++ b/delegate/src/test/SliceTest.cpp @@ -0,0 +1,243 @@ +// +// Copyright © 2021 Arm Ltd and Contributors. All rights reserved. +// SPDX-License-Identifier: MIT +// + +#include "SliceTestHelper.hpp" + +#include <armnn_delegate.hpp> + +#include <flatbuffers/flatbuffers.h> +#include <tensorflow/lite/schema/schema_generated.h> + +#include <doctest/doctest.h> + +namespace armnnDelegate +{ + +void StridedSlice4DTest(std::vector<armnn::BackendId>& backends) +{ + std::vector<int32_t> inputShape { 3, 2, 3, 1 }; + std::vector<int32_t> outputShape { 1, 2, 3, 1 }; + std::vector<int32_t> beginShape { 4 }; + std::vector<int32_t> endShape { 4 }; + std::vector<int32_t> strideShape { 4 }; + + std::vector<int32_t> beginData { 1, 0, 0, 0 }; + std::vector<int32_t> endData { 2, 2, 3, 1 }; + std::vector<int32_t> strideData { 1, 1, 1, 1 }; + std::vector<float> inputData { 1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, + 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f, + 5.0f, 5.0f, 5.0f, 6.0f, 6.0f, 6.0f }; + std::vector<float> outputData { 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f }; + + StridedSliceTestImpl<float>( + backends, + inputData, + outputData, + beginData, + endData, + strideData, + inputShape, + beginShape, + endShape, + strideShape, + outputShape + ); +} + +void StridedSlice4DReverseTest(std::vector<armnn::BackendId>& backends) +{ + std::vector<int32_t> inputShape { 3, 2, 3, 1 }; + std::vector<int32_t> outputShape { 1, 2, 3, 1 }; + std::vector<int32_t> beginShape { 4 }; + std::vector<int32_t> endShape { 4 }; + std::vector<int32_t> strideShape { 4 }; + + std::vector<int32_t> beginData { 1, -1, 0, 0 }; + std::vector<int32_t> endData { 2, -3, 3, 1 }; + std::vector<int32_t> strideData { 1, -1, 1, 1 }; + std::vector<float> inputData { 1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, + 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f, + 5.0f, 5.0f, 5.0f, 6.0f, 6.0f, 6.0f }; + std::vector<float> outputData { 4.0f, 4.0f, 4.0f, 3.0f, 3.0f, 3.0f }; + + StridedSliceTestImpl<float>( + backends, + inputData, + outputData, + beginData, + endData, + strideData, + inputShape, + beginShape, + endShape, + strideShape, + outputShape + ); +} + +void StridedSliceSimpleStrideTest(std::vector<armnn::BackendId>& backends) +{ + std::vector<int32_t> inputShape { 3, 2, 3, 1 }; + std::vector<int32_t> outputShape { 2, 1, 2, 1 }; + std::vector<int32_t> beginShape { 4 }; + std::vector<int32_t> endShape { 4 }; + std::vector<int32_t> strideShape { 4 }; + + std::vector<int32_t> beginData { 0, 0, 0, 0 }; + std::vector<int32_t> endData { 3, 2, 3, 1 }; + std::vector<int32_t> strideData { 2, 2, 2, 1 }; + std::vector<float> inputData { 1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, + 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f, + 5.0f, 5.0f, 5.0f, 6.0f, 6.0f, 6.0f }; + std::vector<float> outputData { 1.0f, 1.0f, + 5.0f, 5.0f }; + + StridedSliceTestImpl<float>( + backends, + inputData, + outputData, + beginData, + endData, + strideData, + inputShape, + beginShape, + endShape, + strideShape, + outputShape + ); +} + +void StridedSliceSimpleRangeMaskTest(std::vector<armnn::BackendId>& backends) +{ + std::vector<int32_t> inputShape { 3, 2, 3, 1 }; + std::vector<int32_t> outputShape { 3, 2, 3, 1 }; + std::vector<int32_t> beginShape { 4 }; + std::vector<int32_t> endShape { 4 }; + std::vector<int32_t> strideShape { 4 }; + + std::vector<int32_t> beginData { 1, 1, 1, 1 }; + std::vector<int32_t> endData { 1, 1, 1, 1 }; + std::vector<int32_t> strideData { 1, 1, 1, 1 }; + + int beginMask = -1; + int endMask = -1; + + std::vector<float> inputData { 1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, + 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f, + 5.0f, 5.0f, 5.0f, 6.0f, 6.0f, 6.0f }; + std::vector<float> outputData { 1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, + 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f, + 5.0f, 5.0f, 5.0f, 6.0f, 6.0f, 6.0f }; + + StridedSliceTestImpl<float>( + backends, + inputData, + outputData, + beginData, + endData, + strideData, + inputShape, + beginShape, + endShape, + strideShape, + outputShape, + beginMask, + endMask + ); +} + + +TEST_SUITE("StridedSlice_CpuRefTests") +{ + +TEST_CASE ("StridedSlice_4D_CpuRef_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef}; + StridedSlice4DTest(backends); +} + +TEST_CASE ("StridedSlice_4D_Reverse_CpuRef_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef}; + StridedSlice4DReverseTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleStride_CpuRef_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef}; + StridedSliceSimpleStrideTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleRange_CpuRef_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef}; + StridedSliceSimpleRangeMaskTest(backends); +} + +} // StridedSlice_CpuRefTests TestSuite + + + +TEST_SUITE("StridedSlice_CpuAccTests") +{ + +TEST_CASE ("StridedSlice_4D_CpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuAcc}; + StridedSlice4DTest(backends); +} + +TEST_CASE ("StridedSlice_4D_Reverse_CpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuAcc}; + StridedSlice4DReverseTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleStride_CpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuAcc}; + StridedSliceSimpleStrideTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleRange_CpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::CpuAcc}; + StridedSliceSimpleRangeMaskTest(backends); +} + +} // StridedSlice_CpuAccTests TestSuite + + + +TEST_SUITE("StridedSlice_GpuAccTests") +{ + +TEST_CASE ("StridedSlice_4D_GpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc}; + StridedSlice4DTest(backends); +} + +TEST_CASE ("StridedSlice_4D_Reverse_GpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc}; + StridedSlice4DReverseTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleStride_GpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc}; + StridedSliceSimpleStrideTest(backends); +} + +TEST_CASE ("StridedSlice_SimpleRange_GpuAcc_Test") +{ + std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc}; + StridedSliceSimpleRangeMaskTest(backends); +} + +} // StridedSlice_GpuAccTests TestSuite + +} // namespace armnnDelegate
\ No newline at end of file diff --git a/delegate/src/test/SliceTestHelper.hpp b/delegate/src/test/SliceTestHelper.hpp new file mode 100644 index 000000000..abaa807ae --- /dev/null +++ b/delegate/src/test/SliceTestHelper.hpp @@ -0,0 +1,241 @@ +// +// Copyright © 2021 Arm Ltd and Contributors. All rights reserved. +// SPDX-License-Identifier: MIT +// + +#pragma once + +#include "TestUtils.hpp" + +#include <armnn_delegate.hpp> +#include <armnn/DescriptorsFwd.hpp> + +#include <flatbuffers/flatbuffers.h> +#include <tensorflow/lite/interpreter.h> +#include <tensorflow/lite/kernels/register.h> +#include <tensorflow/lite/model.h> +#include <tensorflow/lite/schema/schema_generated.h> +#include <tensorflow/lite/version.h> + +#include <doctest/doctest.h> + +#include <string> + +namespace +{ + +struct StridedSliceParams +{ + StridedSliceParams(std::vector<int32_t>& inputTensorShape, + std::vector<int32_t>& beginTensorData, + std::vector<int32_t>& endTensorData, + std::vector<int32_t>& strideTensorData, + std::vector<int32_t>& outputTensorShape, + armnn::StridedSliceDescriptor& descriptor) + : m_InputTensorShape(inputTensorShape), + m_BeginTensorData(beginTensorData), + m_EndTensorData(endTensorData), + m_StrideTensorData(strideTensorData), + m_OutputTensorShape(outputTensorShape), + m_Descriptor (descriptor) {} + + std::vector<int32_t> m_InputTensorShape; + std::vector<int32_t> m_BeginTensorData; + std::vector<int32_t> m_EndTensorData; + std::vector<int32_t> m_StrideTensorData; + std::vector<int32_t> m_OutputTensorShape; + armnn::StridedSliceDescriptor m_Descriptor; +}; + +std::vector<char> CreateSliceTfLiteModel(tflite::TensorType tensorType, + const std::vector<int32_t>& inputTensorShape, + const std::vector<int32_t>& beginTensorData, + const std::vector<int32_t>& endTensorData, + const std::vector<int32_t>& strideTensorData, + const std::vector<int32_t>& beginTensorShape, + const std::vector<int32_t>& endTensorShape, + const std::vector<int32_t>& strideTensorShape, + const std::vector<int32_t>& outputTensorShape, + const int32_t beginMask, + const int32_t endMask, + const int32_t ellipsisMask, + const int32_t newAxisMask, + const int32_t ShrinkAxisMask, + const armnn::DataLayout& dataLayout) +{ + using namespace tflite; + flatbuffers::FlatBufferBuilder flatBufferBuilder; + + std::array<flatbuffers::Offset<tflite::Buffer>, 4> buffers; + buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})); + buffers[1] = CreateBuffer(flatBufferBuilder, + flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(beginTensorData.data()), + sizeof(int32_t) * beginTensorData.size())); + buffers[2] = CreateBuffer(flatBufferBuilder, + flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(endTensorData.data()), + sizeof(int32_t) * endTensorData.size())); + buffers[3] = CreateBuffer(flatBufferBuilder, + flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(strideTensorData.data()), + sizeof(int32_t) * strideTensorData.size())); + + std::array<flatbuffers::Offset<Tensor>, 5> tensors; + tensors[0] = CreateTensor(flatBufferBuilder, + flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(), + inputTensorShape.size()), + tensorType, + 0, + flatBufferBuilder.CreateString("input")); + tensors[1] = CreateTensor(flatBufferBuilder, + flatBufferBuilder.CreateVector<int32_t>(beginTensorShape.data(), + beginTensorShape.size()), + ::tflite::TensorType_INT32, + 1, + flatBufferBuilder.CreateString("begin_tensor")); + tensors[2] = CreateTensor(flatBufferBuilder, + flatBufferBuilder.CreateVector<int32_t>(endTensorShape.data(), + endTensorShape.size()), + ::tflite::TensorType_INT32, + 2, + flatBufferBuilder.CreateString("end_tensor")); + tensors[3] = CreateTensor(flatBufferBuilder, + flatBufferBuilder.CreateVector<int32_t>(strideTensorShape.data(), + strideTensorShape.size()), + ::tflite::TensorType_INT32, + 3, + flatBufferBuilder.CreateString("stride_tensor")); + tensors[4] = CreateTensor(flatBufferBuilder, + flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(), + outputTensorShape.size()), + tensorType, + 0, + flatBufferBuilder.CreateString("output")); + + + // create operator + tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_StridedSliceOptions; + flatbuffers::Offset<void> operatorBuiltinOptions = CreateStridedSliceOptions(flatBufferBuilder, + beginMask, + endMask, + ellipsisMask, + newAxisMask, + ShrinkAxisMask).Union(); + + const std::vector<int> operatorInputs{ 0, 1, 2, 3 }; + const std::vector<int> operatorOutputs{ 4 }; + flatbuffers::Offset <Operator> sliceOperator = + CreateOperator(flatBufferBuilder, + 0, + flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()), + flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()), + operatorBuiltinOptionsType, + operatorBuiltinOptions); + + const std::vector<int> subgraphInputs{ 0, 1, 2, 3 }; + const std::vector<int> subgraphOutputs{ 4 }; + flatbuffers::Offset <SubGraph> subgraph = + CreateSubGraph(flatBufferBuilder, + flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), + flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()), + flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()), + flatBufferBuilder.CreateVector(&sliceOperator, 1)); + + flatbuffers::Offset <flatbuffers::String> modelDescription = + flatBufferBuilder.CreateString("ArmnnDelegate: StridedSlice Operator Model"); + flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, + BuiltinOperator_STRIDED_SLICE); + + flatbuffers::Offset <Model> flatbufferModel = + CreateModel(flatBufferBuilder, + TFLITE_SCHEMA_VERSION, + flatBufferBuilder.CreateVector(&operatorCode, 1), + flatBufferBuilder.CreateVector(&subgraph, 1), + modelDescription, + flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); + + flatBufferBuilder.Finish(flatbufferModel); + + return std::vector<char>(flatBufferBuilder.GetBufferPointer(), + flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); +} + +template <typename T> +void StridedSliceTestImpl(std::vector<armnn::BackendId>& backends, + std::vector<T>& inputValues, + std::vector<T>& expectedOutputValues, + std::vector<int32_t>& beginTensorData, + std::vector<int32_t>& endTensorData, + std::vector<int32_t>& strideTensorData, + std::vector<int32_t>& inputTensorShape, + std::vector<int32_t>& beginTensorShape, + std::vector<int32_t>& endTensorShape, + std::vector<int32_t>& strideTensorShape, + std::vector<int32_t>& outputTensorShape, + const int32_t beginMask = 0, + const int32_t endMask = 0, + const int32_t ellipsisMask = 0, + const int32_t newAxisMask = 0, + const int32_t ShrinkAxisMask = 0, + const armnn::DataLayout& dataLayout = armnn::DataLayout::NHWC) +{ + using namespace tflite; + std::vector<char> modelBuffer = CreateSliceTfLiteModel( + ::tflite::TensorType_FLOAT32, + inputTensorShape, + beginTensorData, + endTensorData, + strideTensorData, + beginTensorShape, + endTensorShape, + strideTensorShape, + outputTensorShape, + beginMask, + endMask, + ellipsisMask, + newAxisMask, + ShrinkAxisMask, + dataLayout); + + auto tfLiteModel = GetModel(modelBuffer.data()); + + // Create TfLite Interpreters + std::unique_ptr<Interpreter> armnnDelegate; + CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) + (&armnnDelegate) == kTfLiteOk); + CHECK(armnnDelegate != nullptr); + CHECK(armnnDelegate->AllocateTensors() == kTfLiteOk); + + std::unique_ptr<Interpreter> tfLiteDelegate; + CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) + (&tfLiteDelegate) == kTfLiteOk); + CHECK(tfLiteDelegate != nullptr); + CHECK(tfLiteDelegate->AllocateTensors() == kTfLiteOk); + + // Create the ArmNN Delegate + armnnDelegate::DelegateOptions delegateOptions(backends); + std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)> + theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), + armnnDelegate::TfLiteArmnnDelegateDelete); + CHECK(theArmnnDelegate != nullptr); + + // Modify armnnDelegateInterpreter to use armnnDelegate + CHECK(armnnDelegate->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); + + // Set input data + armnnDelegate::FillInput<T>(tfLiteDelegate, 0, inputValues); + armnnDelegate::FillInput<T>(armnnDelegate, 0, inputValues); + + // Run EnqueWorkload + CHECK(tfLiteDelegate->Invoke() == kTfLiteOk); + CHECK(armnnDelegate->Invoke() == kTfLiteOk); + + // Compare output data + armnnDelegate::CompareOutputData<T>(tfLiteDelegate, + armnnDelegate, + outputTensorShape, + expectedOutputValues); + + tfLiteDelegate.reset(nullptr); + armnnDelegate.reset(nullptr); +} // End of StridedSlice Test + +} // anonymous namespace
\ No newline at end of file |