summaryrefslogtreecommitdiff
path: root/tests/validation/CL/DirectConvolutionLayer.cpp
blob: 12f3d3da328569d40ac3e738f5ff7020c0edf2be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/runtime/CL/functions/CLDirectConvolutionLayer.h"
#include "tests/CL/CLAccessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/DirectConvolutionLayerDataset.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/DirectConvolutionLayerFixture.h"

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
RelativeTolerance<half>  tolerance_fp16(half(0.2)); /**< Tolerance for floating point tests */
RelativeTolerance<float> tolerance_fp32(0.02f);     /**< Tolerance for floating point tests */
constexpr float          tolerance_num = 0.07f;     /**< Tolerance number */

constexpr AbsoluteTolerance<int8_t>  tolerance_qs8(0);     /**< Tolerance for fixed point tests */
constexpr AbsoluteTolerance<int16_t> tolerance_qs16(0);    /**< Tolerance for fixed point tests */
constexpr AbsoluteTolerance<uint8_t> tolerance_qasymm8(1); /**< Tolerance for quantized tests */

/** Direct convolution data set. */
const auto data = combine(datasets::SmallDirectConvolutionShapes(),
                          combine(framework::dataset::make("StrideX", 1, 3),
                                  combine(framework::dataset::make("StrideY", 1, 3),
                                          combine(concat(combine(framework::dataset::make("PadX", 0, 1),
                                                                 combine(framework::dataset::make("PadY", 0, 1),
                                                                         framework::dataset::make("KernelSize", 1))),
                                                         combine(framework::dataset::make("PadX", 0, 2),
                                                                 combine(framework::dataset::make("PadY", 0, 2),
                                                                         framework::dataset::make("KernelSize", { 3, 5 })))),
                                                  framework::dataset::make("NumKernels", { 1, 4, 8, 16 })))));
const auto data_fixed_point = combine(datasets::TinyDirectConvolutionShapes(),
                                      combine(framework::dataset::make("StrideX", 1, 3),
                                              combine(framework::dataset::make("StrideY", 1, 3),
                                                      combine(concat(combine(framework::dataset::make("PadX", 0),
                                                                             combine(framework::dataset::make("PadY", 0),
                                                                                     framework::dataset::make("KernelSize", 1))),
                                                                     combine(framework::dataset::make("PadX", 0, 2),
                                                                             combine(framework::dataset::make("PadY", 0, 2),
                                                                                     framework::dataset::make("KernelSize", { 3 })))),
                                                              framework::dataset::make("NumKernels", { 1, 4, 8, 16 })))));
} // namespace

TEST_SUITE(CL)
TEST_SUITE(DirectConvolutionLayer)

// *INDENT-OFF*
// clang-format off
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(
               framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Mismatching data type input/weights
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Mismatching input feature maps
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Unsupported kernel width
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Non-rectangular weights dimensions
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Invalid weights dimensions
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Invalid stride
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Invalid biases size
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Invalid biases dimensions
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Invalid output size
                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32, 0), // Window shrink
                                                       TensorInfo(TensorShape(32U, 16U, 2U), 1, DataType::F32, 0),
                                                     }),
               framework::dataset::make("WeightsInfo",{ TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F16, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 3U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(9U, 9U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(5U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U, 3U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32, 0),
                                                        TensorInfo(TensorShape(1U, 1U, 2U, 4U), 1, DataType::F32, 0),
                                                     })),
               framework::dataset::make("BiasesInfo",{ TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(3U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U, 2U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(4U), 1, DataType::F32, 0),
                                                     })),
               framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(26U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32, 0),
                                                       TensorInfo(TensorShape(32U, 16U, 4U), 1, DataType::F32, 0),
                                                     })),
               framework::dataset::make("ConvInfo",  { PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(3, 3, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                       PadStrideInfo(1, 1, 0, 0),
                                                      })),
               framework::dataset::make("Expected", { false, false, false, false, false, false, false, false, false, false, true })),
               input_info, weights_info, biases_info, output_info, conv_info, expected)
{
    bool is_valid = bool(CLDirectConvolutionLayer::validate(&input_info.clone()->set_is_resizable(false), &weights_info.clone()->set_is_resizable(false), &biases_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), conv_info));
    ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
// clang-format on
// *INDENT-ON*

template <typename T>
using CLDirectConvolutionLayerFixture = DirectConvolutionValidationFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
template <typename T>
using CLDirectConvolutionValidationWithTensorShapesFixture = DirectConvolutionValidationWithTensorShapesFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;

TEST_SUITE(Float)
TEST_SUITE(FP16)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionLayerFixture<half>, framework::DatasetMode::ALL, combine(data, framework::dataset::make("DataType", DataType::F16)))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num);
}
TEST_SUITE_END()

TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::ALL, combine(data, framework::dataset::make("DataType", DataType::F32)))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END()

TEST_SUITE(FP32_CustomDataset)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionValidationWithTensorShapesFixture<float>, framework::DatasetMode::ALL, combine(datasets::DirectConvolutionLayerDataset(),
                       framework::dataset::make("DataType", DataType::F32)))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END()
TEST_SUITE_END()

template <typename T>
using CLDirectConvolutionLayerFixedPointFixture = DirectConvolutionValidationFixedPointFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;

TEST_SUITE(FixedPoint)
TEST_SUITE(QS8)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionLayerFixedPointFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(data_fixed_point, framework::dataset::make("DataType", DataType::QS8)),
                                                                                                                    framework::dataset::make("FractionalBits", 2, 7)))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_qs8);
}
TEST_SUITE_END()

TEST_SUITE(QS16)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionLayerFixedPointFixture<int16_t>, framework::DatasetMode::ALL, combine(combine(data_fixed_point, framework::dataset::make("DataType", DataType::QS16)),
                                                                                                                     framework::dataset::make("FractionalBits", 2, 15)))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_qs16);
}
TEST_SUITE_END()
TEST_SUITE_END()

template <typename T>
using CLDirectConvolutionLayerQuantizedFixture = DirectConvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
template <typename T>
using CLDirectConvolutionValidationWithTensorShapesQuantizedFixture = DirectConvolutionValidationWithTensorShapesQuantizedFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;

TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL, combine(combine(data, framework::dataset::make("DataType", DataType::QASYMM8)),
                                                                                                                    framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 10) })))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END()

TEST_SUITE(QASYMM8_CustomDataset)
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionValidationWithTensorShapesQuantizedFixture<uint8_t>, framework::DatasetMode::ALL, combine(combine(datasets::DirectConvolutionLayerDataset(),
                       framework::dataset::make("DataType", DataType::QASYMM8)),
                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 127) })))
{
    // Validate output
    validate(CLAccessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END()
TEST_SUITE_END()

TEST_SUITE_END()
TEST_SUITE_END()
} // namespace validation
} // namespace test
} // namespace arm_compute