/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __UTILS_UTILS_H__ #define __UTILS_UTILS_H__ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/runtime/Tensor.h" #include "libnpy/npy.hpp" #include "support/ToolchainSupport.h" #ifdef ARM_COMPUTE_CL #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/runtime/CL/CLDistribution1D.h" #include "arm_compute/runtime/CL/CLTensor.h" #endif /* ARM_COMPUTE_CL */ #ifdef ARM_COMPUTE_GC #include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h" #endif /* ARM_COMPUTE_GC */ #include #include #include #include #include #include #include #include namespace arm_compute { namespace utils { /** Signature of an example to run * * @param[in] argc Number of command line arguments * @param[in] argv Command line arguments */ using example = void(int argc, const char **argv); /** Run an example and handle the potential exceptions it throws * * @param[in] argc Number of command line arguments * @param[in] argv Command line arguments * @param[in] func Pointer to the function containing the code to run */ int run_example(int argc, const char **argv, example &func); /** Draw a RGB rectangular window for the detected object * * @param[in, out] tensor Input tensor where the rectangle will be drawn on. Format supported: RGB888 * @param[in] rect Geometry of the rectangular window * @param[in] r Red colour to use * @param[in] g Green colour to use * @param[in] b Blue colour to use */ void draw_detection_rectangle(arm_compute::ITensor *tensor, const arm_compute::DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b); /** Parse the ppm header from an input file stream. At the end of the execution, * the file position pointer will be located at the first pixel stored in the ppm file * * @param[in] fs Input file stream to parse * * @return The width, height and max value stored in the header of the PPM file */ std::tuple parse_ppm_header(std::ifstream &fs); /** Parse the npy header from an input file stream. At the end of the execution, * the file position pointer will be located at the first pixel stored in the npy file * * @param[in] fs Input file stream to parse * * @return The width and height stored in the header of the NPY file */ std::tuple, bool, std::string> parse_npy_header(std::ifstream &fs); /** Obtain numpy type string from DataType. * * @param[in] data_type Data type. * * @return numpy type string. */ inline std::string get_typestring(DataType data_type) { // Check endianness const unsigned int i = 1; const char *c = reinterpret_cast(&i); std::string endianness; if(*c == 1) { endianness = std::string("<"); } else { endianness = std::string(">"); } const std::string no_endianness("|"); switch(data_type) { case DataType::U8: return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t)); case DataType::S8: return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t)); case DataType::U16: return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t)); case DataType::S16: return endianness + "i" + support::cpp11::to_string(sizeof(int16_t)); case DataType::U32: return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t)); case DataType::S32: return endianness + "i" + support::cpp11::to_string(sizeof(int32_t)); case DataType::U64: return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t)); case DataType::S64: return endianness + "i" + support::cpp11::to_string(sizeof(int64_t)); case DataType::F32: return endianness + "f" + support::cpp11::to_string(sizeof(float)); case DataType::F64: return endianness + "f" + support::cpp11::to_string(sizeof(double)); case DataType::SIZET: return endianness + "u" + support::cpp11::to_string(sizeof(size_t)); default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Maps a tensor if needed * * @param[in] tensor Tensor to be mapped * @param[in] blocking Specified if map is blocking or not */ template inline void map(T &tensor, bool blocking) { ARM_COMPUTE_UNUSED(tensor); ARM_COMPUTE_UNUSED(blocking); } /** Unmaps a tensor if needed * * @param tensor Tensor to be unmapped */ template inline void unmap(T &tensor) { ARM_COMPUTE_UNUSED(tensor); } #ifdef ARM_COMPUTE_CL /** Maps a tensor if needed * * @param[in] tensor Tensor to be mapped * @param[in] blocking Specified if map is blocking or not */ inline void map(CLTensor &tensor, bool blocking) { tensor.map(blocking); } /** Unmaps a tensor if needed * * @param tensor Tensor to be unmapped */ inline void unmap(CLTensor &tensor) { tensor.unmap(); } /** Maps a distribution if needed * * @param[in] distribution Distribution to be mapped * @param[in] blocking Specified if map is blocking or not */ inline void map(CLDistribution1D &distribution, bool blocking) { distribution.map(blocking); } /** Unmaps a distribution if needed * * @param distribution Distribution to be unmapped */ inline void unmap(CLDistribution1D &distribution) { distribution.unmap(); } #endif /* ARM_COMPUTE_CL */ #ifdef ARM_COMPUTE_GC /** Maps a tensor if needed * * @param[in] tensor Tensor to be mapped * @param[in] blocking Specified if map is blocking or not */ inline void map(GCTensor &tensor, bool blocking) { tensor.map(blocking); } /** Unmaps a tensor if needed * * @param tensor Tensor to be unmapped */ inline void unmap(GCTensor &tensor) { tensor.unmap(); } #endif /* ARM_COMPUTE_GC */ /** Class to load the content of a PPM file into an Image */ class PPMLoader { public: PPMLoader() : _fs(), _width(0), _height(0) { } /** Open a PPM file and reads its metadata (Width, height) * * @param[in] ppm_filename File to open */ void open(const std::string &ppm_filename) { ARM_COMPUTE_ERROR_ON(is_open()); try { _fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); _fs.open(ppm_filename, std::ios::in | std::ios::binary); unsigned int max_val = 0; std::tie(_width, _height, max_val) = parse_ppm_header(_fs); ARM_COMPUTE_ERROR_ON_MSG(max_val >= 256, "2 bytes per colour channel not supported in file %s", ppm_filename.c_str()); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Accessing %s: %s", ppm_filename.c_str(), e.what()); } } /** Return true if a PPM file is currently open */ bool is_open() { return _fs.is_open(); } /** Initialise an image's metadata with the dimensions of the PPM file currently open * * @param[out] image Image to initialise * @param[in] format Format to use for the image (Must be RGB888 or U8) */ template void init_image(T &image, arm_compute::Format format) { ARM_COMPUTE_ERROR_ON(!is_open()); ARM_COMPUTE_ERROR_ON(format != arm_compute::Format::RGB888 && format != arm_compute::Format::U8); // Use the size of the input PPM image arm_compute::TensorInfo image_info(_width, _height, format); image.allocator()->init(image_info); } /** Fill an image with the content of the currently open PPM file. * * @note If the image is a CLImage, the function maps and unmaps the image * * @param[in,out] image Image to fill (Must be allocated, and of matching dimensions with the opened PPM). */ template void fill_image(T &image) { ARM_COMPUTE_ERROR_ON(!is_open()); ARM_COMPUTE_ERROR_ON(image.info()->dimension(0) != _width || image.info()->dimension(1) != _height); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&image, arm_compute::Format::U8, arm_compute::Format::RGB888); try { // Map buffer if creating a CLTensor/GCTensor map(image, true); // Check if the file is large enough to fill the image const size_t current_position = _fs.tellg(); _fs.seekg(0, std::ios_base::end); const size_t end_position = _fs.tellg(); _fs.seekg(current_position, std::ios_base::beg); ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < image.info()->tensor_shape().total_size() * image.info()->element_size(), "Not enough data in file"); ARM_COMPUTE_UNUSED(end_position); switch(image.info()->format()) { case arm_compute::Format::U8: { // We need to convert the data from RGB to grayscale: // Iterate through every pixel of the image arm_compute::Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, _width, 1)); window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, _height, 1)); arm_compute::Iterator out(&image, window); unsigned char red = 0; unsigned char green = 0; unsigned char blue = 0; arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { red = _fs.get(); green = _fs.get(); blue = _fs.get(); *out.ptr() = 0.2126f * red + 0.7152f * green + 0.0722f * blue; }, out); break; } case arm_compute::Format::RGB888: { // There is no format conversion needed: we can simply copy the content of the input file to the image one row at the time. // Create a vertical window to iterate through the image's rows: arm_compute::Window window; window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, _height, 1)); arm_compute::Iterator out(&image, window); arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { // Copy one row from the input file to the current row of the image: _fs.read(reinterpret_cast(out.ptr()), _width * image.info()->element_size()); }, out); break; } default: ARM_COMPUTE_ERROR("Unsupported format"); } // Unmap buffer if creating a CLTensor/GCTensor unmap(image); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Loading PPM file: %s", e.what()); } } /** Fill a tensor with 3 planes (one for each channel) with the content of the currently open PPM file. * * @note If the image is a CLImage, the function maps and unmaps the image * * @param[in,out] tensor Tensor with 3 planes to fill (Must be allocated, and of matching dimensions with the opened PPM). Data types supported: U8/F32 * @param[in] bgr (Optional) Fill the first plane with blue channel (default = false) */ template void fill_planar_tensor(T &tensor, bool bgr = false) { ARM_COMPUTE_ERROR_ON(!is_open()); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::U8, DataType::F32); ARM_COMPUTE_ERROR_ON(tensor.info()->dimension(0) != _width || tensor.info()->dimension(1) != _height || tensor.info()->dimension(2) != 3); try { // Map buffer if creating a CLTensor map(tensor, true); // Check if the file is large enough to fill the image const size_t current_position = _fs.tellg(); _fs.seekg(0, std::ios_base::end); const size_t end_position = _fs.tellg(); _fs.seekg(current_position, std::ios_base::beg); ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < tensor.info()->tensor_shape().total_size(), "Not enough data in file"); ARM_COMPUTE_UNUSED(end_position); // Iterate through every pixel of the image arm_compute::Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, _width, 1)); window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, _height, 1)); window.set(arm_compute::Window::DimZ, arm_compute::Window::Dimension(0, 1, 1)); arm_compute::Iterator out(&tensor, window); unsigned char red = 0; unsigned char green = 0; unsigned char blue = 0; size_t stride_z = tensor.info()->strides_in_bytes()[2]; arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { red = _fs.get(); green = _fs.get(); blue = _fs.get(); switch(tensor.info()->data_type()) { case arm_compute::DataType::U8: { *(out.ptr() + 0 * stride_z) = bgr ? blue : red; *(out.ptr() + 1 * stride_z) = green; *(out.ptr() + 2 * stride_z) = bgr ? red : blue; break; } case arm_compute::DataType::F32: { *reinterpret_cast(out.ptr() + 0 * stride_z) = static_cast(bgr ? blue : red); *reinterpret_cast(out.ptr() + 1 * stride_z) = static_cast(green); *reinterpret_cast(out.ptr() + 2 * stride_z) = static_cast(bgr ? red : blue); break; } default: { ARM_COMPUTE_ERROR("Unsupported data type"); } } }, out); // Unmap buffer if creating a CLTensor unmap(tensor); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Loading PPM file: %s", e.what()); } } /** Return the width of the currently open PPM file. */ unsigned int width() const { return _width; } /** Return the height of the currently open PPM file. */ unsigned int height() const { return _height; } private: std::ifstream _fs; unsigned int _width, _height; }; class NPYLoader { public: NPYLoader() : _fs(), _shape(), _fortran_order(false), _typestring() { } /** Open a NPY file and reads its metadata * * @param[in] npy_filename File to open */ void open(const std::string &npy_filename) { ARM_COMPUTE_ERROR_ON(is_open()); try { _fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); _fs.open(npy_filename, std::ios::in | std::ios::binary); std::tie(_shape, _fortran_order, _typestring) = parse_npy_header(_fs); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Accessing %s: %s", npy_filename.c_str(), e.what()); } } /** Return true if a NPY file is currently open */ bool is_open() { return _fs.is_open(); } /** Return true if a NPY file is in fortran order */ bool is_fortran() { return _fortran_order; } /** Initialise the tensor's metadata with the dimensions of the NPY file currently open * * @param[out] tensor Tensor to initialise * @param[in] dt Data type to use for the tensor */ template void init_tensor(T &tensor, arm_compute::DataType dt) { ARM_COMPUTE_ERROR_ON(!is_open()); ARM_COMPUTE_ERROR_ON(dt != arm_compute::DataType::F32); // Use the size of the input NPY tensor TensorShape shape; shape.set_num_dimensions(_shape.size()); for(size_t i = 0; i < _shape.size(); ++i) { shape.set(i, _shape.at(i)); } arm_compute::TensorInfo tensor_info(shape, 1, dt); tensor.allocator()->init(tensor_info); } /** Fill a tensor with the content of the currently open NPY file. * * @note If the tensor is a CLTensor, the function maps and unmaps the tensor * * @param[in,out] tensor Tensor to fill (Must be allocated, and of matching dimensions with the opened NPY). */ template void fill_tensor(T &tensor) { ARM_COMPUTE_ERROR_ON(!is_open()); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::DataType::F32); try { // Map buffer if creating a CLTensor map(tensor, true); // Check if the file is large enough to fill the tensor const size_t current_position = _fs.tellg(); _fs.seekg(0, std::ios_base::end); const size_t end_position = _fs.tellg(); _fs.seekg(current_position, std::ios_base::beg); ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < tensor.info()->tensor_shape().total_size() * tensor.info()->element_size(), "Not enough data in file"); ARM_COMPUTE_UNUSED(end_position); // Check if the typestring matches the given one std::string expect_typestr = get_typestring(tensor.info()->data_type()); ARM_COMPUTE_ERROR_ON_MSG(_typestring != expect_typestr, "Typestrings mismatch"); // Validate tensor shape ARM_COMPUTE_ERROR_ON_MSG(_shape.size() != tensor.shape().num_dimensions(), "Tensor ranks mismatch"); if(_fortran_order) { for(size_t i = 0; i < _shape.size(); ++i) { ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != _shape[i], "Tensor dimensions mismatch"); } } else { for(size_t i = 0; i < _shape.size(); ++i) { ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != _shape[_shape.size() - i - 1], "Tensor dimensions mismatch"); } } switch(tensor.info()->data_type()) { case arm_compute::DataType::F32: { // Read data if(tensor.info()->padding().empty()) { // If tensor has no padding read directly from stream. _fs.read(reinterpret_cast(tensor.buffer()), tensor.info()->total_size()); } else { // If tensor has padding accessing tensor elements through execution window. Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); execute_window_loop(window, [&](const Coordinates & id) { _fs.read(reinterpret_cast(tensor.ptr_to_element(id)), tensor.info()->element_size()); }); } break; } default: ARM_COMPUTE_ERROR("Unsupported data type"); } // Unmap buffer if creating a CLTensor unmap(tensor); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Loading NPY file: %s", e.what()); } } private: std::ifstream _fs; std::vector _shape; bool _fortran_order; std::string _typestring; }; /** Template helper function to save a tensor image to a PPM file. * * @note Only U8 and RGB888 formats supported. * @note Only works with 2D tensors. * @note If the input tensor is a CLTensor, the function maps and unmaps the image * * @param[in] tensor The tensor to save as PPM file * @param[in] ppm_filename Filename of the file to create. */ template void save_to_ppm(T &tensor, const std::string &ppm_filename) { ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::Format::RGB888, arm_compute::Format::U8); ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2); std::ofstream fs; try { fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit); fs.open(ppm_filename, std::ios::out | std::ios::binary); const unsigned int width = tensor.info()->tensor_shape()[0]; const unsigned int height = tensor.info()->tensor_shape()[1]; fs << "P6\n" << width << " " << height << " 255\n"; // Map buffer if creating a CLTensor/GCTensor map(tensor, true); switch(tensor.info()->format()) { case arm_compute::Format::U8: { arm_compute::Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1)); window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1)); arm_compute::Iterator in(&tensor, window); arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { const unsigned char value = *in.ptr(); fs << value << value << value; }, in); break; } case arm_compute::Format::RGB888: { arm_compute::Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, width)); window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1)); arm_compute::Iterator in(&tensor, window); arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { fs.write(reinterpret_cast(in.ptr()), width * tensor.info()->element_size()); }, in); break; } default: ARM_COMPUTE_ERROR("Unsupported format"); } // Unmap buffer if creating a CLTensor/GCTensor unmap(tensor); } catch(const std::ofstream::failure &e) { ARM_COMPUTE_ERROR("Writing %s: (%s)", ppm_filename.c_str(), e.what()); } } /** Template helper function to save a tensor image to a NPY file. * * @note Only F32 data type supported. * @note Only works with 2D tensors. * @note If the input tensor is a CLTensor, the function maps and unmaps the image * * @param[in] tensor The tensor to save as NPY file * @param[in] npy_filename Filename of the file to create. * @param[in] fortran_order If true, save matrix in fortran order. */ template void save_to_npy(T &tensor, const std::string &npy_filename, bool fortran_order) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::F32); ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2); std::ofstream fs; try { fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit); fs.open(npy_filename, std::ios::out | std::ios::binary); const unsigned int width = tensor.info()->tensor_shape()[0]; const unsigned int height = tensor.info()->tensor_shape()[1]; std::vector shape(2); if(!fortran_order) { shape[0] = height, shape[1] = width; } else { shape[0] = width, shape[1] = height; } // Map buffer if creating a CLTensor map(tensor, true); switch(tensor.info()->data_type()) { case arm_compute::DataType::F32: { std::vector tmp; /* Used only to get the typestring */ npy::Typestring typestring_o{ tmp }; std::string typestring = typestring_o.str(); std::ofstream stream(npy_filename, std::ofstream::binary); npy::write_header(stream, typestring, fortran_order, shape); arm_compute::Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1)); window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1)); arm_compute::Iterator in(&tensor, window); arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) { stream.write(reinterpret_cast(in.ptr()), sizeof(float)); }, in); break; } default: ARM_COMPUTE_ERROR("Unsupported format"); } // Unmap buffer if creating a CLTensor unmap(tensor); } catch(const std::ofstream::failure &e) { ARM_COMPUTE_ERROR("Writing %s: (%s)", npy_filename.c_str(), e.what()); } } /** Load the tensor with pre-trained data from a binary file * * @param[in] tensor The tensor to be filled. Data type supported: F32. * @param[in] filename Filename of the binary file to load from. */ template void load_trained_data(T &tensor, const std::string &filename) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32); std::ifstream fs; try { fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit); // Open file fs.open(filename, std::ios::in | std::ios::binary); if(!fs.good()) { throw std::runtime_error("Could not load binary data: " + filename); } // Map buffer if creating a CLTensor/GCTensor map(tensor, true); Window window; window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, 1, 1)); for(unsigned int d = 1; d < tensor.info()->num_dimensions(); ++d) { window.set(d, Window::Dimension(0, tensor.info()->tensor_shape()[d], 1)); } arm_compute::Iterator in(&tensor, window); execute_window_loop(window, [&](const Coordinates & id) { fs.read(reinterpret_cast(in.ptr()), tensor.info()->tensor_shape()[0] * tensor.info()->element_size()); }, in); // Unmap buffer if creating a CLTensor/GCTensor unmap(tensor); } catch(const std::ofstream::failure &e) { ARM_COMPUTE_ERROR("Writing %s: (%s)", filename.c_str(), e.what()); } } template void fill_random_tensor(T &tensor, float lower_bound, float upper_bound) { std::random_device rd; std::mt19937 gen(rd()); TensorShape shape(tensor.info()->dimension(0), tensor.info()->dimension(1)); Window window; window.set(Window::DimX, Window::Dimension(0, shape.x(), 1)); window.set(Window::DimY, Window::Dimension(0, shape.y(), 1)); map(tensor, true); Iterator it(&tensor, window); switch(tensor.info()->data_type()) { case arm_compute::DataType::F32: { std::uniform_real_distribution dist(lower_bound, upper_bound); execute_window_loop(window, [&](const Coordinates & id) { *reinterpret_cast(it.ptr()) = dist(gen); }, it); break; } default: { ARM_COMPUTE_ERROR("Unsupported format"); } } unmap(tensor); } template void init_sgemm_output(T &dst, T &src0, T &src1, arm_compute::DataType dt) { dst.allocator()->init(TensorInfo(TensorShape(src1.info()->dimension(0), src0.info()->dimension(1)), 1, dt)); } } // namespace utils } // namespace arm_compute #endif /* __UTILS_UTILS_H__*/