/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph/Graph.h" #include "arm_compute/graph/Nodes.h" #include "arm_compute/graph/SubGraph.h" #include "support/ToolchainSupport.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include #include using namespace arm_compute::utils; using namespace arm_compute::graph; using namespace arm_compute::graph_utils; /** Example demonstrating how to implement InceptionV3's network using the Compute Library's graph API * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels ) */ class InceptionV3Example final : public Example { public: void do_setup(int argc, char **argv) override { std::string data_path; /* Path to the trainable data */ std::string image; /* Image data */ std::string label; /* Label data */ // Create a preprocessor object std::unique_ptr preprocessor = arm_compute::support::cpp14::make_unique(); // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON const int int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0; TargetHint target_hint = set_target_hint(int_target_hint); // Parse arguments if(argc < 2) { // Print help std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 2) { std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 3) { data_path = argv[2]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n"; std::cout << "No image provided: using random values\n\n"; } else if(argc == 4) { data_path = argv[2]; image = argv[3]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n"; std::cout << "No text file with labels provided: skipping output accessor\n\n"; } else { data_path = argv[2]; image = argv[3]; label = argv[4]; } graph << target_hint << Tensor(TensorInfo(TensorShape(299U, 299U, 3U, 1U), 1, DataType::F32), get_input_accessor(image, std::move(preprocessor), false)) << ConvolutionLayer(3U, 3U, 32U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_1a_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(2, 2, 0, 0)) << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_1a_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_1a_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_1a_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer(3U, 3U, 32U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2a_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2a_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2a_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2a_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer(3U, 3U, 64U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2b_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 1)) << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2b_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2b_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_2b_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << ConvolutionLayer(1U, 1U, 80U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_3b_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_3b_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_3b_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_3b_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer(3U, 3U, 192U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_4a_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_4a_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_4a_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Conv2d_4a_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node_A(data_path, "Mixed_5b", 64U, std::make_tuple(48U, 64U), std::make_tuple(64U, 96U, 96U), 32U) << get_inception_node_A(data_path, "Mixed_5c", 64U, std::make_tuple(48U, 64U), std::make_tuple(64U, 96U, 96U), 64U, true) << get_inception_node_A(data_path, "Mixed_5d", 64U, std::make_tuple(48U, 64U), std::make_tuple(64U, 96U, 96U), 64U) << get_inception_node_B(data_path, "Mixed_6a", 384U, std::make_tuple(64U, 96U, 96U)) << get_inception_node_C(data_path, "Mixed_6b", 192U, std::make_tuple(128U, 128U, 192U), std::make_tuple(128U, 128U, 128U, 128U, 192U), 192U) << get_inception_node_C(data_path, "Mixed_6c", 192U, std::make_tuple(160U, 160U, 192U), std::make_tuple(160U, 160U, 160U, 160U, 192U), 192U) << get_inception_node_C(data_path, "Mixed_6d", 192U, std::make_tuple(160U, 160U, 192U), std::make_tuple(160U, 160U, 160U, 160U, 192U), 192U) << get_inception_node_C(data_path, "Mixed_6e", 192U, std::make_tuple(192U, 192U, 192U), std::make_tuple(192U, 192U, 192U, 192U, 192U), 192U) << get_inception_node_D(data_path, "Mixed_7a", std::make_tuple(192U, 320U), std::make_tuple(192U, 192U, 192U, 192U)) << get_inception_node_E(data_path, "Mixed_7b", 320U, std::make_tuple(384U, 384U, 384U), std::make_tuple(448U, 384U, 384U, 384U), 192U) << get_inception_node_E(data_path, "Mixed_7c", 320U, std::make_tuple(384U, 384U, 384U), std::make_tuple(448U, 384U, 384U, 384U), 192U, true) << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 8, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL))) << ConvolutionLayer(1U, 1U, 1001U, get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Logits_Conv2d_1c_1x1_weights.npy"), get_weights_accessor(data_path, "/cnn_data/inceptionv3_model/Logits_Conv2d_1c_1x1_biases.npy"), PadStrideInfo(1, 1, 0, 0)) << ReshapeLayer(TensorShape(1001U)) << SoftmaxLayer() << Tensor(get_output_accessor(label, 5)); // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated graph.graph_init(int_target_hint == 2); } void do_run() override { graph.run(); } private: Graph graph{}; private: BranchLayer get_inception_node_A(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters, std::tuple c_filters, unsigned int d_filt, bool is_name_different = false) { std::string total_path = "/cnn_data/inceptionv3_model/" + param_path + "_"; // This is due to a naming issue in the tf model std::string conv_id0 = "_0a_"; std::string conv_id1 = "2d_0b_"; if(is_name_different) { conv_id0 = "_0b_"; conv_id1 = "_1_0c_"; } SubGraph i_a; i_a << ConvolutionLayer( 1U, 1U, a_filt, get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id0 + "1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id0 + "1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id0 + "1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id0 + "1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 5U, 5U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv" + conv_id1 + "5x5_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 2, 2)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv" + conv_id1 + "5x5_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv" + conv_id1 + "5x5_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv" + conv_id1 + "5x5_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << ConvolutionLayer( 1U, 1U, std::get<0>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<2>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_d; i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true)) << ConvolutionLayer( 1U, 1U, d_filt, get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)); } BranchLayer get_inception_node_B(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters) { std::string total_path = "/cnn_data/inceptionv3_model/" + param_path + "_"; SubGraph i_a; i_a << ConvolutionLayer( 3U, 3U, a_filt, get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(2, 2, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<2>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(2, 2, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c)); } BranchLayer get_inception_node_C(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters, std::tuple c_filters, unsigned int d_filt) { std::string total_path = "/cnn_data/inceptionv3_model/" + param_path + "_"; SubGraph i_a; i_a << ConvolutionLayer( 1U, 1U, a_filt, get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 7U, 1U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 3, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 1U, 7U, std::get<2>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 3)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << ConvolutionLayer( 1U, 1U, std::get<0>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 1U, 7U, std::get<1>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 3)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 7U, 1U, std::get<2>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 3, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 1U, 7U, std::get<3>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 3)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 7U, 1U, std::get<4>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 3, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_d; i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true)) << ConvolutionLayer( 1U, 1U, d_filt, get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)); } BranchLayer get_inception_node_D(const std::string &data_path, std::string &¶m_path, std::tuple a_filters, std::tuple b_filters) { std::string total_path = "/cnn_data/inceptionv3_model/" + param_path + "_"; SubGraph i_a; i_a << ConvolutionLayer( 1U, 1U, std::get<0>(a_filters), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(a_filters), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(2, 2, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 7U, 1U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 3, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 1U, 7U, std::get<2>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 3)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<3>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(2, 2, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c)); } BranchLayer get_inception_node_E(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters, std::tuple c_filters, unsigned int d_filt, bool is_name_different = false) { // This is due to a naming issue in the tf model std::string conv_id = "_0b_"; if(is_name_different) { conv_id = "_0c_"; } std::string total_path = "/cnn_data/inceptionv3_model/" + param_path + "_"; SubGraph i_a; i_a << ConvolutionLayer( 1U, 1U, a_filt, get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b1; i_b1 << ConvolutionLayer( 3U, 1U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b2; i_b2 << ConvolutionLayer( 1U, 3U, std::get<2>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id + "3x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id + "3x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id + "3x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d" + conv_id + "3x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_b1), std::move(i_b2)); SubGraph i_c1; i_c1 << ConvolutionLayer( 3U, 1U, std::get<2>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c2; i_c2 << ConvolutionLayer( 1U, 3U, std::get<3>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_3x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_3x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_3x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_3x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << ConvolutionLayer( 1U, 1U, std::get<0>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(c_filters), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 1, 1)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_c1), std::move(i_c2)); SubGraph i_d; i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true)) << ConvolutionLayer( 1U, 1U, d_filt, get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0)) << BatchNormalizationLayer( get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"), get_random_accessor(1.f, 1.f), get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"), 0.001f, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)); } }; /** Main program for Inception V3 * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels ) */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }