Compute Library  18.05
graph_googlenet.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
26 #include "utils/GraphUtils.h"
27 #include "utils/Utils.h"
28 
29 #include <cstdlib>
30 #include <tuple>
31 
32 using namespace arm_compute::utils;
33 using namespace arm_compute::graph::frontend;
34 using namespace arm_compute::graph_utils;
35 
41 class GraphGooglenetExample : public Example
42 {
43 public:
44  void do_setup(int argc, char **argv) override
45  {
46  std::string data_path; /* Path to the trainable data */
47  std::string image; /* Image data */
48  std::string label; /* Label data */
49 
50  // Create a preprocessor object
51  const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
52  std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
53 
54  // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
55  const int target = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
56  Target target_hint = set_target_hint(target);
57  FastMathHint fast_math_hint = FastMathHint::DISABLED;
58 
59  // Parse arguments
60  if(argc < 2)
61  {
62  // Print help
63  std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels] [fast_math_hint]\n\n";
64  std::cout << "No data folder provided: using random values\n\n";
65  }
66  else if(argc == 2)
67  {
68  std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels] [fast_math_hint]\n\n";
69  std::cout << "No data folder provided: using random values\n\n";
70  }
71  else if(argc == 3)
72  {
73  data_path = argv[2];
74  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels] [fast_math_hint]\n\n";
75  std::cout << "No image provided: using random values\n\n";
76  }
77  else if(argc == 4)
78  {
79  data_path = argv[2];
80  image = argv[3];
81  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels] [fast_math_hint]\n\n";
82  std::cout << "No text file with labels provided: skipping output accessor\n\n";
83  }
84  else if(argc == 5)
85  {
86  data_path = argv[2];
87  image = argv[3];
88  label = argv[4];
89  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " " << argv[4] << " [fast_math_hint]\n\n";
90  std::cout << "No fast math info provided: disabling fast math\n\n";
91  }
92  else
93  {
94  data_path = argv[2];
95  image = argv[3];
96  label = argv[4];
97  fast_math_hint = (std::strtol(argv[5], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
98  }
99 
100  graph << target_hint
101  << fast_math_hint
102  << InputLayer(TensorDescriptor(TensorShape(224U, 224U, 3U, 1U), DataType::F32),
103  get_input_accessor(image, std::move(preprocessor)))
104  << ConvolutionLayer(
105  7U, 7U, 64U,
106  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy"),
107  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"),
108  PadStrideInfo(2, 2, 3, 3))
110  << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
111  << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
112  << ConvolutionLayer(
113  1U, 1U, 64U,
114  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy"),
115  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"),
116  PadStrideInfo(1, 1, 0, 0))
118  << ConvolutionLayer(
119  3U, 3U, 192U,
120  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy"),
121  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"),
122  PadStrideInfo(1, 1, 1, 1))
124  << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
125  << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
126  graph << get_inception_node(data_path, "inception_3a", 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U);
127  graph << get_inception_node(data_path, "inception_3b", 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U);
128  graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
129  graph << get_inception_node(data_path, "inception_4a", 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U);
130  graph << get_inception_node(data_path, "inception_4b", 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U);
131  graph << get_inception_node(data_path, "inception_4c", 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U);
132  graph << get_inception_node(data_path, "inception_4d", 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U);
133  graph << get_inception_node(data_path, "inception_4e", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
134  graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
135  graph << get_inception_node(data_path, "inception_5a", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
136  graph << get_inception_node(data_path, "inception_5b", 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U);
137  graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL)))
139  1000U,
140  get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy"),
141  get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy"))
142  << SoftmaxLayer()
143  << OutputLayer(get_output_accessor(label, 5));
144 
145  // Finalize graph
146  GraphConfig config;
147  config.use_tuner = (target == 2);
148  graph.finalize(target_hint, config);
149  }
150  void do_run() override
151  {
152  // Run graph
153  graph.run();
154  }
155 
156 private:
157  Stream graph{ 0, "GoogleNet" };
158 
159  BranchLayer get_inception_node(const std::string &data_path, std::string &&param_path,
160  unsigned int a_filt,
161  std::tuple<unsigned int, unsigned int> b_filters,
162  std::tuple<unsigned int, unsigned int> c_filters,
163  unsigned int d_filt)
164  {
165  std::string total_path = "/cnn_data/googlenet_model/" + param_path + "/" + param_path + "_";
166  SubStream i_a(graph);
167  i_a << ConvolutionLayer(
168  1U, 1U, a_filt,
169  get_weights_accessor(data_path, total_path + "1x1_w.npy"),
170  get_weights_accessor(data_path, total_path + "1x1_b.npy"),
171  PadStrideInfo(1, 1, 0, 0))
173 
174  SubStream i_b(graph);
175  i_b << ConvolutionLayer(
176  1U, 1U, std::get<0>(b_filters),
177  get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy"),
178  get_weights_accessor(data_path, total_path + "3x3_reduce_b.npy"),
179  PadStrideInfo(1, 1, 0, 0))
181  << ConvolutionLayer(
182  3U, 3U, std::get<1>(b_filters),
183  get_weights_accessor(data_path, total_path + "3x3_w.npy"),
184  get_weights_accessor(data_path, total_path + "3x3_b.npy"),
185  PadStrideInfo(1, 1, 1, 1))
187 
188  SubStream i_c(graph);
189  i_c << ConvolutionLayer(
190  1U, 1U, std::get<0>(c_filters),
191  get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy"),
192  get_weights_accessor(data_path, total_path + "5x5_reduce_b.npy"),
193  PadStrideInfo(1, 1, 0, 0))
195  << ConvolutionLayer(
196  5U, 5U, std::get<1>(c_filters),
197  get_weights_accessor(data_path, total_path + "5x5_w.npy"),
198  get_weights_accessor(data_path, total_path + "5x5_b.npy"),
199  PadStrideInfo(1, 1, 2, 2))
201 
202  SubStream i_d(graph);
203  i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL)))
204  << ConvolutionLayer(
205  1U, 1U, d_filt,
206  get_weights_accessor(data_path, total_path + "pool_proj_w.npy"),
207  get_weights_accessor(data_path, total_path + "pool_proj_b.npy"),
208  PadStrideInfo(1, 1, 0, 0))
210 
211  return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
212  }
213 };
214 
220 int main(int argc, char **argv)
221 {
222  return arm_compute::utils::run_example<GraphGooglenetExample>(argc, argv);
223 }
graph::Target set_target_hint(int target)
Utility function to return the TargetHint.
Definition: GraphUtils.h:370
std::unique_ptr< graph::ITensorAccessor > get_output_accessor(const std::string &labels_path, size_t top_n=5, std::ostream &output_stream=std::cout)
Generates appropriate output accessor according to the specified labels_path.
Definition: GraphUtils.h:330
int main(int argc, char **argv)
Main program for Googlenet.
1 channel, 1 F32 per channel
Abstract Example class.
Definition: Utils.h:62
std::unique_ptr< graph::ITensorAccessor > get_input_accessor(const std::string &ppm_path, std::unique_ptr< IPreprocessor > preprocessor=nullptr, bool bgr=true)
Generates appropriate input accessor according to the specified ppm_path.
Definition: GraphUtils.h:299
FastMathHint
Enable or disable fast math for Convolution layer.
Definition: Types.h:118
std::unique_ptr< graph::ITensorAccessor > get_weights_accessor(const std::string &path, const std::string &data_file, DataLayout file_layout=DataLayout::NCHW)
Generates appropriate weights accessor according to the specified path.
Definition: GraphUtils.h:275
Stream frontend class to construct simple graphs in a stream fashion.
Definition: Stream.h:45
Normalization applied cross maps.