diff options
author | Sheri Zhang <sheri.zhang@arm.com> | 2020-03-09 14:29:52 +0000 |
---|---|---|
committer | Sheri Zhang <sheri.zhang@arm.com> | 2020-03-25 15:58:42 +0000 |
commit | 1b14c75c0d591c4abe4d2d41b7e4e165fbf58382 (patch) | |
tree | 41e671befde3f61247d0728d16907ff281d6294d /tests | |
parent | 2e5fd637205770ec5e11096e6e19b8efc67d544e (diff) | |
download | armcl-1b14c75c0d591c4abe4d2d41b7e4e165fbf58382.tar.gz armcl-1b14c75c0d591c4abe4d2d41b7e4e165fbf58382.tar.bz2 armcl-1b14c75c0d591c4abe4d2d41b7e4e165fbf58382.zip |
COMPMID-2968: Add support for QASYMM8_SIGNED in CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloatKernel
Signed-off-by: Sheri Zhang <sheri.zhang@arm.com>
Change-Id: I37e6e76dbd5546c0eaedfacd01ea905c37148e8a
Signed-off-by: Sheri Zhang <sheri.zhang@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/2861
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'tests')
-rw-r--r-- | tests/validation/CL/GEMMLowp.cpp | 40 | ||||
-rw-r--r-- | tests/validation/fixtures/GEMMLowpFixture.h | 103 | ||||
-rw-r--r-- | tests/validation/reference/GEMMLowp.cpp | 63 | ||||
-rw-r--r-- | tests/validation/reference/GEMMLowp.h | 8 |
4 files changed, 214 insertions, 0 deletions
diff --git a/tests/validation/CL/GEMMLowp.cpp b/tests/validation/CL/GEMMLowp.cpp index 3d7c76aa2..8aa81d096 100644 --- a/tests/validation/CL/GEMMLowp.cpp +++ b/tests/validation/CL/GEMMLowp.cpp @@ -389,6 +389,46 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedP TEST_SUITE_END() // MultGreater1 TEST_SUITE_END() // BoundedReLu TEST_SUITE_END() // QuantizeDownInt32ToInt16ScaleByFixedPoint + +TEST_SUITE(QuantizeDownInt32ScaleByFloat) + +TEST_SUITE(QASYMM8) +using CLGEMMLowpQuantizeDownInt32ScaleByFloatFixture = + GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture<CLTensor, CLAccessor, CLGEMMLowpOutputStage, uint8_t>; + +FIXTURE_DATA_TEST_CASE(RunTiny, CLGEMMLowpQuantizeDownInt32ScaleByFloatFixture, framework::DatasetMode::ALL, + combine(combine(combine(combine(combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), + datasets::TinyShapes()), + framework::dataset::make("result_real_multiplier", 0.33f)), + framework::dataset::make("result_offset", 2, 3)), + framework::dataset::make("min", 0)), + framework::dataset::make("max", 255)), + framework::dataset::make("addBias", { false, true }))) +{ + // Validate output + validate(CLAccessor(_target), _reference); +} +TEST_SUITE_END() // QASYMM8 + +TEST_SUITE(QASYMM8_SIGNED) +using CLGEMMLowpQuantizeDownInt32ScaleByFloatFixture_Signed = + GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture<CLTensor, CLAccessor, CLGEMMLowpOutputStage, int8_t>; +FIXTURE_DATA_TEST_CASE(RunTiny, CLGEMMLowpQuantizeDownInt32ScaleByFloatFixture_Signed, framework::DatasetMode::ALL, + combine(combine(combine(combine(combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), + datasets::TinyShapes()), + framework::dataset::make("result_real_multiplier", 0.33f)), + framework::dataset::make("result_offset", 2, 3)), + framework::dataset::make("min", -128)), + framework::dataset::make("max", 127)), + framework::dataset::make("addBias", { false, true }))) +{ + // Validate output + validate(CLAccessor(_target), _reference); +} +TEST_SUITE_END() // QASYMM8_SIGNED + +TEST_SUITE_END() // QuantizeDownInt32ScaleByFloat + TEST_SUITE_END() // OutputStage TEST_SUITE_END() // GEMMLowp TEST_SUITE_END() // CL diff --git a/tests/validation/fixtures/GEMMLowpFixture.h b/tests/validation/fixtures/GEMMLowpFixture.h index 0207f4c5a..be9ce96dc 100644 --- a/tests/validation/fixtures/GEMMLowpFixture.h +++ b/tests/validation/fixtures/GEMMLowpFixture.h @@ -556,6 +556,109 @@ protected: SimpleTensor<uint8_t> _reference{}; }; +template <typename TensorType, typename AccessorType, typename FunctionType, typename T> +class GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture : public framework::Fixture +{ +public: + template <typename...> + void setup(DataType data_type, TensorShape shape, float result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) + { + _target = compute_target(data_type, shape, result_real_multiplier, result_offset, min, max, add_bias); + _reference = compute_reference(shape, result_real_multiplier, result_offset, min, max, add_bias); + } + +protected: + template <typename U> + void fill(U &&tensor, int i) + { + // To avoid data all being clampped + std::uniform_int_distribution<> distribution(-500, 500); + library->fill(tensor, distribution, i); + } + + TensorType compute_target(DataType data_type, const TensorShape &shape, float result_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) + { + TensorShape shape_bias(shape[0]); + + // Create tensors + TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1); + TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1); + TensorType c = create_tensor<TensorType>(shape, data_type, 1); + + // create output stage info + GEMMLowpOutputStageInfo info; + info.gemmlowp_max_bound = max; + info.gemmlowp_min_bound = min; + info.gemmlowp_real_multiplier = result_multiplier; + info.gemmlowp_offset = result_offset; + info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT; + info.output_data_type = data_type; + + // Create and configure function + FunctionType output_stage; + output_stage.configure(&a, add_bias ? &b : nullptr, &c, info); + + ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); + ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); + + // Allocate tensors + a.allocator()->allocate(); + c.allocator()->allocate(); + + ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); + ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); + + // Fill tensor + fill(AccessorType(a), 0); + + if(add_bias) + { + ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); + + // Allocate bias tensor + b.allocator()->allocate(); + + ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); + + // Fill tensor + fill(AccessorType(b), 1); + } + + // Compute GEMM function + output_stage.run(); + return c; + } + + SimpleTensor<T> compute_reference(const TensorShape &shape, float_t result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) + { + // Create reference + TensorShape shape_bias(shape[0]); + + SimpleTensor<int32_t> a{ shape, DataType::S32, 1 }; + SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 }; + + // Fill reference + fill(a, 0); + + const std::vector<float_t> result_float_multiplier_vec = { result_real_multiplier }; + + if(add_bias) + { + // Fill bias + fill(b, 1); + + return reference::gemmlowp_quantize_down_scale_by_float<int32_t, T>(a, b, result_float_multiplier_vec, result_offset, min, max); + } + else + { + return reference::gemmlowp_quantize_down_scale_by_float<int32_t, T>(a, result_float_multiplier_vec, result_offset, min, max); + } + } + + TensorType _target{}; + SimpleTensor<T> _reference{}; +}; + template <typename TensorType, typename AccessorType, typename FunctionType> class GEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointValidationFixture : public framework::Fixture { diff --git a/tests/validation/reference/GEMMLowp.cpp b/tests/validation/reference/GEMMLowp.cpp index 99d08e34f..61617c8aa 100644 --- a/tests/validation/reference/GEMMLowp.cpp +++ b/tests/validation/reference/GEMMLowp.cpp @@ -131,6 +131,39 @@ void quantize_down_scale_by_fixedpoint(const SimpleTensor<TIn> *in, const Simple std::min<TIn>(std::numeric_limits<TOut>::max(), result))); } } + +template <typename TIn, typename TOut> +void quantize_down_scale_by_float(const SimpleTensor<TIn> *in, const SimpleTensor<TIn> *bias, SimpleTensor<TOut> *dst, std::vector<float_t> result_real_multiplier, + int32_t result_offset, int32_t min, int32_t max) +{ + const int cols_in = in->shape().x(); + const bool is_per_channel = result_real_multiplier.size() > 1; + + for(int i = 0; i < in->num_elements(); ++i) + { + TIn result = (*in)[i]; + + if(bias != nullptr) + { + result += (*bias)[i % cols_in]; + } + + // Float multiplication + const float_t multiplier = (is_per_channel) ? result_real_multiplier[i % cols_in] : result_real_multiplier[0]; + + float_t result_f = static_cast<float_t>(result) * multiplier + static_cast<float_t>(result_offset); + result = static_cast<TIn>(std::round(result_f)); + + // Bounded ReLu + if(min != max) + { + result = std::max(min, std::min(max, result)); + } + + (*dst)[i] = static_cast<TOut>(std::max<TIn>(std::numeric_limits<TOut>::lowest(), + std::min<TIn>(std::numeric_limits<TOut>::max(), result))); + } +} } // namespace template <typename T_out, typename T_in, typename T_in_1> @@ -237,6 +270,36 @@ SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor return dst; } +template <typename TIn, typename TOut> +SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max) +{ + SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type()); + + quantize_down_scale_by_float<TIn, TOut>(&in, &bias, &dst, result_real_multiplier, result_offset, min, max); + + return dst; +} + +template <typename TIn, typename TOut> +SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max) +{ + SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type()); + + quantize_down_scale_by_float<TIn, TOut>(&in, nullptr, &dst, result_real_multiplier, result_offset, min, max); + + return dst; +} + +template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max); +template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max); +template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max); +template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max); template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, std::vector<int32_t> result_fixedpoint_multiplier, std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max); template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b, diff --git a/tests/validation/reference/GEMMLowp.h b/tests/validation/reference/GEMMLowp.h index 7d711263e..5de48dab5 100644 --- a/tests/validation/reference/GEMMLowp.h +++ b/tests/validation/reference/GEMMLowp.h @@ -59,6 +59,14 @@ SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor template <typename TIn, typename TOut> SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias, std::vector<int32_t> result_fixedpoint_multiplier, std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min = 0, int32_t max = 0); + +template <typename TIn, typename TOut> +SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min = 0, int32_t max = 0); + +template <typename TIn, typename TOut> +SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in, + std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min = 0, int32_t max = 0); } // namespace reference } // namespace validation } // namespace test |