diff options
author | Georgios Pinitas <georgios.pinitas@arm.com> | 2019-01-09 11:55:00 +0000 |
---|---|---|
committer | Georgios Pinitas <georgios.pinitas@arm.com> | 2019-01-09 17:24:57 +0000 |
commit | c10bc0b5db5169a6ccea02a1aaefe34f082709e5 (patch) | |
tree | 2be8e3c929dc91de3de2f898a6e4b33d2bd51259 /src | |
parent | 588ebc5ccab2e47c42c3e9303306e3744834f52f (diff) | |
download | armcl-c10bc0b5db5169a6ccea02a1aaefe34f082709e5.tar.gz armcl-c10bc0b5db5169a6ccea02a1aaefe34f082709e5.tar.bz2 armcl-c10bc0b5db5169a6ccea02a1aaefe34f082709e5.zip |
COMPMID-1710: Collapse window in CLDepthConvertKernel
Change-Id: I16589a2b3beb18e20b56059fdabccc61e26e3944
Reviewed-on: https://review.mlplatform.org/481
Reviewed-by: Isabella Gottardi <isabella.gottardi@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/core/CL/cl_kernels/depth_convert.cl | 52 | ||||
-rw-r--r-- | src/core/CL/kernels/CLDepthConvertLayerKernel.cpp | 16 |
2 files changed, 45 insertions, 23 deletions
diff --git a/src/core/CL/cl_kernels/depth_convert.cl b/src/core/CL/cl_kernels/depth_convert.cl index 7b03273b7..75192e6a9 100644 --- a/src/core/CL/cl_kernels/depth_convert.cl +++ b/src/core/CL/cl_kernels/depth_convert.cl @@ -1,5 +1,5 @@ /* - * Copyright (c) 2016-2018 ARM Limited. + * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * @@ -38,78 +38,92 @@ /** This function performs a down-scaling depth conversion. * - * @attention The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT: + * @note The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT: * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short + * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * * @param[in] in_ptr Pointer to the source image. Supported data types: U8/U16/S16/U32/S32/F16/F32 * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x in_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y in_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] in_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] in_step_z in_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8/U16/S16/U32/S32/F16/F32 * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * @param[in] shift The integer shift amount value. Supported data types: S32 */ __kernel void convert_depth_down( - IMAGE_DECLARATION(in), - IMAGE_DECLARATION(out), + TENSOR3D_DECLARATION(in), + TENSOR3D_DECLARATION(out), const int shift) { // Get pixels pointer - Image in = CONVERT_TO_IMAGE_STRUCT(in); - Image out = CONVERT_TO_IMAGE_STRUCT(out); + Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(in); + Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load data - VEC_DATA_TYPE(DATA_TYPE_IN, 16) - in_data = vload16(0, (__global DATA_TYPE_IN *)in.ptr); + VEC_DATA_TYPE(DATA_TYPE_IN, VEC_SIZE) + in_data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_IN *)in.ptr); #if defined(IS_DATA_TYPE_FLOAT) - vstore16(CONVERT_DOWN(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, 16)), 0, (__global DATA_TYPE_OUT *)out.ptr); + VSTORE(VEC_SIZE) + (CONVERT_DOWN(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)), 0, (__global DATA_TYPE_OUT *)out.ptr); #else /* defined(IS_DATA_TYPE_FLOAT) */ - vstore16(CONVERT_DOWN(in_data >> shift, VEC_DATA_TYPE(DATA_TYPE_OUT, 16)), 0, (__global DATA_TYPE_OUT *)out.ptr); + VSTORE(VEC_SIZE) + (CONVERT_DOWN(in_data >> shift, VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)), 0, (__global DATA_TYPE_OUT *)out.ptr); #endif /* defined(IS_DATA_TYPE_FLOAT) */ } /** This function performs a up-scaling depth conversion. * - * @attention The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT: + * @note The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT: * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short + * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * * @param[in] in_ptr Pointer to the source image. Supported data types: U8/U16/S16/U32/S32/F16/F32 * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x in_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y in_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] in_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] in_step_z in_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8/U16/S16/U32/S32/F16/F32 * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * @param[in] shift The integer shift amount value. Supported data types: S32 */ __kernel void convert_depth_up( - IMAGE_DECLARATION(in), - IMAGE_DECLARATION(out), + TENSOR3D_DECLARATION(in), + TENSOR3D_DECLARATION(out), const int shift) { // Get pixels pointer - Image in = CONVERT_TO_IMAGE_STRUCT(in); - Image out = CONVERT_TO_IMAGE_STRUCT(out); + Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(in); + Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load data - VEC_DATA_TYPE(DATA_TYPE_IN, 16) - in_data = vload16(0, (__global DATA_TYPE_IN *)in.ptr); + VEC_DATA_TYPE(DATA_TYPE_IN, VEC_SIZE) + in_data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_IN *)in.ptr); #if defined(IS_DATA_TYPE_FLOAT) - vstore16(CONVERT_UP(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, 16)), 0, (__global DATA_TYPE_OUT *)out.ptr); + VSTORE(VEC_SIZE) + (CONVERT_UP(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)), 0, (__global DATA_TYPE_OUT *)out.ptr); #else /* defined(IS_DATA_TYPE_FLOAT) */ - vstore16(CONVERT_UP(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, 16)) << shift, 0, (__global DATA_TYPE_OUT *)out.ptr); + VSTORE(VEC_SIZE) + (CONVERT_UP(in_data, VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)) << shift, 0, (__global DATA_TYPE_OUT *)out.ptr); #endif /* defined(IS_DATA_TYPE_FLOAT) */ } diff --git a/src/core/CL/kernels/CLDepthConvertLayerKernel.cpp b/src/core/CL/kernels/CLDepthConvertLayerKernel.cpp index b0c21624e..e188ee92a 100644 --- a/src/core/CL/kernels/CLDepthConvertLayerKernel.cpp +++ b/src/core/CL/kernels/CLDepthConvertLayerKernel.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2016-2018 ARM Limited. + * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * @@ -83,8 +83,12 @@ void CLDepthConvertLayerKernel::configure(const ICLTensor *input, ICLTensor *out const size_t input_size = data_size_from_type(input->info()->data_type()); const size_t output_size = data_size_from_type(output->info()->data_type()); + // Get number of elements to process per iterations + const unsigned int num_elems_processed_per_iteration = 16; + // Set build options CLBuildOptions build_opts; + build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration)); build_opts.add_option("-DDATA_TYPE_IN=" + get_cl_type_from_data_type(input->info()->data_type())); build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type())); // Conversions from float always SATURATE as out-of-bounds conversion from float->integer is implementation defined @@ -96,12 +100,16 @@ void CLDepthConvertLayerKernel::configure(const ICLTensor *input, ICLTensor *out _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options())); // Set shift arg - unsigned int idx = 2 * num_arguments_per_2D_tensor(); //Skip the input and output parameters + unsigned int idx = 2 * num_arguments_per_3D_tensor(); //Skip the input and output parameters _kernel.setArg(idx++, shift); // Configure kernel - constexpr unsigned int num_elems_processed_per_iteration = 16; - ICLSimple2DKernel::configure(input, output, num_elems_processed_per_iteration); + ICLSimple3DKernel::configure(input, output, num_elems_processed_per_iteration); + + // Collapse window + const Window &full_window = window(); + Window collapsed_window = full_window.collapse_if_possible(full_window, Window::DimZ); + ICLKernel::configure_internal(collapsed_window); } Status CLDepthConvertLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, ConvertPolicy policy, uint32_t shift) |