summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGeorgios Pinitas <georgios.pinitas@arm.com>2018-12-07 18:31:47 +0000
committerGeorgios Pinitas <georgios.pinitas@arm.com>2018-12-13 10:42:12 +0000
commit05045c1e052dbba4e44bf0bb8ead3e9b5220d04e (patch)
treee17a64e9cd0f0927bd75f540b6aeb55ba24953d4 /src
parent35767bc09f21050a9767a91b086b327afc928a81 (diff)
downloadarmcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.tar.gz
armcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.tar.bz2
armcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.zip
COMPMID-1071: (3RDPARTY_UPDATE) Add depth multiplier on DepthwiseConv 3x3 NHWC
Change-Id: I316ff40dda379d4b84fac5d63f0c56efbacbc2b4 Reviewed-on: https://review.mlplatform.org/371 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Diffstat (limited to 'src')
-rw-r--r--src/graph/GraphBuilder.cpp10
-rw-r--r--src/graph/backends/GLES/GCFunctionsFactory.cpp3
-rw-r--r--src/graph/nodes/DepthwiseConvolutionLayerNode.cpp24
-rw-r--r--src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp114
4 files changed, 129 insertions, 22 deletions
diff --git a/src/graph/GraphBuilder.cpp b/src/graph/GraphBuilder.cpp
index b2ca28da5..3fc258d8b 100644
--- a/src/graph/GraphBuilder.cpp
+++ b/src/graph/GraphBuilder.cpp
@@ -310,8 +310,8 @@ NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, std::vect
return nid;
}
-NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend, PadStrideInfo conv_info,
- DepthwiseConvolutionMethod method,
+NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend,
+ PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method,
ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo quant_info)
{
CHECK_NODEIDX_PAIR(input, g);
@@ -327,7 +327,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params,
w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL),
- get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
+ get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
if(!quant_info.empty())
{
w_desc.quant_info = quant_info;
@@ -340,7 +340,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params,
if(has_bias)
{
TensorDescriptor b_desc = input_tensor_desc;
- b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
+ b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
if(is_data_type_quantized_asymmetric(b_desc.data_type))
{
@@ -351,7 +351,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params,
}
// Create convolution node and connect
- NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, method);
+ NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method);
g.add_connection(input.node_id, input.index, conv_nid, 0);
g.add_connection(w_nid, 0, conv_nid, 1);
if(has_bias)
diff --git a/src/graph/backends/GLES/GCFunctionsFactory.cpp b/src/graph/backends/GLES/GCFunctionsFactory.cpp
index 2ca453ebd..0de58f5c2 100644
--- a/src/graph/backends/GLES/GCFunctionsFactory.cpp
+++ b/src/graph/backends/GLES/GCFunctionsFactory.cpp
@@ -176,8 +176,8 @@ std::unique_ptr<IFunction> create_depthwise_convolution_layer<GCDepthwiseConvolu
const PadStrideInfo conv_info = node.convolution_info();
const DepthwiseConvolutionMethod dwc_algorithm = node.depthwise_convolution_method();
- const unsigned int depth_multiplier = 1;
const ActivationLayerInfo fused_act = node.fused_activation();
+ const int depth_multiplier = node.depth_multiplier();
// Create and configure function (we assume that functions have been validated before creation)
std::unique_ptr<IFunction> func;
@@ -204,6 +204,7 @@ std::unique_ptr<IFunction> create_depthwise_convolution_layer<GCDepthwiseConvolu
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
+ << " Depth multiplier: " << depth_multiplier
<< (fused_act.enabled() ? " " + to_string(fused_act.activation()) : "")
<< std::endl);
return func;
diff --git a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
index 02d16328b..75ca5f4e0 100644
--- a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
+++ b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
@@ -32,13 +32,18 @@ namespace arm_compute
{
namespace graph
{
-DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, DepthwiseConvolutionMethod method)
- : _info(std::move(info)), _method(method), _fused_activation()
+DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, int depth_multiplier, DepthwiseConvolutionMethod method)
+ : _info(std::move(info)), _depth_multiplier(depth_multiplier), _method(method), _fused_activation()
{
_input_edges.resize(3, EmptyEdgeID);
_outputs.resize(1, NullTensorID);
}
+int DepthwiseConvolutionLayerNode::depth_multiplier() const
+{
+ return _depth_multiplier;
+}
+
void DepthwiseConvolutionLayerNode::set_depthwise_convolution_method(DepthwiseConvolutionMethod method)
{
_method = method;
@@ -66,21 +71,24 @@ void DepthwiseConvolutionLayerNode::set_fused_activation(ActivationLayerInfo fus
TensorDescriptor DepthwiseConvolutionLayerNode::compute_output_descriptor(const TensorDescriptor &input_descriptor,
const TensorDescriptor &weights_descriptor,
- const PadStrideInfo &info)
+ const PadStrideInfo &info,
+ int depth_multiplier)
{
unsigned int output_width = 0;
unsigned int output_height = 0;
- const unsigned int input_width = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH);
- const unsigned int input_height = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT);
- const unsigned int kernel_width = get_dimension_size(weights_descriptor, DataLayoutDimension::WIDTH);
- const unsigned int kernel_height = get_dimension_size(weights_descriptor, DataLayoutDimension::HEIGHT);
+ const unsigned int input_width = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH);
+ const unsigned int input_height = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT);
+ const unsigned int input_channels = get_dimension_size(input_descriptor, DataLayoutDimension::CHANNEL);
+ const unsigned int kernel_width = get_dimension_size(weights_descriptor, DataLayoutDimension::WIDTH);
+ const unsigned int kernel_height = get_dimension_size(weights_descriptor, DataLayoutDimension::HEIGHT);
std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, kernel_width, kernel_height, info);
TensorDescriptor output_descriptor = input_descriptor;
output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), output_width);
output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), output_height);
+ output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), input_channels * depth_multiplier);
return output_descriptor;
}
@@ -105,7 +113,7 @@ TensorDescriptor DepthwiseConvolutionLayerNode::configure_output(size_t idx) con
ARM_COMPUTE_ERROR_ON(src == nullptr || weights == nullptr);
- return compute_output_descriptor(src->desc(), weights->desc(), _info);
+ return compute_output_descriptor(src->desc(), weights->desc(), _info, _depth_multiplier);
}
NodeType DepthwiseConvolutionLayerNode::type() const
diff --git a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
index 03cd5fd54..c2782aaa8 100644
--- a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
@@ -26,6 +26,7 @@
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
+#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
@@ -36,8 +37,9 @@ using namespace arm_compute;
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;
-CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3()
- : _kernel(nullptr), _border_handler()
+CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
+ : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _permuted_input(),
+ _permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _is_prepared(false)
{
}
@@ -47,17 +49,59 @@ void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
- if(input->info()->data_layout() == DataLayout::NCHW)
+ const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
+
+ _needs_permute = is_nhwc && (depth_multiplier > 1);
+ _is_prepared = false;
+ _original_weights = weights;
+
+ ICLTensor *input_to_use = input;
+ const ICLTensor *weights_to_use = weights;
+ ICLTensor *output_to_use = output;
+
+ if(_needs_permute)
{
+ _memory_group.manage(&_permuted_input);
+ _memory_group.manage(&_permuted_output);
+
+ // Configure the function to transform the input tensor from NHWC -> NCHW
+ _permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
+ _permuted_input.info()->set_data_layout(DataLayout::NCHW);
+
+ // Configure the function to transform the weights tensor from HWI -> IHW
+ _permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
+ _permuted_weights.info()->set_data_layout(DataLayout::NCHW);
+
+ input_to_use = &_permuted_input;
+ weights_to_use = &_permuted_weights;
+ output_to_use = &_permuted_output;
+
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
- else
+ else if(is_nhwc)
{
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
}
+ else
+ {
+ _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
+ }
+ // Configure kernel
_kernel->set_target(CLScheduler::get().target());
- _kernel->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info);
+ _kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info);
+
+ // Permute output if needed
+ if(_needs_permute)
+ {
+ // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
+ _permuted_output.info()->set_data_layout(DataLayout::NHWC);
+ _permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
+
+ // Allocate tensors
+ _permuted_input.allocator()->allocate();
+ _permuted_output.allocator()->allocate();
+ }
// Configure border handler
PixelValue &&zero_value(0.f);
@@ -75,18 +119,72 @@ Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
- if(input->data_layout() == DataLayout::NCHW)
+ const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
+ const bool needs_permute = is_nhwc && (depth_multiplier > 1);
+
+ if(needs_permute)
{
- return CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target);
+ TensorShape permuted_input_shape = input->tensor_shape();
+ TensorShape permuted_weights_shape = weights->tensor_shape();
+ TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
+
+ permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
+ permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
+ permute(permuted_output_shape, PermutationVector(1U, 2U, 0U));
+
+ const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW);
+ const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW);
+ const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);
+
+ ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target));
+ }
+ else if(is_nhwc)
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target));
}
- return CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info);
+ return Status{};
}
void CLDepthwiseConvolutionLayer3x3::run()
{
+ prepare();
+
+ _memory_group.acquire();
+
+ if(_needs_permute)
+ {
+ _permute_input_to_nchw.run();
+ }
CLScheduler::get().enqueue(_border_handler);
CLScheduler::get().enqueue(*_kernel);
+
+ if(_needs_permute)
+ {
+ _permute_output_to_nhwc.run();
+ }
+
+ _memory_group.release();
+}
+
+void CLDepthwiseConvolutionLayer3x3::prepare()
+{
+ if(!_is_prepared)
+ {
+ if(_needs_permute)
+ {
+ ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
+
+ _permuted_weights.allocator()->allocate();
+ _permute_weights_to_nchw.run();
+ _original_weights->mark_as_unused();
+ }
+ _is_prepared = true;
+ }
}
namespace