diff options
author | Georgios Pinitas <georgios.pinitas@arm.com> | 2018-12-07 18:31:47 +0000 |
---|---|---|
committer | Georgios Pinitas <georgios.pinitas@arm.com> | 2018-12-13 10:42:12 +0000 |
commit | 05045c1e052dbba4e44bf0bb8ead3e9b5220d04e (patch) | |
tree | e17a64e9cd0f0927bd75f540b6aeb55ba24953d4 /src | |
parent | 35767bc09f21050a9767a91b086b327afc928a81 (diff) | |
download | armcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.tar.gz armcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.tar.bz2 armcl-05045c1e052dbba4e44bf0bb8ead3e9b5220d04e.zip |
COMPMID-1071: (3RDPARTY_UPDATE) Add depth multiplier on DepthwiseConv 3x3 NHWC
Change-Id: I316ff40dda379d4b84fac5d63f0c56efbacbc2b4
Reviewed-on: https://review.mlplatform.org/371
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/graph/GraphBuilder.cpp | 10 | ||||
-rw-r--r-- | src/graph/backends/GLES/GCFunctionsFactory.cpp | 3 | ||||
-rw-r--r-- | src/graph/nodes/DepthwiseConvolutionLayerNode.cpp | 24 | ||||
-rw-r--r-- | src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp | 114 |
4 files changed, 129 insertions, 22 deletions
diff --git a/src/graph/GraphBuilder.cpp b/src/graph/GraphBuilder.cpp index b2ca28da5..3fc258d8b 100644 --- a/src/graph/GraphBuilder.cpp +++ b/src/graph/GraphBuilder.cpp @@ -310,8 +310,8 @@ NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, std::vect return nid; } -NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend, PadStrideInfo conv_info, - DepthwiseConvolutionMethod method, +NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend, + PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method, ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo quant_info) { CHECK_NODEIDX_PAIR(input, g); @@ -327,7 +327,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), kernel_spatial_extend.width); w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height); w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL), - get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL)); + get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier); if(!quant_info.empty()) { w_desc.quant_info = quant_info; @@ -340,7 +340,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, if(has_bias) { TensorDescriptor b_desc = input_tensor_desc; - b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL)); + b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier); if(is_data_type_quantized_asymmetric(b_desc.data_type)) { @@ -351,7 +351,7 @@ NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, } // Create convolution node and connect - NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, method); + NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method); g.add_connection(input.node_id, input.index, conv_nid, 0); g.add_connection(w_nid, 0, conv_nid, 1); if(has_bias) diff --git a/src/graph/backends/GLES/GCFunctionsFactory.cpp b/src/graph/backends/GLES/GCFunctionsFactory.cpp index 2ca453ebd..0de58f5c2 100644 --- a/src/graph/backends/GLES/GCFunctionsFactory.cpp +++ b/src/graph/backends/GLES/GCFunctionsFactory.cpp @@ -176,8 +176,8 @@ std::unique_ptr<IFunction> create_depthwise_convolution_layer<GCDepthwiseConvolu const PadStrideInfo conv_info = node.convolution_info(); const DepthwiseConvolutionMethod dwc_algorithm = node.depthwise_convolution_method(); - const unsigned int depth_multiplier = 1; const ActivationLayerInfo fused_act = node.fused_activation(); + const int depth_multiplier = node.depth_multiplier(); // Create and configure function (we assume that functions have been validated before creation) std::unique_ptr<IFunction> func; @@ -204,6 +204,7 @@ std::unique_ptr<IFunction> create_depthwise_convolution_layer<GCDepthwiseConvolu << " Input shape: " << input->info()->tensor_shape() << " Weights shape: " << weights->info()->tensor_shape() << " Output shape: " << output->info()->tensor_shape() + << " Depth multiplier: " << depth_multiplier << (fused_act.enabled() ? " " + to_string(fused_act.activation()) : "") << std::endl); return func; diff --git a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp index 02d16328b..75ca5f4e0 100644 --- a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp +++ b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp @@ -32,13 +32,18 @@ namespace arm_compute { namespace graph { -DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, DepthwiseConvolutionMethod method) - : _info(std::move(info)), _method(method), _fused_activation() +DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, int depth_multiplier, DepthwiseConvolutionMethod method) + : _info(std::move(info)), _depth_multiplier(depth_multiplier), _method(method), _fused_activation() { _input_edges.resize(3, EmptyEdgeID); _outputs.resize(1, NullTensorID); } +int DepthwiseConvolutionLayerNode::depth_multiplier() const +{ + return _depth_multiplier; +} + void DepthwiseConvolutionLayerNode::set_depthwise_convolution_method(DepthwiseConvolutionMethod method) { _method = method; @@ -66,21 +71,24 @@ void DepthwiseConvolutionLayerNode::set_fused_activation(ActivationLayerInfo fus TensorDescriptor DepthwiseConvolutionLayerNode::compute_output_descriptor(const TensorDescriptor &input_descriptor, const TensorDescriptor &weights_descriptor, - const PadStrideInfo &info) + const PadStrideInfo &info, + int depth_multiplier) { unsigned int output_width = 0; unsigned int output_height = 0; - const unsigned int input_width = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH); - const unsigned int input_height = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT); - const unsigned int kernel_width = get_dimension_size(weights_descriptor, DataLayoutDimension::WIDTH); - const unsigned int kernel_height = get_dimension_size(weights_descriptor, DataLayoutDimension::HEIGHT); + const unsigned int input_width = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH); + const unsigned int input_height = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT); + const unsigned int input_channels = get_dimension_size(input_descriptor, DataLayoutDimension::CHANNEL); + const unsigned int kernel_width = get_dimension_size(weights_descriptor, DataLayoutDimension::WIDTH); + const unsigned int kernel_height = get_dimension_size(weights_descriptor, DataLayoutDimension::HEIGHT); std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, kernel_width, kernel_height, info); TensorDescriptor output_descriptor = input_descriptor; output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), output_width); output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), output_height); + output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), input_channels * depth_multiplier); return output_descriptor; } @@ -105,7 +113,7 @@ TensorDescriptor DepthwiseConvolutionLayerNode::configure_output(size_t idx) con ARM_COMPUTE_ERROR_ON(src == nullptr || weights == nullptr); - return compute_output_descriptor(src->desc(), weights->desc(), _info); + return compute_output_descriptor(src->desc(), weights->desc(), _info, _depth_multiplier); } NodeType DepthwiseConvolutionLayerNode::type() const diff --git a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp index 03cd5fd54..c2782aaa8 100644 --- a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp +++ b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp @@ -26,6 +26,7 @@ #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h" +#include "arm_compute/core/Helpers.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" @@ -36,8 +37,9 @@ using namespace arm_compute; using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; -CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3() - : _kernel(nullptr), _border_handler() +CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager) + : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _permuted_input(), + _permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _is_prepared(false) { } @@ -47,17 +49,59 @@ void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); - if(input->info()->data_layout() == DataLayout::NCHW) + const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC; + + _needs_permute = is_nhwc && (depth_multiplier > 1); + _is_prepared = false; + _original_weights = weights; + + ICLTensor *input_to_use = input; + const ICLTensor *weights_to_use = weights; + ICLTensor *output_to_use = output; + + if(_needs_permute) { + _memory_group.manage(&_permuted_input); + _memory_group.manage(&_permuted_output); + + // Configure the function to transform the input tensor from NHWC -> NCHW + _permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U)); + _permuted_input.info()->set_data_layout(DataLayout::NCHW); + + // Configure the function to transform the weights tensor from HWI -> IHW + _permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); + _permuted_weights.info()->set_data_layout(DataLayout::NCHW); + + input_to_use = &_permuted_input; + weights_to_use = &_permuted_weights; + output_to_use = &_permuted_output; + _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>(); } - else + else if(is_nhwc) { _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>(); } + else + { + _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>(); + } + // Configure kernel _kernel->set_target(CLScheduler::get().target()); - _kernel->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info); + _kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info); + + // Permute output if needed + if(_needs_permute) + { + // Configure the function to transform the convoluted output to ACL's native ordering format NCHW + _permuted_output.info()->set_data_layout(DataLayout::NHWC); + _permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U)); + + // Allocate tensors + _permuted_input.allocator()->allocate(); + _permuted_output.allocator()->allocate(); + } // Configure border handler PixelValue &&zero_value(0.f); @@ -75,18 +119,72 @@ Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); - if(input->data_layout() == DataLayout::NCHW) + const bool is_nhwc = input->data_layout() == DataLayout::NHWC; + const bool needs_permute = is_nhwc && (depth_multiplier > 1); + + if(needs_permute) { - return CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target); + TensorShape permuted_input_shape = input->tensor_shape(); + TensorShape permuted_weights_shape = weights->tensor_shape(); + TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier); + + permute(permuted_input_shape, PermutationVector(1U, 2U, 0U)); + permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U)); + permute(permuted_output_shape, PermutationVector(1U, 2U, 0U)); + + const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW); + const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW); + const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW); + + ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target)); + } + else if(is_nhwc) + { + ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info)); + } + else + { + ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target)); } - return CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info); + return Status{}; } void CLDepthwiseConvolutionLayer3x3::run() { + prepare(); + + _memory_group.acquire(); + + if(_needs_permute) + { + _permute_input_to_nchw.run(); + } CLScheduler::get().enqueue(_border_handler); CLScheduler::get().enqueue(*_kernel); + + if(_needs_permute) + { + _permute_output_to_nhwc.run(); + } + + _memory_group.release(); +} + +void CLDepthwiseConvolutionLayer3x3::prepare() +{ + if(!_is_prepared) + { + if(_needs_permute) + { + ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); + + _permuted_weights.allocator()->allocate(); + _permute_weights_to_nchw.run(); + _original_weights->mark_as_unused(); + } + _is_prepared = true; + } } namespace |