summaryrefslogtreecommitdiff
path: root/arm_compute
diff options
context:
space:
mode:
authorManuel Bottini <manuel.bottini@arm.com>2020-05-21 17:14:36 +0100
committerManuel Bottini <manuel.bottini@arm.com>2020-05-22 12:31:03 +0100
commitd71d2be0ab380a2d1fbaf051e43b368330b4d27c (patch)
treee09220a6b7115bd6c4365e65bce2836642663a98 /arm_compute
parent0ba7c3ac045b353d977b23c9de362e0e7e7a65ee (diff)
downloadarmcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.tar.gz
armcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.tar.bz2
armcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.zip
COMPMID-3069: Removing deprecated functions and classes from 20.05 release
Change-Id: Ic4d20995d6c6bb76d07113e86247bad2722e4e83 Signed-off-by: Manuel Bottini <manuel.bottini@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/3244 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'arm_compute')
-rw-r--r--arm_compute/core/Types.h68
-rw-r--r--arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h82
-rw-r--r--arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h65
3 files changed, 0 insertions, 215 deletions
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h
index d59bba6ff..759ff0782 100644
--- a/arm_compute/core/Types.h
+++ b/arm_compute/core/Types.h
@@ -1195,74 +1195,6 @@ struct PoolingLayerInfo
*
* @param[in] pool_type Pooling type @ref PoolingType.
* @param[in] pool_size Pooling size, in elements, across x and y.
- * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo
- * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations.
- * True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area).
- * Defaults to false;
- * @param[in] fp_mixed_precision (Optional) Use wider accumulators (32 bit instead of 16 for FP16) to improve accuracy.
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, unsigned int, DataLayout, PadStrideInfo, bool, bool))
- explicit PoolingLayerInfo(PoolingType pool_type,
- unsigned int pool_size,
- PadStrideInfo pad_stride_info = PadStrideInfo(),
- bool exclude_padding = false,
- bool fp_mixed_precision = false)
- : pool_type(pool_type),
- pool_size(Size2D(pool_size, pool_size)),
- data_layout(DataLayout::UNKNOWN),
- pad_stride_info(pad_stride_info),
- exclude_padding(exclude_padding),
- is_global_pooling(false),
- fp_mixed_precision(fp_mixed_precision)
- {
- }
- /** Constructor
- *
- * @param[in] pool_type Pooling type @ref PoolingType.
- * @param[in] pool_size Pooling size, in elements, across x and y.
- * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo
- * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations.
- * True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area).
- * Defaults to false;
- * @param[in] fp_mixed_precision (Optional) Use wider accumulators (32 bit instead of 16 for FP16) to improve accuracy.
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, Size2D, DataLayout, PadStrideInfo, bool, bool))
- explicit PoolingLayerInfo(PoolingType pool_type,
- Size2D pool_size,
- PadStrideInfo pad_stride_info = PadStrideInfo(),
- bool exclude_padding = false,
- bool fp_mixed_precision = false)
- : pool_type(pool_type),
- pool_size(pool_size),
- data_layout(DataLayout::UNKNOWN),
- pad_stride_info(pad_stride_info),
- exclude_padding(exclude_padding),
- is_global_pooling(false),
- fp_mixed_precision(fp_mixed_precision)
- {
- }
- /** Constructor
- *
- * @note This constructor is used for global pooling
- *
- * @param[in] pool_type Pooling type @ref PoolingType.
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, DataLayout))
- explicit PoolingLayerInfo(PoolingType pool_type)
- : pool_type(pool_type),
- pool_size(Size2D()),
- data_layout(DataLayout::UNKNOWN),
- pad_stride_info(PadStrideInfo(1, 1, 0, 0)),
- exclude_padding(false),
- is_global_pooling(true),
- fp_mixed_precision(false)
- {
- }
-
- /** Constructor
- *
- * @param[in] pool_type Pooling type @ref PoolingType.
- * @param[in] pool_size Pooling size, in elements, across x and y.
* @param[in] data_layout Data layout used by the layer @ref DataLayout
* @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo
* @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations.
diff --git a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
index 63c359e68..f15271b63 100644
--- a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
+++ b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
@@ -338,87 +338,5 @@ private:
CLDepthwiseConvolutionLayerInternal3x3 _func_3x3;
CLDepthwiseConvolutionLayerGeneric _func_generic;
};
-
-/** Basic function to execute a depthwise convolution for kernel size 3x3xC (when data layout NCHW) or Cx3x3 (when data layout NHWC). This function calls the following OpenCL kernels:
- *
- * -# @ref CLDepthwiseConvolutionLayer3x3NCHWKernel (if data_layout == NCHW)
- * -# @ref CLDepthwiseConvolutionLayer3x3NHWCKernel (if data_layout == NHWC)
- * -# @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel (if data_layout == NHWC)
- * -# @ref CLFillBorderKernel (if pad_x or pad_y > 0)
- *
- */
-class CLDepthwiseConvolutionLayer3x3 : public IFunction
-{
-public:
- /** Default constructor */
- CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLDepthwiseConvolutionLayer3x3(const CLDepthwiseConvolutionLayer3x3 &) = delete;
- /** Default move constructor */
- CLDepthwiseConvolutionLayer3x3(CLDepthwiseConvolutionLayer3x3 &&) = default;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLDepthwiseConvolutionLayer3x3 &operator=(const CLDepthwiseConvolutionLayer3x3 &) = delete;
- /** Default move assignment operator */
- CLDepthwiseConvolutionLayer3x3 &operator=(CLDepthwiseConvolutionLayer3x3 &&) = default;
- /** Initialize the function's source, destination, conv and border_size.
- *
- * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling).
- * @param[in] weights Weights tensor. A 3D tensor with shape [3, 3, IFM].
- * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8.
- * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input.
- * @param[out] output Destination tensor. Data type supported: same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, CLDepthwiseConvolutionLayer)
- void configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1,
- ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
- /** Initialize the function's source, destination, conv and border_size.
- *
- * @param[in] compile_context The compile context to be used.
- * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling).
- * @param[in] weights Weights tensor. A 3D tensor with shape [3, 3, IFM].
- * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8.
- * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input.
- * @param[out] output Destination tensor. Data type supported: same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, CLDepthwiseConvolutionLayer)
- void configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
-
- /** Static function to check if given info will lead to a valid configuration of @ref CLDepthwiseConvolutionLayer3x3
- *
- * @param[in] input Source tensor info. Data type supported: QASYMM8 for all layouts, F16/F32 for NCHW.
- * @param[in] weights Weights tensor info. A 3D tensor with shape [3, 3, IFM].
- * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8.
- * @param[in] biases Biases tensor info. A 1D tensor with shape [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8.
- * @param[in] output Destination tensor. Data type supported: same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported.
- * @param[in] gpu_target (Optional) GPU target to validate the kernel for. Defaults to midgard.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1,
- ActivationLayerInfo act_info = ActivationLayerInfo(), GPUTarget gpu_target = GPUTarget::MIDGARD, const Size2D &dilation = Size2D(1U, 1U));
-
- // Inherited methods overriden:
- void run() override;
- void prepare() override;
-
-private:
- CLDepthwiseConvolutionLayer _func;
-};
} // namespace arm_compute
#endif /*ARM_COMPUTE_CLDEPTHWISECONVOLUTION_H */
diff --git a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h
index ccab67164..811dc8284 100644
--- a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h
+++ b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h
@@ -303,70 +303,5 @@ private:
NEDepthwiseConvolutionLayerOptimizedInternal _func_optimized;
NEDepthwiseConvolutionLayerGeneric _func_generic;
};
-
-/** Basic function to execute optimized depthwise convolution routines. This function calls the following NEON kernels:
- *
- * @note At the moment 3x3 and 5x5 convolution of stride 1, 2 are supported
- *
- * -# @ref NEFillBorderKernel (if pad_x or pad_y > 0) and no assembly kernel implementation is present
- * -# @ref NEDepthwiseConvolutionLayer3x3Kernel if 3x3 and no assembly kernel implementation is present
- * -# @ref NEDepthwiseConvolutionAssemblyDispatch if assembly kernel implementation is present
- * -# @ref NEDirectConvolutionLayerOutputStageKernel if re-quantization of output is required
- * -# @ref NEActivationLayer if fused activation is required
- *
- */
-class NEDepthwiseConvolutionLayerOptimized : public IFunction
-{
-public:
- /** Default constructor */
- NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDepthwiseConvolutionLayerOptimized(const NEDepthwiseConvolutionLayerOptimized &) = delete;
- /** Default move constructor */
- NEDepthwiseConvolutionLayerOptimized(NEDepthwiseConvolutionLayerOptimized &&) = default;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDepthwiseConvolutionLayerOptimized &operator=(const NEDepthwiseConvolutionLayerOptimized &) = delete;
- /** Default move assignment operator */
- NEDepthwiseConvolutionLayerOptimized &operator=(NEDepthwiseConvolutionLayerOptimized &&) = default;
- /** Initialize the function's source, destination, kernels and border_size.
- *
- * @param[in, out] input Source tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/F16/F32. (Written to only for border filling).
- * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input.
- * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED.
- * @param[out] output Destination tensor. Data type supported: same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- */
- ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, NEDepthwiseConvolutionLayer)
- void configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
-
- /** Static function to check if given info will lead to a valid configuration of @ref NEDepthwiseConvolutionLayerOptimized
- *
- * @param[in] input Source tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/F16/F32. (Written to only for border filling).
- * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input.
- * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED.
- * @param[in] output Destination tensor. Data type supported: same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
-
- // Inherited methods overriden:
- void run() override;
- void prepare() override;
-
-private:
- NEDepthwiseConvolutionLayer _func;
-};
} // namespace arm_compute
#endif /* ARM_COMPUTE_NEDEPTHWISECONVOLUTION_H */ \ No newline at end of file