diff options
author | Manuel Bottini <manuel.bottini@arm.com> | 2020-05-21 17:14:36 +0100 |
---|---|---|
committer | Manuel Bottini <manuel.bottini@arm.com> | 2020-05-22 12:31:03 +0100 |
commit | d71d2be0ab380a2d1fbaf051e43b368330b4d27c (patch) | |
tree | e09220a6b7115bd6c4365e65bce2836642663a98 /arm_compute | |
parent | 0ba7c3ac045b353d977b23c9de362e0e7e7a65ee (diff) | |
download | armcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.tar.gz armcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.tar.bz2 armcl-d71d2be0ab380a2d1fbaf051e43b368330b4d27c.zip |
COMPMID-3069: Removing deprecated functions and classes from 20.05 release
Change-Id: Ic4d20995d6c6bb76d07113e86247bad2722e4e83
Signed-off-by: Manuel Bottini <manuel.bottini@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/3244
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'arm_compute')
-rw-r--r-- | arm_compute/core/Types.h | 68 | ||||
-rw-r--r-- | arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h | 82 | ||||
-rw-r--r-- | arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h | 65 |
3 files changed, 0 insertions, 215 deletions
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h index d59bba6ff..759ff0782 100644 --- a/arm_compute/core/Types.h +++ b/arm_compute/core/Types.h @@ -1195,74 +1195,6 @@ struct PoolingLayerInfo * * @param[in] pool_type Pooling type @ref PoolingType. * @param[in] pool_size Pooling size, in elements, across x and y. - * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo - * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations. - * True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area). - * Defaults to false; - * @param[in] fp_mixed_precision (Optional) Use wider accumulators (32 bit instead of 16 for FP16) to improve accuracy. - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, unsigned int, DataLayout, PadStrideInfo, bool, bool)) - explicit PoolingLayerInfo(PoolingType pool_type, - unsigned int pool_size, - PadStrideInfo pad_stride_info = PadStrideInfo(), - bool exclude_padding = false, - bool fp_mixed_precision = false) - : pool_type(pool_type), - pool_size(Size2D(pool_size, pool_size)), - data_layout(DataLayout::UNKNOWN), - pad_stride_info(pad_stride_info), - exclude_padding(exclude_padding), - is_global_pooling(false), - fp_mixed_precision(fp_mixed_precision) - { - } - /** Constructor - * - * @param[in] pool_type Pooling type @ref PoolingType. - * @param[in] pool_size Pooling size, in elements, across x and y. - * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo - * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations. - * True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area). - * Defaults to false; - * @param[in] fp_mixed_precision (Optional) Use wider accumulators (32 bit instead of 16 for FP16) to improve accuracy. - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, Size2D, DataLayout, PadStrideInfo, bool, bool)) - explicit PoolingLayerInfo(PoolingType pool_type, - Size2D pool_size, - PadStrideInfo pad_stride_info = PadStrideInfo(), - bool exclude_padding = false, - bool fp_mixed_precision = false) - : pool_type(pool_type), - pool_size(pool_size), - data_layout(DataLayout::UNKNOWN), - pad_stride_info(pad_stride_info), - exclude_padding(exclude_padding), - is_global_pooling(false), - fp_mixed_precision(fp_mixed_precision) - { - } - /** Constructor - * - * @note This constructor is used for global pooling - * - * @param[in] pool_type Pooling type @ref PoolingType. - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, PoolingLayerInfo(PoolingType, DataLayout)) - explicit PoolingLayerInfo(PoolingType pool_type) - : pool_type(pool_type), - pool_size(Size2D()), - data_layout(DataLayout::UNKNOWN), - pad_stride_info(PadStrideInfo(1, 1, 0, 0)), - exclude_padding(false), - is_global_pooling(true), - fp_mixed_precision(false) - { - } - - /** Constructor - * - * @param[in] pool_type Pooling type @ref PoolingType. - * @param[in] pool_size Pooling size, in elements, across x and y. * @param[in] data_layout Data layout used by the layer @ref DataLayout * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations. diff --git a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h index 63c359e68..f15271b63 100644 --- a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h +++ b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h @@ -338,87 +338,5 @@ private: CLDepthwiseConvolutionLayerInternal3x3 _func_3x3; CLDepthwiseConvolutionLayerGeneric _func_generic; }; - -/** Basic function to execute a depthwise convolution for kernel size 3x3xC (when data layout NCHW) or Cx3x3 (when data layout NHWC). This function calls the following OpenCL kernels: - * - * -# @ref CLDepthwiseConvolutionLayer3x3NCHWKernel (if data_layout == NCHW) - * -# @ref CLDepthwiseConvolutionLayer3x3NHWCKernel (if data_layout == NHWC) - * -# @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel (if data_layout == NHWC) - * -# @ref CLFillBorderKernel (if pad_x or pad_y > 0) - * - */ -class CLDepthwiseConvolutionLayer3x3 : public IFunction -{ -public: - /** Default constructor */ - CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager = nullptr); - /** Prevent instances of this class from being copied (As this class contains pointers) */ - CLDepthwiseConvolutionLayer3x3(const CLDepthwiseConvolutionLayer3x3 &) = delete; - /** Default move constructor */ - CLDepthwiseConvolutionLayer3x3(CLDepthwiseConvolutionLayer3x3 &&) = default; - /** Prevent instances of this class from being copied (As this class contains pointers) */ - CLDepthwiseConvolutionLayer3x3 &operator=(const CLDepthwiseConvolutionLayer3x3 &) = delete; - /** Default move assignment operator */ - CLDepthwiseConvolutionLayer3x3 &operator=(CLDepthwiseConvolutionLayer3x3 &&) = default; - /** Initialize the function's source, destination, conv and border_size. - * - * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. A 3D tensor with shape [3, 3, IFM]. - * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8. - * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. - * Data type supported: Same as @p input. - * @param[out] output Destination tensor. Data type supported: same as @p input. - * @param[in] conv_info Padding and stride information to use for the convolution. - * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. - * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported. - * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, CLDepthwiseConvolutionLayer) - void configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, - ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); - /** Initialize the function's source, destination, conv and border_size. - * - * @param[in] compile_context The compile context to be used. - * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. A 3D tensor with shape [3, 3, IFM]. - * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8. - * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. - * Data type supported: Same as @p input. - * @param[out] output Destination tensor. Data type supported: same as @p input. - * @param[in] conv_info Padding and stride information to use for the convolution. - * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. - * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported. - * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, CLDepthwiseConvolutionLayer) - void configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, - unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); - - /** Static function to check if given info will lead to a valid configuration of @ref CLDepthwiseConvolutionLayer3x3 - * - * @param[in] input Source tensor info. Data type supported: QASYMM8 for all layouts, F16/F32 for NCHW. - * @param[in] weights Weights tensor info. A 3D tensor with shape [3, 3, IFM]. - * Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8. - * @param[in] biases Biases tensor info. A 1D tensor with shape [IFM]. Must be nullptr if not needed. - * Data type supported: Same as @p input, S32 when input is QASYMM8. - * @param[in] output Destination tensor. Data type supported: same as @p input. - * @param[in] conv_info Padding and stride information to use for the convolution. - * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. - * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported. - * @param[in] gpu_target (Optional) GPU target to validate the kernel for. Defaults to midgard. - * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). - * - * @return a status - */ - static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, - ActivationLayerInfo act_info = ActivationLayerInfo(), GPUTarget gpu_target = GPUTarget::MIDGARD, const Size2D &dilation = Size2D(1U, 1U)); - - // Inherited methods overriden: - void run() override; - void prepare() override; - -private: - CLDepthwiseConvolutionLayer _func; -}; } // namespace arm_compute #endif /*ARM_COMPUTE_CLDEPTHWISECONVOLUTION_H */ diff --git a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h index ccab67164..811dc8284 100644 --- a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h +++ b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h @@ -303,70 +303,5 @@ private: NEDepthwiseConvolutionLayerOptimizedInternal _func_optimized; NEDepthwiseConvolutionLayerGeneric _func_generic; }; - -/** Basic function to execute optimized depthwise convolution routines. This function calls the following NEON kernels: - * - * @note At the moment 3x3 and 5x5 convolution of stride 1, 2 are supported - * - * -# @ref NEFillBorderKernel (if pad_x or pad_y > 0) and no assembly kernel implementation is present - * -# @ref NEDepthwiseConvolutionLayer3x3Kernel if 3x3 and no assembly kernel implementation is present - * -# @ref NEDepthwiseConvolutionAssemblyDispatch if assembly kernel implementation is present - * -# @ref NEDirectConvolutionLayerOutputStageKernel if re-quantization of output is required - * -# @ref NEActivationLayer if fused activation is required - * - */ -class NEDepthwiseConvolutionLayerOptimized : public IFunction -{ -public: - /** Default constructor */ - NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager = nullptr); - /** Prevent instances of this class from being copied (As this class contains pointers) */ - NEDepthwiseConvolutionLayerOptimized(const NEDepthwiseConvolutionLayerOptimized &) = delete; - /** Default move constructor */ - NEDepthwiseConvolutionLayerOptimized(NEDepthwiseConvolutionLayerOptimized &&) = default; - /** Prevent instances of this class from being copied (As this class contains pointers) */ - NEDepthwiseConvolutionLayerOptimized &operator=(const NEDepthwiseConvolutionLayerOptimized &) = delete; - /** Default move assignment operator */ - NEDepthwiseConvolutionLayerOptimized &operator=(NEDepthwiseConvolutionLayerOptimized &&) = default; - /** Initialize the function's source, destination, kernels and border_size. - * - * @param[in, out] input Source tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. - * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. - * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED. - * @param[out] output Destination tensor. Data type supported: same as @p input. - * @param[in] conv_info Padding and stride information to use for the convolution. - * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. - * @param[in] act_info (Optional) Activation layer information in case of a fused activation. - * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). - */ - ARM_COMPUTE_DEPRECATED_REL_REPLACE(20.02, NEDepthwiseConvolutionLayer) - void configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, - unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); - - /** Static function to check if given info will lead to a valid configuration of @ref NEDepthwiseConvolutionLayerOptimized - * - * @param[in] input Source tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. - * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. - * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED. - * @param[in] output Destination tensor. Data type supported: same as @p input. - * @param[in] conv_info Padding and stride information to use for the convolution. - * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. - * @param[in] act_info (Optional) Activation layer information in case of a fused activation. - * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). - * - * @return a status - */ - static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, - unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); - - // Inherited methods overriden: - void run() override; - void prepare() override; - -private: - NEDepthwiseConvolutionLayer _func; -}; } // namespace arm_compute #endif /* ARM_COMPUTE_NEDEPTHWISECONVOLUTION_H */
\ No newline at end of file |