diff options
author | Georgios Pinitas <georgios.pinitas@arm.com> | 2019-06-24 14:56:34 +0100 |
---|---|---|
committer | Georgios Pinitas <georgios.pinitas@arm.com> | 2019-07-09 09:31:37 +0000 |
commit | 30271c779c36a2abe6995c4454674d92bbc1f91f (patch) | |
tree | 531257ff87cf2cb8d6f3b8da0abe3e6cb77a2a0e | |
parent | 30dbeef2f46bdd6fe05d25dfa27cb4b2359dced3 (diff) | |
download | armcl-30271c779c36a2abe6995c4454674d92bbc1f91f.tar.gz armcl-30271c779c36a2abe6995c4454674d92bbc1f91f.tar.bz2 armcl-30271c779c36a2abe6995c4454674d92bbc1f91f.zip |
COMPMID-2156: Optimized dilated convolution for NEON.
Change-Id: I3a8abe8cc9637c8983d9bd69dcbaee1a15eac8d0
Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com>
Reviewed-on: https://review.mlplatform.org/c/1492
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Pablo Marquez <pablo.tello@arm.com>
25 files changed, 2192 insertions, 333 deletions
diff --git a/SConscript b/SConscript index 45c4ccc41..a170a4a7c 100644 --- a/SConscript +++ b/SConscript @@ -205,10 +205,13 @@ if env['neon']: core_files += Glob('src/core/NEON/kernels/arm_gemm/*.cpp') - # build winograd sources for either v7a / v8a + # build winograd/depthwise sources for either v7a / v8a core_files += Glob('src/core/NEON/kernels/convolution/*/*.cpp') core_files += Glob('src/core/NEON/kernels/convolution/winograd/*/*.cpp') - arm_compute_env.Append(CPPPATH = ["arm_compute/core/NEON/kernels/convolution/winograd/","arm_compute/core/NEON/kernels/convolution/common/" , "arm_compute/core/NEON/kernels/assembly/"]) + arm_compute_env.Append(CPPPATH = ["arm_compute/core/NEON/kernels/convolution/common/", + "arm_compute/core/NEON/kernels/convolution/winograd/", + "arm_compute/core/NEON/kernels/convolution/depthwise/", + "arm_compute/core/NEON/kernels/assembly/"]) graph_files += Glob('src/graph/backends/NEON/*.cpp') diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp index e0cb616a3..a4a833d90 100644 --- a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp @@ -25,8 +25,8 @@ #pragma once #include <arm_neon.h> -#include "arm_compute/core/NEON/kernels/convolution/common/activation.hpp" -#include "arm_compute/core/NEON/kernels/convolution/common/padding.hpp" +#include "activation.hpp" +#include "padding.hpp" namespace depthwise { @@ -127,6 +127,23 @@ class DepthwiseConvolutionBase : public IDepthwiseConvolution unsigned int padding_right ); + /** Create a new depthwise convolution engine. + * + * @param[in] n_batches Number of batches tensors. + * @param[in] n_input_rows Number of rows in input tensor. + * @param[in] n_input_cols Number of columns in input tensor. + * @param[in] n_channels Number of channels in input and output tensors. + */ + DepthwiseConvolutionBase( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + // Cannot copy or move a DepthwiseConvolution. DepthwiseConvolutionBase(DepthwiseConvolutionBase&) = delete; DepthwiseConvolutionBase operator=(DepthwiseConvolutionBase&) = delete; @@ -417,6 +434,16 @@ class DepthwiseConvolution< unsigned int padding_right ); + DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + protected: template <nck::ActivationFunction Activation> void execute_tile( @@ -488,6 +515,16 @@ class DepthwiseConvolution< unsigned int padding_right ); + DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + protected: template <nck::ActivationFunction Activation> void execute_tile( diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp new file mode 100644 index 000000000..e0d7f0c7f --- /dev/null +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp @@ -0,0 +1,156 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#pragma once + +#include <deque> +#include <functional> +#include <memory> + +#include "depthwise.hpp" + +namespace depthwise +{ + +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols, + typename TIn, typename TBias, typename TOut +> +class DilatedDepthwiseConvolution : public IDepthwiseConvolution +{ + public: + /** Create a new dilated depthwise convolution engine. + */ + DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + + /** Create a new dilated depthwise convolution engine. + */ + DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + + // Cannot copy or move a DilatedDepthwiseConvolution. + DilatedDepthwiseConvolution(DilatedDepthwiseConvolution&) = delete; + DilatedDepthwiseConvolution operator=(DilatedDepthwiseConvolution&) = delete; + + /* Set input tensor and stride. */ + void set_input(const void *inptr) override; + void set_input(const void *inptr, int column_stride) override; + void set_input(const void *inptr, int row_stride, int column_stride) override; + void set_input(const void *inptr, int batch_stride, int row_stride, int column_stride) override; + + /* Set output tensor and stride. */ + void set_output(void *outptr) override; + void set_output(void *outptr, int column_stride) override; + void set_output(void *outptr, int row_stride, int column_stride) override; + void set_output(void *outptr, int batch_stride, int row_stride, int column_stride) override; + + static int get_output_size( + int dim_size, + unsigned int padding_before, + unsigned int padding_after, + int dilation_factor + ); + + int output_size( + int dim_size, unsigned int padding_before, unsigned int padding_after + ) const override; + + /* Weights and biases are re-ordered to improve memory access patterns. Use + * these methods to determine the size of the re-pack buffer and to set the + * address (and implicitly reorder the weights and biases into) the buffer. + */ + size_t get_packed_params_size(void) const override; + void set_packed_params_buffer(void *) override; + + void pack_params(const void *weights, const void *biases=nullptr) const override; + void pack_params(void *buffer, const void *weights, const void *biases=nullptr) const override; + void pack_params( + void *buffer, + const void* weights, + unsigned int weight_row_stride, + unsigned int weight_col_stride, + const void *biases=nullptr + ) const override; + + /* Working space is used to pad tensors on the fly. Before running any + * inference check the amount of space required, allocate and provide a + * pointer to the convolution engine. + */ + size_t get_working_space_size(unsigned int nthreads=1) const override; + void set_working_space(void *) override; + + unsigned int get_window(void) const override; + void run(unsigned int start, unsigned int stop, unsigned int threadid=0) override; + + protected: + /** Protected constructor which also accepts a function to construct a new + * subconvolution + */ + DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right, + std::function<IDepthwiseConvolution *(int, int, int, int, int, int, nck::ActivationFunction, unsigned int, unsigned int, unsigned int, unsigned int)> subconvfn + ); + + const int _dilation_factor; + const int _n_input_rows, _n_input_cols, _n_channels; + const int _padding_top, _padding_left; + const int _n_output_rows, _n_output_cols; + + /* Dilated depthwise convolution is performed through repeated calls to + * non-dilated convolutions. If the dilation factor is $n$, then we perform + * $(n + 1)^2$ depthwise convolutions. + */ + using BaseDepthwise = DepthwiseConvolution< + OutputTileRows, OutputTileCols, + KernelRows, KernelCols, + StrideRows, StrideCols, + TIn, TBias, TOut + >; + std::deque<std::deque<std::unique_ptr<IDepthwiseConvolution>>> _convs; +}; + +} // namespace depthwise diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp index e34023faf..b65ced6f3 100644 --- a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019 ARM Limited. + * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * @@ -23,8 +23,8 @@ */ #pragma once -#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp" -#include "arm_compute/core/NEON/kernels/convolution/common/qasymm8.hpp" +#include "depthwise.hpp" +#include "qasymm8.hpp" namespace depthwise { @@ -70,6 +70,33 @@ class QAsymm8DepthwiseConvolution : public DepthwiseConvolutionBase< QAsymm8DepthwiseConvolution( int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params& weight_quantisation, + const qasymm8::QAsymm8Params& input_quantisation, + const qasymm8::QAsymm8Params& output_quantisation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + + QAsymm8DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params& weight_quantisation, + const qasymm8::QAsymm8Params& input_quantisation, + const qasymm8::QAsymm8Params& output_quantisation, + const qasymm8::QAsymm8RescaleParams& rescale_parameters, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right + ); + + QAsymm8DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, nck::ActivationFunction activation, const qasymm8::QAsymm8Params& weight_quantisation, const qasymm8::QAsymm8Params& input_quantisation, @@ -82,6 +109,11 @@ class QAsymm8DepthwiseConvolution : public DepthwiseConvolutionBase< ); protected: + static nck::ActivationFunction get_activation_fn( + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params& output_quantisation + ); + uint8_t _input_padding_value(void) const; void _pack_params( diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp new file mode 100644 index 000000000..cf1c6f581 --- /dev/null +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp @@ -0,0 +1,88 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#pragma once +#include "depthwise_dilated.hpp" +#include "depthwise_quantized.hpp" + +namespace depthwise { + +template <unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols> +class QAsymm8DilatedDepthwiseConvolution + : public DilatedDepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, + StrideCols, uint8_t, int32_t, uint8_t> { +public: + /** Create a new dilated depthwise convolution engine. + */ + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right); + + /** Create a new dilated depthwise convolution engine. + */ + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right); + + /** Create a new dilated depthwise convolution engine. + */ + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + const qasymm8::QAsymm8RescaleParams &rescale_parameters, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right); + + /** Create a new dilated depthwise convolution engine. + */ + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + const qasymm8::QAsymm8RescaleParams& rescale_parameters, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right); +}; + +} // namespace depthwise diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp index 493b2991d..b102a2425 100644 --- a/arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp @@ -32,9 +32,9 @@ #include <algorithm> #include <cstdint> -#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp" -#include "arm_compute/core/NEON/kernels/convolution/common/padding.hpp" -#include "arm_compute/core/NEON/kernels/convolution/common/utils.hpp" +#include "depthwise.hpp" +#include "padding.hpp" +#include "utils.hpp" #pragma once @@ -95,6 +95,28 @@ MEMBERFN()::DepthwiseConvolutionBase( const unsigned int padding_left, const unsigned int padding_bottom, const unsigned int padding_right +) : DepthwiseConvolutionBase( + n_batches, n_input_rows, n_input_cols, n_channels, + get_output_size(n_input_rows, padding_top, padding_bottom), + get_output_size(n_input_cols, padding_left, padding_right), + activation, + padding_top, padding_left, padding_bottom, padding_right + ) +{ +} + +MEMBERFN()::DepthwiseConvolutionBase( + const int n_batches, + const int n_input_rows, + const int n_input_cols, + const int n_channels, + const int n_output_rows, + const int n_output_cols, + ActivationFunction activation, + const unsigned int padding_top, + const unsigned int padding_left, + const unsigned int padding_bottom, + const unsigned int padding_right ) : _input(nullptr), _output(nullptr), _packed_parameters(nullptr), _working_space(nullptr), @@ -102,8 +124,8 @@ MEMBERFN()::DepthwiseConvolutionBase( _n_input_rows(n_input_rows), _n_input_cols(n_input_cols), _n_channels(n_channels), - _n_output_rows(get_output_size(n_input_rows, padding_top, padding_bottom)), - _n_output_cols(get_output_size(n_input_cols, padding_left, padding_right)), + _n_output_rows(n_output_rows), + _n_output_cols(n_output_cols), _n_tile_rows(iceildiv(_n_output_rows, output_tile_rows)), _n_tile_cols(iceildiv(_n_output_cols, output_tile_cols)), _padding_top(padding_top), diff --git a/arm_compute/core/NEON/kernels/convolution/depthwise/impl_dilated.hpp b/arm_compute/core/NEON/kernels/convolution/depthwise/impl_dilated.hpp new file mode 100644 index 000000000..2ef965ba4 --- /dev/null +++ b/arm_compute/core/NEON/kernels/convolution/depthwise/impl_dilated.hpp @@ -0,0 +1,295 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "depthwise_dilated.hpp" +#include "utils.hpp" + +#define MEMBERFN(TOUT) \ + template <unsigned int OutputTileRows, unsigned int OutputTileColumns, \ + unsigned int KernelRows, unsigned int KernelColumns, \ + unsigned int StrideRows, unsigned int StrideColumns, typename TIn, \ + typename TBias, typename TOut> \ + TOUT DilatedDepthwiseConvolution<OutputTileRows, OutputTileColumns, \ + KernelRows, KernelColumns, StrideRows, \ + StrideColumns, TIn, TBias, TOut> + +namespace depthwise { + +MEMBERFN() +::DilatedDepthwiseConvolution(const int n_batches, const int n_input_rows, + const int n_input_cols, const int n_channels, + const int dilation_factor, + nck::ActivationFunction activation, + const unsigned int padding_top, + const unsigned int padding_left, + const unsigned int padding_bottom, + const unsigned int padding_right) + : DilatedDepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + DilatedDepthwiseConvolution::get_output_size( + n_input_rows, padding_top, padding_bottom, dilation_factor), + DilatedDepthwiseConvolution::get_output_size( + n_input_cols, padding_left, padding_right, dilation_factor), + activation, padding_top, padding_left, padding_bottom, + padding_right) {} + +MEMBERFN() +::DilatedDepthwiseConvolution(const int n_batches, const int n_input_rows, + const int n_input_cols, const int n_channels, + const int dilation_factor, + const int n_output_rows, const int n_output_cols, + nck::ActivationFunction activation, + const unsigned int padding_top, + const unsigned int padding_left, + const unsigned int, // padding_bottom + const unsigned int // padding_right + ) + : DilatedDepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + n_output_rows, n_output_cols, activation, padding_top, padding_left, + 0, 0, + // Function which creates a new (standard) depthwise convolution + [](const int n_batches, const int n_input_rows, + const int n_input_cols, const int n_channels, + const int n_output_rows, const int n_output_cols, + const nck::ActivationFunction activation, + const unsigned int padding_top, const unsigned int padding_left, + const unsigned int padding_bottom, + const unsigned int padding_right) -> IDepthwiseConvolution * { + return new DepthwiseConvolution< + OutputTileRows, OutputTileColumns, KernelRows, KernelColumns, + StrideRows, StrideColumns, TIn, TBias, TOut>( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, activation, padding_top, + padding_left, padding_bottom, padding_right); + }) {} + +MEMBERFN() +::DilatedDepthwiseConvolution( + const int n_batches, const int n_input_rows, const int n_input_cols, + const int n_channels, const int dilation_factor, const int n_output_rows, + const int n_output_cols, nck::ActivationFunction activation, + const unsigned int padding_top, const unsigned int padding_left, + const unsigned int, // padding_bottom + const unsigned int, // padding_right + std::function<IDepthwiseConvolution *( + int, int, int, int, int, int, nck::ActivationFunction, unsigned int, + unsigned int, unsigned int, unsigned int)> + subconvfn // Function to create a new convolution + ) + : _dilation_factor(dilation_factor), _n_input_rows(n_input_rows), + _n_input_cols(n_input_cols), _n_channels(n_channels), + _padding_top(static_cast<int>(padding_top)), + _padding_left(static_cast<int>(padding_left)), + _n_output_rows(n_output_rows), _n_output_cols(n_output_cols), + _convs(_dilation_factor) { + // Instantiate the base convolutions + for (int i = 0; i < _dilation_factor; i++) { + // Compute properties of this row of base convolutions + const int row_top = + i * StrideRows - _padding_top; // -ve values are in the padding + const int row_pad_top = + row_top < 0 ? iceildiv(-row_top, dilation_factor) : 0; + + const int _n_input_rows = iceildiv(n_input_rows - i, dilation_factor); + const int _n_output_rows = iceildiv(n_output_rows - i, dilation_factor); + + for (int j = 0; j < _dilation_factor; j++) { + // Compute properties of the base convolution + const int col_left = + j * StrideColumns - padding_left; // -ve values are in the padding + const int col_pad_left = + col_left < 0 ? iceildiv(-col_left, dilation_factor) : 0; + + const int _n_input_cols = iceildiv(n_input_cols - j, dilation_factor); + const int _n_output_cols = iceildiv(n_output_cols - j, dilation_factor); + + // Create new depthwise convolution engine and include it in the vector + // of engines. The new depthwise convolution engine is created by calling + // the delegate function we received as an argument. + _convs[i].emplace_back(subconvfn( + n_batches, _n_input_rows, _n_input_cols, n_channels, _n_output_rows, + _n_output_cols, activation, + // Note: since we have computed the output tensor size we don't need + // to explicitly provide bottom and right padding values to the + // depthwise convolution. + row_pad_top, col_pad_left, 0, 0)); + } + } +} + +MEMBERFN(void)::set_input(const void *const inptr) { + set_input(inptr, _n_channels); +} + +MEMBERFN(void)::set_input(const void *const inptr, const int ldcol) { + set_input(inptr, _n_input_cols * ldcol, ldcol); +} + +MEMBERFN(void) +::set_input(const void *const inptr, const int ldrow, const int ldcol) { + set_input(inptr, _n_input_rows * ldrow, ldrow, ldcol); +} + +MEMBERFN(void) +::set_input(const void *const inptr, const int ldbatch, const int ldrow, + const int ldcol) { + // Compute dilated strides + const int ldrow_dilated = ldrow * _dilation_factor; + const int ldcol_dilated = ldcol * _dilation_factor; + + // Pass input parameters on to base convolutions + for (int i = 0; i < _dilation_factor; i++) { + const int top_pos = + i * StrideRows - _padding_top + + ((static_cast<int>(i * StrideRows) < _padding_top) + ? iceildiv(_padding_top - i * StrideRows, _dilation_factor) * + _dilation_factor + : 0); + const TIn *const inptr_i = + static_cast<const TIn *>(inptr) + top_pos * ldrow; + + for (int j = 0; j < _dilation_factor; j++) { + int left_pos = j * StrideColumns - _padding_left; + while (left_pos < 0) + left_pos += _dilation_factor; + + // Modify the pointer to point to the first element of the dilated input + // tensor, then set the input for this convolution engine. + const void *const inptr_ij = inptr_i + left_pos * ldcol; + _convs[i][j]->set_input(inptr_ij, ldbatch, ldrow_dilated, ldcol_dilated); + } + } +} + +MEMBERFN(void)::set_output(void *const outptr) { + set_output(outptr, _n_channels); +} + +MEMBERFN(void)::set_output(void *const outptr, const int ldcol) { + set_output(outptr, _n_output_cols * ldcol, ldcol); +} + +MEMBERFN(void) +::set_output(void *const outptr, const int ldrow, const int ldcol) { + set_output(outptr, _n_output_rows * ldrow, ldrow, ldcol); +} + +MEMBERFN(void) +::set_output(void *const outptr, const int ldbatch, const int ldrow, + const int ldcol) { + // Compute dilated strides + const int ldrow_dilated = ldrow * _dilation_factor; + const int ldcol_dilated = ldcol * _dilation_factor; + + // Pass input parameters on to base convolutions + for (int i = 0; i < _dilation_factor; i++) { + for (int j = 0; j < _dilation_factor; j++) { + // Modify the pointer to point to the first element of the dilated input + // tensor, then set the input for this convolution engine. + void *const outptr_ij = + static_cast<TOut *>(outptr) + i * ldrow + j * ldcol; + _convs[i][j]->set_output(outptr_ij, ldbatch, ldrow_dilated, + ldcol_dilated); + } + } +} + +MEMBERFN(int) +::get_output_size(const int dim_size, const unsigned int padding_before, + const unsigned int padding_after, const int dilation_factor) { + const int input_size = + dim_size + static_cast<int>(padding_before + padding_after); + const int window_size = (KernelRows - 1) * dilation_factor + 1; + return iceildiv(input_size - window_size + 1, StrideRows); +} + +MEMBERFN(int) +::output_size(const int dim_size, const unsigned int padding_before, + const unsigned int padding_after) const { + return get_output_size(dim_size, padding_before, padding_after, + _dilation_factor); +} + +MEMBERFN(size_t)::get_packed_params_size(void) const { + return _convs[0][0]->get_packed_params_size(); +} + +MEMBERFN(void)::set_packed_params_buffer(void *buffer) { + // Set the buffer for all convolution engines + for (auto &&row : _convs) { + for (auto &&conv : row) { + conv->set_packed_params_buffer(buffer); + } + } +} + +MEMBERFN(void) +::pack_params(const void *const weights, const void *const biases) const { + _convs[0][0]->pack_params(weights, biases); +} + +MEMBERFN(void) +::pack_params(void *const buffer, const void *const weights, + const void *const biases) const { + _convs[0][0]->pack_params(buffer, weights, biases); +} + +MEMBERFN(void) +::pack_params(void *const buffer, const void *const weights, + const unsigned int ldrow, const unsigned int ldcol, + const void *const biases) const { + _convs[0][0]->pack_params(buffer, weights, ldrow, ldcol, biases); +} + +MEMBERFN(size_t)::get_working_space_size(unsigned int nthreads) const { + return _convs[0][0]->get_working_space_size(nthreads); +} + +MEMBERFN(void)::set_working_space(void *const ws) { + // Use the same working space set for all contained depthwise engines. + for (auto &&row : _convs) { + for (auto &&conv : row) { + conv->set_working_space(ws); + } + } +} + +MEMBERFN(unsigned int)::get_window(void) const { + return _convs[0][0]->get_window(); +} + +MEMBERFN(void) +::run(const unsigned int start, const unsigned int stop, + const unsigned int threadid) { + // Run each contained convolution in turn + for (auto &&row : _convs) { + for (auto &&conv : row) { + conv->run(start, stop, threadid); + } + } +} + +} // namespace depthwise diff --git a/arm_compute/graph/backends/FunctionHelpers.h b/arm_compute/graph/backends/FunctionHelpers.h index 785f6dc3b..fbf8d17f6 100644 --- a/arm_compute/graph/backends/FunctionHelpers.h +++ b/arm_compute/graph/backends/FunctionHelpers.h @@ -523,7 +523,7 @@ std::unique_ptr<IFunction> create_depthwise_convolution_layer(DepthwiseConvoluti std::string func_name; if(dwc_algorithm == DepthwiseConvolutionMethod::Optimized3x3) { - std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::DepthwiseConvolutionLayer3x3>( + std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::OptimizedDepthwiseConvolutionLayer>( std::string("DepthwiseConvolutionLayer3x3"), input, weights, biases, output, conv_info, depth_multiplier, fused_act); } diff --git a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h index 396e2368c..81bf53ace 100644 --- a/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h +++ b/arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h @@ -42,6 +42,7 @@ namespace arm_compute { +// Forward declarations class ITensor; /** Basic function to execute a depthwise convolution for kernel size 3x3xC. This function calls the following NEON kernels: @@ -157,6 +158,124 @@ private: bool _is_prepared; }; +/** Basic function to execute optimized depthwise convolution routines. This function calls the following NEON kernels: + * + * @note At the moment 3x3 and 5x5 convolution of stride 1, 2 are supported + * + * -# @ref NEFillBorderKernel (if pad_x or pad_y > 0) and no assembly kernel implementation is present + * -# @ref NEDepthwiseConvolutionLayer3x3Kernel if 3x3 and no assembly kernel implementation is present + * -# @ref NEDepthwiseConvolutionAssemblyDispatch if assembly kernel implementation is present + * -# @ref NEDirectConvolutionLayerOutputStageKernel if re-quantization of output is required + * -# @ref NEActivationLayer if fused activation is required + * + */ +class NEDepthwiseConvolutionLayerOptimized : public IFunction +{ +public: + /** Default constructor */ + NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager = nullptr); + /** Prevent instances of this class from being copied (As this class contains pointers) */ + NEDepthwiseConvolutionLayerOptimized(const NEDepthwiseConvolutionLayerOptimized &) = delete; + /** Default move constructor */ + NEDepthwiseConvolutionLayerOptimized(NEDepthwiseConvolutionLayerOptimized &&) = default; + /** Prevent instances of this class from being copied (As this class contains pointers) */ + NEDepthwiseConvolutionLayerOptimized &operator=(const NEDepthwiseConvolutionLayerOptimized &) = delete; + /** Default move assignment operator */ + NEDepthwiseConvolutionLayerOptimized &operator=(NEDepthwiseConvolutionLayerOptimized &&) = default; + /** Initialize the function's source, destination, kernels and border_size. + * + * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. + * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. + * Data type supported: Same as @p input. + * @param[out] output Destination tensor. Data type supported: same as @p input. + * @param[in] conv_info Padding and stride information to use for the convolution. + * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. + * @param[in] act_info (Optional) Activation layer information in case of a fused activation. + * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). + */ + void configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, + unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); + + /** Static function to check if given info will lead to a valid configuration of @ref NEDepthwiseConvolutionLayer3x3 + * + * @param[in] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. + * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. + * Data type supported: Same as @p input. + * @param[in] output Destination tensor. Data type supported: same as @p input. + * @param[in] conv_info Padding and stride information to use for the convolution. + * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. + * @param[in] act_info (Optional) Activation layer information in case of a fused activation. + * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). + * + * @return a status + */ + static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, + unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U)); + + // Inherited methods overriden: + void run() override; + void prepare() override; + +private: + /** Configure the kernels/functions for the generic pipeline. + * + * @param[in, out] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. + * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. + * Data type supported: Same as @p input. + * @param[out] output Destination tensor. Data type supported: same as @p input. + * @param[in] conv_info Padding and stride information to use for the convolution. + * @param[in] depth_multiplier Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. + * @param[in] act_info Activation layer information in case of a fused activation. + * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). + * + */ + void configure_generic(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, + unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation = Size2D(1U, 1U)); + /** Configure the kernels/functions for the optimized pipeline. + * + * @param[in] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. + * @param[in] biases Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. + * Data type supported: Same as @p input. + * @param[out] output Destination tensor. Data type supported: same as @p input. + * @param[in] conv_info Padding and stride information to use for the convolution. + * @param[in] depth_multiplier Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. + * @param[in] act_info Activation layer information in case of a fused activation. + */ + void configure_optimized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, + unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation = Size2D(1U, 1U)); + /** Run generic kernel */ + void run_generic(); + /** Run optimized function */ + void run_optimized(); + +private: + MemoryGroup _memory_group; + NEDepthwiseConvolutionLayer3x3Kernel _dwc_kernel; + NEDepthwiseConvolutionAssemblyDispatch _dwc_optimized_func; + NEDirectConvolutionLayerOutputStageKernel _output_stage_kernel; + NEFillBorderKernel _border_handler; + NEPermute _permute_input; + NEPermute _permute_weights; + NEPermute _permute_output; + NEActivationLayer _activationlayer_function; + Tensor _accumulator; + Tensor _permuted_input; + Tensor _permuted_weights; + Tensor _permuted_output; + const ITensor *_original_weights; + bool _has_bias; + bool _is_quantized; + bool _is_optimized; + bool _is_nchw; + bool _permute; + bool _is_activationlayer_enabled; + bool _is_prepared; +}; + /** Basic function to execute a generic depthwise convolution. This function calls the following NEON kernels: * * -# @ref NEDepthwiseIm2ColKernel diff --git a/arm_compute/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.h b/arm_compute/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.h index 7d2cff731..b88e750fa 100644 --- a/arm_compute/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.h +++ b/arm_compute/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.h @@ -30,9 +30,6 @@ #include "arm_compute/runtime/MemoryGroup.h" #include "arm_compute/runtime/Tensor.h" -#include "arm_compute/core/NEON/kernels/assembly/NEDepthwiseConvolutionAssemblyKernelWrapper.h" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise.hpp" - namespace arm_compute { /** Depthwise convolution assembly kernel glue */ @@ -52,38 +49,44 @@ public: NEDepthwiseConvolutionAssemblyDispatch &operator=(const NEDepthwiseConvolutionAssemblyDispatch &) = delete; /** Default move assignment operator */ NEDepthwiseConvolutionAssemblyDispatch &operator=(NEDepthwiseConvolutionAssemblyDispatch &&) = default; + /** Default destructor */ + ~NEDepthwiseConvolutionAssemblyDispatch(); /** Initialize the function's source, destination, kernels and border_size. * * @note Supports only NHWC format * * @param[in] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. These are 3D tensors with shape [3, 3, IFM]. Data type supported: Same as @p input. + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. * @param[in] bias (Optional) Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. * Data type supported: Same as @p input. * @param[out] output Destination tensor. Data type supported: same as @p input. * @param[in] conv_info Padding and stride information to use for the convolution. * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. * @param[in] act_info (Optional) Activation layer information in case of a fused activation. + * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). */ void configure(const ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, - const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo()); + const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), + const Size2D &dilation = Size2D(1, 1)); /** Static function to check if given info will lead to a valid configuration of @ref NEDepthwiseConvolutionAssemblyDispatch * * @note Supports only NHWC format * * @param[in] input Source tensor. Data type supported: QASYMM8/F16/F32. (Written to only for border filling). - * @param[in] weights Weights tensor. These are 3D tensors with shape [3, 3, IFM]. Data type supported: Same as @p input. + * @param[in] weights Weights tensor. These are 3D tensors with shape [W, H, IFM]. Data type supported: Same as @p input. * @param[in] bias (Optional) Biases tensor. A 1D tensor with shape [IFM]. Must be nullptr if not needed. * Data type supported: Same as @p input. * @param[out] output Destination tensor. Data type supported: same as @p input. * @param[in] conv_info Padding and stride information to use for the convolution. * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1. * @param[in] act_info (Optional) Activation layer information in case of a fused activation. + * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). * * @return An error status */ static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, - const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo()); + const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1, const ActivationLayerInfo &act_info = ActivationLayerInfo(), + const Size2D &dilation = Size2D(1, 1)); /** Check if the optimized kernel can be used for the given kernel sizes and strides * * @warning Even if this return true the inputs and outputs might need to get permuted as the only layout supported is NHWC @@ -103,16 +106,18 @@ public: void prepare() override; private: - MemoryGroup _memory_group; - const ITensor *_input; - const ITensor *_weights; - const ITensor *_bias; - ITensor *_output; - Tensor _packed_weights; - Tensor _workspace; - bool _is_prepared; - std::unique_ptr<depthwise::IDepthwiseConvolution> _dwc_assembly_kernel; - NEDepthwiseConvolutionAssemblyKernelWrapper _dwc_acl_kernel; + struct LocalImpl; + +private: + MemoryGroup _memory_group; + const ITensor *_input; + const ITensor *_weights; + const ITensor *_bias; + ITensor *_output; + Tensor _packed_weights; + Tensor _workspace; + bool _is_prepared; + std::unique_ptr<LocalImpl> _pImpl; }; } // namespace arm_compute #endif /* __ARM_COMPUTE_NEDEPTHWISECONVOLUTIONASSEMBLYDISPATCH_H__ */ diff --git a/docs/00_introduction.dox b/docs/00_introduction.dox index 8aa43201a..f216519e5 100644 --- a/docs/00_introduction.dox +++ b/docs/00_introduction.dox @@ -241,6 +241,7 @@ v19.08 Public major release - Various optimisations. - Deprecated functions/interfaces - Altered @ref QuantizationInfo interface to support per-channel quantization. + - The @ref NEDepthwiseConvolutionLayer3x3 will be replaced by @ref NEDepthwiseConvolutionLayerOptimized to accommodate for future optimizations. v19.05 Public major release - Various bug fixes. diff --git a/src/core/NEON/kernels/convolution/common/padding.cpp b/src/core/NEON/kernels/convolution/common/padding.cpp index b50067b4e..88b37b8a8 100644 --- a/src/core/NEON/kernels/convolution/common/padding.cpp +++ b/src/core/NEON/kernels/convolution/common/padding.cpp @@ -24,8 +24,8 @@ #include <cstring> #include <cstdint> -#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" -#include "arm_compute/core/NEON/kernels/convolution/common/padding.hpp" +#include "arm.hpp" +#include "padding.hpp" namespace padding { diff --git a/src/core/NEON/kernels/convolution/common/qasymm8.cpp b/src/core/NEON/kernels/convolution/common/qasymm8.cpp index 1de9ebf28..64e3156bf 100644 --- a/src/core/NEON/kernels/convolution/common/qasymm8.cpp +++ b/src/core/NEON/kernels/convolution/common/qasymm8.cpp @@ -28,7 +28,7 @@ #include <cmath> #include <limits> -#include "arm_compute/core/NEON/kernels/convolution/common/qasymm8.hpp" +#include "qasymm8.hpp" namespace qasymm8 { diff --git a/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated.cpp b/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated.cpp new file mode 100644 index 000000000..3e2bbbb61 --- /dev/null +++ b/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated.cpp @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "impl_dilated.hpp" + +template class depthwise::DilatedDepthwiseConvolution<2, 2, 3, 3, 1, 1, float, float, float>; +template class depthwise::DilatedDepthwiseConvolution<2, 2, 3, 3, 2, 2, float, float, float>; +template class depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 1, 1, float, float, float>; +template class depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float, float>; +template class depthwise::DilatedDepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float, float>; +template class depthwise::DilatedDepthwiseConvolution<4, 4, 3, 3, 2, 2, float, float, float>; diff --git a/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated_qa8_qa8.cpp b/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated_qa8_qa8.cpp new file mode 100644 index 000000000..879e06158 --- /dev/null +++ b/src/core/NEON/kernels/convolution/depthwise/depthwise_dilated_qa8_qa8.cpp @@ -0,0 +1,142 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "depthwise_quantized_dilated.hpp" +#include "impl_dilated.hpp" + +namespace depthwise { + +template <unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols> +QAsymm8DilatedDepthwiseConvolution<OutputTileRows, OutputTileCols, KernelRows, + KernelCols, StrideRows, StrideCols>:: + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right) + : QAsymm8DilatedDepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + QAsymm8DilatedDepthwiseConvolution::get_output_size( + n_input_rows, padding_top, padding_bottom, dilation_factor), + QAsymm8DilatedDepthwiseConvolution::get_output_size( + n_input_cols, padding_left, padding_right, dilation_factor), + activation, weight_quantisation, input_quantisation, + output_quantisation, padding_top, padding_left, padding_bottom, + padding_right) {} + +template <unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols> +QAsymm8DilatedDepthwiseConvolution<OutputTileRows, OutputTileCols, KernelRows, + KernelCols, StrideRows, StrideCols>:: + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right) + : QAsymm8DilatedDepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + n_output_rows, n_output_cols, activation, weight_quantisation, + input_quantisation, output_quantisation, + qasymm8::QAsymm8RescaleParams::make_rescale_params( + weight_quantisation, input_quantisation, output_quantisation), + padding_top, padding_left, padding_bottom, padding_right) {} + +template <unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols> +QAsymm8DilatedDepthwiseConvolution<OutputTileRows, OutputTileCols, KernelRows, + KernelCols, StrideRows, StrideCols>:: + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + const qasymm8::QAsymm8RescaleParams &rescale_parameters, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right) + : QAsymm8DilatedDepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + QAsymm8DilatedDepthwiseConvolution::get_output_size( + n_input_rows, padding_top, padding_bottom, dilation_factor), + QAsymm8DilatedDepthwiseConvolution::get_output_size( + n_input_cols, padding_left, padding_right, dilation_factor), + activation, weight_quantisation, input_quantisation, + output_quantisation, rescale_parameters, padding_top, padding_left, + padding_bottom, padding_right) {} + +template <unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols> +QAsymm8DilatedDepthwiseConvolution<OutputTileRows, OutputTileCols, KernelRows, + KernelCols, StrideRows, StrideCols>:: + QAsymm8DilatedDepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int dilation_factor, int n_output_rows, int n_output_cols, + nck::ActivationFunction activation, + const qasymm8::QAsymm8Params &weight_quantisation, + const qasymm8::QAsymm8Params &input_quantisation, + const qasymm8::QAsymm8Params &output_quantisation, + const qasymm8::QAsymm8RescaleParams &rescale_parameters, + unsigned int padding_top, unsigned int padding_left, + unsigned int padding_bottom, unsigned int padding_right) + : DilatedDepthwiseConvolution<OutputTileRows, OutputTileCols, KernelRows, + KernelCols, StrideRows, StrideCols, uint8_t, + int32_t, uint8_t>( + n_batches, n_input_rows, n_input_cols, n_channels, dilation_factor, + n_output_rows, n_output_cols, activation, padding_top, padding_left, + padding_bottom, padding_right, + [weight_quantisation, input_quantisation, output_quantisation, + rescale_parameters]( + const int n_batches, const int n_input_rows, + const int n_input_cols, const int n_channels, + const int n_output_rows, const int n_output_cols, + const nck::ActivationFunction activation, + const unsigned int padding_top, const unsigned int padding_left, + const unsigned int padding_bottom, + const unsigned int padding_right) -> IDepthwiseConvolution * { + return new QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, + StrideRows, StrideCols>( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, activation, weight_quantisation, + input_quantisation, output_quantisation, rescale_parameters, + padding_top, padding_left, padding_bottom, padding_right); + }) {} + +} // namespace depthwise + +template class depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 1, 1>; +template class depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 2, 2>; diff --git a/src/core/NEON/kernels/convolution/depthwise/depthwise_pack_parameters.cpp b/src/core/NEON/kernels/convolution/depthwise/depthwise_pack_parameters.cpp index 692086c74..f86f1bad7 100644 --- a/src/core/NEON/kernels/convolution/depthwise/depthwise_pack_parameters.cpp +++ b/src/core/NEON/kernels/convolution/depthwise/depthwise_pack_parameters.cpp @@ -22,7 +22,7 @@ * SOFTWARE. */ -#include "arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp" +#include "impl_base.hpp" // TODO Move to common utilities somewhere template <size_t Size> struct DType { }; diff --git a/src/core/NEON/kernels/convolution/depthwise/impl_fp16_fp16.hpp b/src/core/NEON/kernels/convolution/depthwise/impl_fp16_fp16.hpp index cbdb19a06..87d2bfd8e 100644 --- a/src/core/NEON/kernels/convolution/depthwise/impl_fp16_fp16.hpp +++ b/src/core/NEON/kernels/convolution/depthwise/impl_fp16_fp16.hpp @@ -30,8 +30,8 @@ * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC -#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp" +#include "arm.hpp" +#include "impl_base.hpp" #pragma once @@ -68,6 +68,31 @@ template < unsigned int KernelRows, unsigned int KernelCols, unsigned int StrideRows, unsigned int StrideCols > +DepthwiseConvolution< + OutputTileRows, OutputTileCols, + KernelRows, KernelCols, StrideRows, StrideCols, + float16_t, float16_t, float16_t +>::DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : Base( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, activation, + padding_top, padding_left, padding_bottom, padding_right + ) +{ +} + +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols +> template <ActivationFunction Activation> void DepthwiseConvolution< OutputTileRows, OutputTileCols, diff --git a/src/core/NEON/kernels/convolution/depthwise/impl_fp32_fp32.hpp b/src/core/NEON/kernels/convolution/depthwise/impl_fp32_fp32.hpp index 264576137..e19e4c668 100644 --- a/src/core/NEON/kernels/convolution/depthwise/impl_fp32_fp32.hpp +++ b/src/core/NEON/kernels/convolution/depthwise/impl_fp32_fp32.hpp @@ -30,8 +30,8 @@ * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ -#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp" +#include "arm.hpp" +#include "impl_base.hpp" #pragma once @@ -63,6 +63,30 @@ DepthwiseConvolution< { } +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols +> +DepthwiseConvolution< + OutputTileRows, OutputTileCols, + KernelRows, KernelCols, StrideRows, StrideCols, + float, float, float +>::DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + ActivationFunction activation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : Base( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, activation, + padding_top, padding_left, padding_bottom, padding_right + ) +{ +} template < unsigned int OutputTileRows, unsigned int OutputTileCols, diff --git a/src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp b/src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp index 5546d37e5..bda875dfe 100644 --- a/src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp +++ b/src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp @@ -32,16 +32,39 @@ #include <limits> -#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp" +#include "arm.hpp" +#include "impl_base.hpp" +#include "depthwise_quantized.hpp" #pragma once +// Comment the following to use floating-point based quantisation, leave +// uncommented to use fixed-point. +#define FIXED_POINT_REQUANTISATION 1 + using namespace neon_convolution_kernels; using namespace qasymm8; template <typename T> +struct clamp_to_limits +{ + template <typename U> + static inline U clamp(const U& v) + { + const std::numeric_limits<T> limits; + const U min = static_cast<U>(limits.min()); + const U max = static_cast<U>(limits.max()); + return std::min(std::max(v, min), max); + } + + template <typename U> + static inline T clamp_and_cast(const U& v) + { + return static_cast<U>(clamp(v)); + } +}; + +template <typename T> inline T saturating_doubling_high_mul(const T&, const int32_t&); template <> @@ -87,103 +110,214 @@ inline int32_t rounding_divide_by_exp2(const int32_t& x, const int exponent) namespace depthwise { template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols >::QAsymm8DepthwiseConvolution( - int n_batches, int n_input_rows, int n_input_cols, int n_channels, - const ActivationFunction activation, - const QAsymm8Params& weight_quantisation, - const QAsymm8Params& input_quantisation, - const QAsymm8Params& output_quantisation, - unsigned int padding_top, - unsigned int padding_left, - unsigned int padding_bottom, - unsigned int padding_right - ) : QAsymm8DepthwiseConvolution( - n_batches, n_input_rows, n_input_cols, n_channels, - activation, weight_quantisation, input_quantisation, output_quantisation, - QAsymm8RescaleParams::make_rescale_params(weight_quantisation, input_quantisation, output_quantisation), - padding_top, padding_left, padding_bottom, padding_right -) + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + const ActivationFunction activation, + const QAsymm8Params& weight_quantisation, + const QAsymm8Params& input_quantisation, + const QAsymm8Params& output_quantisation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : QAsymm8DepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, + activation, weight_quantisation, input_quantisation, output_quantisation, + QAsymm8RescaleParams::make_rescale_params(weight_quantisation, input_quantisation, output_quantisation), + padding_top, padding_left, padding_bottom, padding_right + ) { } template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols >::QAsymm8DepthwiseConvolution( - int n_batches, int n_input_rows, int n_input_cols, int n_channels, - const ActivationFunction activation, - const QAsymm8Params& weight_quantisation, - const QAsymm8Params& input_quantisation, - const QAsymm8Params& output_quantisation, - const QAsymm8RescaleParams& rescale_params, - unsigned int padding_top, - unsigned int padding_left, - unsigned int padding_bottom, - unsigned int padding_right - ) : Base( - n_batches, n_input_rows, n_input_cols, n_channels, activation, - padding_top, padding_left, padding_bottom, padding_right -), - _weights_quant(weight_quantisation), - _inputs_quant(input_quantisation), - _output_quant(output_quantisation), - rescale_parameters(rescale_params) + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + const ActivationFunction activation, + const QAsymm8Params& weight_quantisation, + const QAsymm8Params& input_quantisation, + const QAsymm8Params& output_quantisation, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : QAsymm8DepthwiseConvolution( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, + activation, weight_quantisation, input_quantisation, output_quantisation, + QAsymm8RescaleParams::make_rescale_params(weight_quantisation, input_quantisation, output_quantisation), + padding_top, padding_left, padding_bottom, padding_right + ) { } template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols +> +QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols +>::QAsymm8DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + const ActivationFunction activation, + const QAsymm8Params& weight_quantisation, + const QAsymm8Params& input_quantisation, + const QAsymm8Params& output_quantisation, + const QAsymm8RescaleParams& rescale_params, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : Base( + n_batches, n_input_rows, n_input_cols, n_channels, + get_activation_fn(activation, output_quantisation), + padding_top, padding_left, padding_bottom, padding_right + ), + _weights_quant(weight_quantisation), + _inputs_quant(input_quantisation), + _output_quant(output_quantisation), + rescale_parameters(rescale_params) +{ +} + +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols +> +QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols +>::QAsymm8DepthwiseConvolution( + int n_batches, int n_input_rows, int n_input_cols, int n_channels, + int n_output_rows, int n_output_cols, + const ActivationFunction activation, + const QAsymm8Params& weight_quantisation, + const QAsymm8Params& input_quantisation, + const QAsymm8Params& output_quantisation, + const QAsymm8RescaleParams& rescale_params, + unsigned int padding_top, + unsigned int padding_left, + unsigned int padding_bottom, + unsigned int padding_right +) : Base( + n_batches, n_input_rows, n_input_cols, n_channels, + n_output_rows, n_output_cols, + get_activation_fn(activation, output_quantisation), + padding_top, padding_left, padding_bottom, padding_right + ), + _weights_quant(weight_quantisation), + _inputs_quant(input_quantisation), + _output_quant(output_quantisation), + rescale_parameters(rescale_params) +{ +} + +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols +> +ActivationFunction QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols +>::get_activation_fn( + const ActivationFunction activation, + const QAsymm8Params& output_quant +) +{ + if ( + (activation == ActivationFunction::ReLU && + output_quant.quantize(0) == 0) || + (activation == ActivationFunction::ReLU6 && + output_quant.quantize(0) == 0 && + output_quant.dequantize(255) <= 6.0f) + ) + { + // If the range of values which can be represented by a quantized value are + // within the range that would be produced by the activation function, then + // the activation function is redundant and can be skipped. + return ActivationFunction::None; + } + else if( + activation == ActivationFunction::ReLU6 && + output_quant.dequantize(255) <= 6.0f + ) + { + // If the largest value that can be represented by a quantized value is + // lower than the upper boundary, then the activation function can be + // relaxed to a ReLU. + return ActivationFunction::ReLU; + } + + return activation; +} + +template < + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > uint8_t QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols >::_input_padding_value(void) const { return _inputs_quant.offset; } template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > void QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols >::_pack_params( - void * const buffer, - const void * const weights, - const unsigned int weight_row_stride, - const unsigned int weight_col_stride, - const void * const biases - ) const + void * const buffer, + const void * const weights, + const unsigned int weight_row_stride, + const unsigned int weight_col_stride, + const void * const biases +) const { const uint8_t *wptr = static_cast<const uint8_t *>(weights); const int32_t *bptr = static_cast<const int32_t *>(biases); uint8_t *outptr = static_cast<uint8_t *>(buffer); - // We set the vector length to use doubles on both Aarch64 and Aarch32. NOTE - // For SVE set this to half the vector length. + // We set the vector length to use quad registers on Aarch64 and only doubles + // on Aarch32. NOTE For SVE set this to the actual vector length. +#if defined(__aarch64__) + unsigned int veclen = 16; +#else +#if defined(__arm__) unsigned int veclen = 8; +#endif +#endif + + // Compute the rank 0 offset arising from the quantisation parameters. + const int32_t rank0_offset = (KernelRows * KernelCols * + static_cast<int32_t>(_weights_quant.offset) * + static_cast<int32_t>(_inputs_quant.offset)); // While there are channels left to process, pack a vector length of them at // a time and reduce the size of vector used as the size of the tensor // decreases. for ( - unsigned int n_channels = this->n_channels(); n_channels; - n_channels -= veclen, - outptr += veclen*(sizeof(int32_t) + this->kernel_rows*this->kernel_cols) - ) + unsigned int n_channels = this->n_channels(); n_channels; + n_channels -= veclen, + outptr += veclen*(sizeof(int32_t) + this->kernel_rows*this->kernel_cols) + ) { // NOTE Ignore this section if using SVE, the vector length remains the // same and we just don't fill a full register for the tail. @@ -201,8 +335,8 @@ void QAsymm8DepthwiseConvolution< // Copy a vector length of elements for (unsigned int n = 0; n < veclen && n < n_channels; n++) { - const int32_t bias = (bptr != nullptr) ? *(bptr++) : 0; - out_bptr[n] = bias; + int32_t bias = (bptr != nullptr) ? *(bptr++) : 0; + uint32_t weight_sum = 0; for (unsigned int i = 0; i < KernelRows; i++) { @@ -211,140 +345,297 @@ void QAsymm8DepthwiseConvolution< { uint8_t w = *(wptr + i*weight_row_stride + j*weight_col_stride); row_outptr[j*veclen + n] = w; + weight_sum += static_cast<uint32_t>(w); } } wptr++; + + // Include in the bias contributions from the quantisation offset + int32_t rank1_offset = static_cast<int32_t>( + static_cast<uint32_t>(_inputs_quant.offset) * weight_sum + ); + out_bptr[n] = bias + rank0_offset - rank1_offset; } } } template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols, - typename FInput, typename FOutput + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > -static inline void tilefn( - int n_channels, - const void* packed_params, - FInput &get_input_ptr, - FOutput &get_output_ptr, - const int32_t clamp_max, - const int32_t clamp_min, - const uint8_t input_offset, - const uint8_t weight_offset, - const uint8_t output_offset, - const int32_t requant_multiplier, - const int32_t requant_shift - ) +template<ActivationFunction Activation> +void QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols +>::execute_tile( + int n_channels, + const void* packed_params, + const uint8_t* inptr, + const unsigned int in_row_stride, + const unsigned int in_col_stride, + uint8_t* outptr, + const unsigned int out_row_stride, + const unsigned int out_col_stride +) { - constexpr int InnerTileRows = StrideRows * (OutputTileRows - 1) + KernelRows; - constexpr int InnerTileCols = StrideCols * (OutputTileCols - 1) + KernelCols; - - // Offset into channels - int channel = 0; + // Activation parameters (unused if Activation is None) + const uint8_t aqmin = _output_quant.offset; + const uint8_t aqmax = (Activation == ActivationFunction::ReLU6) ? + std::min<uint8_t>(255u, _output_quant.quantize(6.0f)) : 255u; // Byte type pointer to weights and biases const uint8_t *wbptr = static_cast<const uint8_t *>(packed_params); - for (; n_channels >= 8; n_channels -= 8, channel += 8) +#if defined(__aarch64__) // Under Aarch64 only use quad registers + for (; n_channels >= 16; n_channels -= 16) + { + // Load biases + const int32x4_t biases[4] = { + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr)), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 4), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 8), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 12) + }; + wbptr += 16*sizeof(int32_t); + + // Load weights + uint8x16_t weights[KernelRows][KernelCols]; + for (unsigned int i = 0; i < KernelRows; i++) + { + for (unsigned int j = 0; j < KernelCols; j++) + { + weights[i][j] = vld1q_u8(wbptr); + wbptr += 16; + } + } + + // Load the input activations + uint8x16_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) + { + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) + { + inputs[i][j] = vld1q_u8(inptr + i*in_row_stride + j*in_col_stride); + } + } + inptr += 16; + + // Perform the convolution + for (unsigned int oi = 0; oi < OutputTileRows; oi++) + { + for (unsigned int oj = 0; oj < OutputTileCols; oj++) + { + // Two sets of operations are required, we perform the + // multiply-accumulates for the convolution proper but must also sum + // the tile elements to account for the _weight_ offset. + uint32x4_t accs[4]; + for (unsigned int i = 0; i < 4; i++) + { + accs[i] = reinterpret_cast<uint32x4_t>(biases[i]); + } + + for (unsigned int wi = 0; wi < KernelRows; wi++) + { + for (unsigned int wj = 0; wj < KernelCols; wj++) + { + // Get relevant weight and activation pixel + const uint8x16_t w = weights[wi][wj]; + const uint8x16_t x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; + + // Perform multiplication and accumulation + const uint16x8_t muls[2] = { + vmull_u8(vget_low_u8(w), vget_low_u8(x)), + vmull_u8(vget_high_u8(w), vget_high_u8(x)) + }; + + const uint8x8_t woffset = vdup_n_u8(_weights_quant.offset); + const uint16x8_t sum_elems[2] = { + vmull_u8(vget_low_u8(x), woffset), + vmull_u8(vget_high_u8(x), woffset) + }; + + const uint32x4_t tmps[4] = { + vsubl_u16(vget_low_u16(muls[0]), vget_low_u16(sum_elems[0])), + vsubl_u16(vget_high_u16(muls[0]), vget_high_u16(sum_elems[0])), + vsubl_u16(vget_low_u16(muls[1]), vget_low_u16(sum_elems[1])), + vsubl_u16(vget_high_u16(muls[1]), vget_high_u16(sum_elems[1])), + }; + for (unsigned int i = 0; i < 4; i++) + { + accs[i] = vaddq_u32(accs[i], tmps[i]); + } + } + } + + // Rescale the accumulator and add in the new offset. + uint32x4_t final_accs[4]; + for (unsigned int i = 0; i < 4; i++) + { +#ifdef FIXED_POINT_REQUANTISATION + const int32x4_t y = rounding_divide_by_exp2( + saturating_doubling_high_mul( + reinterpret_cast<int32x4_t>(accs[i]), rescale_parameters.multiplier + ), + rescale_parameters.shift + ); + const int32x4_t offset = reinterpret_cast<int32x4_t>(vdupq_n_u32(_output_quant.offset)); + final_accs[i] = reinterpret_cast<uint32x4_t>(vmaxq_s32(vaddq_s32(y, offset), vdupq_n_s32(0))); +#else // floating point requantisation + float32x4_t fp_acc = vcvtq_f32_s32(reinterpret_cast<int32x4_t>(accs[i])); + fp_acc = vmulq_f32(fp_acc, vdupq_n_f32(rescale_parameters.rescale)); + fp_acc = vaddq_f32(fp_acc, vdupq_n_f32(static_cast<float>(_output_quant.offset))); + fp_acc = vmaxq_f32(fp_acc, vdupq_n_f32(0.0f)); + final_accs[i] = vcvtq_u32_f32(fp_acc); +#endif + } + + uint8x16_t output = vcombine_u8( + vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[0]), vqmovn_u32(final_accs[1]))), + vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[2]), vqmovn_u32(final_accs[3]))) + ); + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = vmaxq_u8(output, vdupq_n_u8(aqmin)); + } + if (Activation == ActivationFunction::ReLU6) + { + output = vminq_u8(output, vdupq_n_u8(aqmax)); + } + + vst1q_u8(outptr + oi*out_row_stride + oj*out_col_stride, output); + } + } + outptr += 16; + } +#endif // defined(__aarch64__) + for (; n_channels >= 8; n_channels -= 8) { const int32x4_t biases[2] = { - vld1q_s32(reinterpret_cast<const int32_t *>(wbptr)), - vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 4), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr)), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 4), }; wbptr += 8*sizeof(int32_t); - int16x8_t weights[KernelRows][KernelCols]; - const uint8x8_t woffset = vdup_n_u8(weight_offset); + uint8x8_t weights[KernelRows][KernelCols]; for (unsigned int i = 0; i < KernelRows; i++) { for (unsigned int j = 0; j < KernelCols; j++) { - const uint8x8_t w = vld1_u8(wbptr); - weights[i][j] = reinterpret_cast<int16x8_t>(vsubl_u8(w, woffset)); + weights[i][j] = vld1_u8(wbptr); wbptr += 8; } } - int16x8_t inputs[InnerTileRows][InnerTileCols]; - const uint8x8_t ioffset = vdup_n_u8(input_offset); - for (unsigned int i = 0; i < InnerTileRows; i++) + uint8x8_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) { - for (unsigned int j = 0; j < InnerTileCols; j++) + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) { - const auto x = vld1_u8(get_input_ptr(i, j, channel)); - inputs[i][j] = reinterpret_cast<int16x8_t>(vsubl_u8(x, ioffset)); + inputs[i][j] = vld1_u8(inptr + i*in_row_stride + j*in_col_stride); } } + inptr += 8; for (unsigned int oi = 0; oi < OutputTileRows; oi++) { for (unsigned int oj = 0; oj < OutputTileCols; oj++) { - int32x4_t accs[2]; + uint32x4_t accs[2]; for (unsigned int i = 0; i < 2; i++) { - accs[i] = biases[i]; + accs[i] = reinterpret_cast<uint32x4_t>(biases[i]); } for (unsigned int wi = 0; wi < KernelRows; wi++) { for (unsigned int wj = 0; wj < KernelCols; wj++) { - const auto w = weights[wi][wj]; - const auto x = inputs[oi * StrideRows + wi][oj * StrideCols + wj]; - accs[0] = vmlal_s16(accs[0], vget_low_s16(w), vget_low_s16(x)); - accs[1] = vmlal_s16(accs[1], vget_high_s16(w), vget_high_s16(x)); + const uint8x8_t w = weights[wi][wj]; + const uint8x8_t x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; + + const uint16x8_t muls = vmull_u8(w, x); + const uint8x8_t woffset = vdup_n_u8(_weights_quant.offset); + const uint16x8_t sum_elems = vmull_u8(x, woffset); + + const uint32x4_t tmps[2] = { + vsubl_u16(vget_low_u16(muls), vget_low_u16(sum_elems)), + vsubl_u16(vget_high_u16(muls), vget_high_u16(sum_elems)), + }; + for (unsigned int i = 0; i < 2; i++) + { + accs[i] = vaddq_u32(accs[i], tmps[i]); + } } } - int32x4_t final_accs[2]; + uint32x4_t final_accs[2]; for (unsigned int i = 0; i < 2; i++) { +#ifdef FIXED_POINT_REQUANTISATION const int32x4_t y = rounding_divide_by_exp2( - saturating_doubling_high_mul(accs[i], requant_multiplier), - requant_shift); - const int32x4_t offset = reinterpret_cast<int32x4_t>(vdupq_n_u32(output_offset)); - final_accs[i] = vaddq_s32(y, offset); - final_accs[i] = vmaxq_s32(final_accs[i], vdupq_n_s32(clamp_min)); - final_accs[i] = vminq_s32(final_accs[i], vdupq_n_s32(clamp_max)); + saturating_doubling_high_mul( + reinterpret_cast<int32x4_t>(accs[i]), rescale_parameters.multiplier + ), + rescale_parameters.shift + ); + const int32x4_t offset = reinterpret_cast<int32x4_t>(vdupq_n_u32(_output_quant.offset)); + final_accs[i] = reinterpret_cast<uint32x4_t>(vmaxq_s32(vaddq_s32(y, offset), vdupq_n_s32(0))); +#else // floating point requantisation + float32x4_t fp_acc = vcvtq_f32_s32(reinterpret_cast<int32x4_t>(accs[i])); + fp_acc = vmulq_f32(fp_acc, vdupq_n_f32(rescale_parameters.rescale)); + fp_acc = vaddq_f32(fp_acc, vdupq_n_f32(static_cast<float>(_output_quant.offset))); + fp_acc = vmaxq_f32(fp_acc, vdupq_n_f32(0.0f)); + final_accs[i] = vcvtq_u32_f32(fp_acc); +#endif } - const auto elems_s16 = vuzpq_s16(vreinterpretq_s16_s32(final_accs[0]), - vreinterpretq_s16_s32(final_accs[1])); - const int8x16_t elems = vreinterpretq_s8_s16(elems_s16.val[0]); - const uint8x8_t output = - vget_low_u8(vreinterpretq_u8_s8(vuzpq_s8(elems, elems).val[0])); - vst1_u8(get_output_ptr(oi, oj, channel), output); + uint8x8_t output = vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[0]), vqmovn_u32(final_accs[1]))); + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = vmax_u8(output, vdup_n_u8(aqmin)); + } + if (Activation == ActivationFunction::ReLU6) + { + output = vmin_u8(output, vdup_n_u8(aqmax)); + } + + vst1_u8(outptr + oi*out_row_stride + oj*out_col_stride, output); } } + outptr += 8; } - for (; n_channels; n_channels--, channel++) + for (; n_channels; n_channels--) { // Load bias const int32_t bias = *reinterpret_cast<const int32_t *>(wbptr); wbptr += sizeof(int32_t); // Load weights - int16_t weights[KernelRows][KernelCols]; + uint8_t weights[KernelRows][KernelCols]; for (unsigned int i = 0; i < KernelRows; i++) { for (unsigned int j = 0; j < KernelCols; j++) { - weights[i][j] = *(wbptr++) - weight_offset; + weights[i][j] = *(wbptr++); } } // Load the input activations - int16_t inputs[InnerTileRows][InnerTileCols]; - for (unsigned int i = 0; i < InnerTileRows; i++) + uint8_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) { - for (unsigned int j = 0; j < InnerTileCols; j++) + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) { - inputs[i][j] = *(get_input_ptr(i, j, channel)) - input_offset; + inputs[i][j] = *(inptr + i*in_row_stride + j*in_col_stride); } } + inptr++; // Perform the convolution for (unsigned int oi = 0; oi < OutputTileRows; oi++) @@ -352,135 +643,377 @@ static inline void tilefn( for (unsigned int oj = 0; oj < OutputTileCols; oj++) { int32_t acc = bias; + uint32_t element_sum = 0; for (unsigned int wi = 0; wi < KernelRows; wi++) { for (unsigned int wj = 0; wj < KernelCols; wj++) { const auto w = weights[wi][wj], x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; - acc += w * x; + acc += static_cast<int32_t>(static_cast<uint32_t>(w) * static_cast<uint32_t>(x)); + element_sum += static_cast<uint32_t>(x); } } + acc -= static_cast<int32_t>(element_sum) * static_cast<int32_t>(_weights_quant.offset); + // Requantize +#ifdef FIXED_POINT_REQUANTISATION acc = rounding_divide_by_exp2( - saturating_doubling_high_mul(acc, requant_multiplier), - requant_shift); - acc += output_offset; - acc = std::max(acc, clamp_min); - acc = std::min(acc, clamp_max); - uint8_t output = static_cast<uint8_t>(acc); - *(get_output_ptr(oi, oj, channel)) = output; + saturating_doubling_high_mul(acc, rescale_parameters.multiplier), + rescale_parameters.shift + ); + acc += _output_quant.offset; + uint8_t output = clamp_to_limits<uint8_t>::clamp_and_cast<int32_t>(acc); +#else // floating point requantization + float fp_acc = static_cast<float>(acc); + fp_acc *= rescale_parameters.rescale; + fp_acc += static_cast<float>(_output_quant.offset); + fp_acc = std::max<float>(fp_acc, 0.0f); + uint8_t output = static_cast<uint8_t>(std::min<int32_t>(static_cast<int32_t>(fp_acc), 255)); +#endif + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = std::max(output, aqmin); + } + if (Activation == ActivationFunction::ReLU6) + { + output = std::min(output, aqmax); + } + + *(outptr + oi*out_row_stride + oj*out_col_stride) = output; } } + outptr++; } } template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols, - typename FInput, typename FOutput + unsigned int OutputTileRows, unsigned int OutputTileCols, + unsigned int KernelRows, unsigned int KernelCols, + unsigned int StrideRows, unsigned int StrideCols > -static inline void execute_tilefn( - int n_channels, - const void* packed_params, - const nck::ActivationFunction actfn, - FInput &get_input_ptr, - FOutput &get_output_ptr, - const QAsymm8Params &input_quant, - const QAsymm8Params &weight_quant, - const QAsymm8Params &output_quant, - const QAsymm8RescaleParams &requant - ) { - // Compute min/max clamp values - int32_t clamp_min = std::numeric_limits<uint8_t>::min(); - int32_t clamp_max = std::numeric_limits<uint8_t>::max(); - - if (actfn == nck::ActivationFunction::ReLU || - actfn == nck::ActivationFunction::ReLU6) { - const int32_t bottom_rail = output_quant.offset; - clamp_min = std::max(clamp_min, bottom_rail); +template<ActivationFunction Activation> +void QAsymm8DepthwiseConvolution< + OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols +>::execute_tile( + int n_channels, + const void* packed_params, + const uint8_t* inptrs[Base::inner_tile_rows][Base::inner_tile_cols], + uint8_t* outptrs[Base::output_tile_rows][Base::output_tile_cols] +) +{ + // Activation parameters (unused if Activation is None) + const uint8_t aqmin = _output_quant.offset; + const uint8_t aqmax = (Activation == ActivationFunction::ReLU6) ? + std::min<uint8_t>(255u, _output_quant.quantize(6.0f)) : 255u; + + // Byte type pointer to weights and biases + const uint8_t *wbptr = static_cast<const uint8_t *>(packed_params); + + // Offset into input/output tensors + int n = 0; + +#if defined(__aarch64__) // Under Aarch64 only use quad registers + for (; n_channels >= 16; n_channels -= 16, n += 16) + { + // Load biases + const int32x4_t biases[4] = { + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr)), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 4), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 8), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 12) + }; + wbptr += 16*sizeof(int32_t); + + // Load weights + uint8x16_t weights[KernelRows][KernelCols]; + for (unsigned int i = 0; i < KernelRows; i++) + { + for (unsigned int j = 0; j < KernelCols; j++) + { + weights[i][j] = vld1q_u8(wbptr); + wbptr += 16; + } + } + + // Load the input activations + uint8x16_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) + { + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) + { + inputs[i][j] = vld1q_u8(inptrs[i][j] + n); + } + } + + // Perform the convolution + for (unsigned int oi = 0; oi < OutputTileRows; oi++) + { + for (unsigned int oj = 0; oj < OutputTileCols; oj++) + { + // Two sets of operations are required, we perform the + // multiply-accumulates for the convolution proper but must also sum + // the tile elements to account for the _weight_ offset. + uint32x4_t accs[4]; + for (unsigned int i = 0; i < 4; i++) + { + accs[i] = reinterpret_cast<uint32x4_t>(biases[i]); + } + + for (unsigned int wi = 0; wi < KernelRows; wi++) + { + for (unsigned int wj = 0; wj < KernelCols; wj++) + { + // Get relevant weight and activation pixel + const uint8x16_t w = weights[wi][wj]; + const uint8x16_t x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; + + // Perform multiplication and accumulation + const uint16x8_t muls[2] = { + vmull_u8(vget_low_u8(w), vget_low_u8(x)), + vmull_u8(vget_high_u8(w), vget_high_u8(x)) + }; + + const uint8x8_t woffset = vdup_n_u8(_weights_quant.offset); + const uint16x8_t sum_elems[2] = { + vmull_u8(vget_low_u8(x), woffset), + vmull_u8(vget_high_u8(x), woffset) + }; + + const uint32x4_t tmps[4] = { + vsubl_u16(vget_low_u16(muls[0]), vget_low_u16(sum_elems[0])), + vsubl_u16(vget_high_u16(muls[0]), vget_high_u16(sum_elems[0])), + vsubl_u16(vget_low_u16(muls[1]), vget_low_u16(sum_elems[1])), + vsubl_u16(vget_high_u16(muls[1]), vget_high_u16(sum_elems[1])), + }; + for (unsigned int i = 0; i < 4; i++) + { + accs[i] = vaddq_u32(accs[i], tmps[i]); + } + } + } + + // Rescale the accumulator and add in the new offset. + uint32x4_t final_accs[4]; + for (unsigned int i = 0; i < 4; i++) + { +#ifdef FIXED_POINT_REQUANTISATION + const int32x4_t y = rounding_divide_by_exp2( + saturating_doubling_high_mul( + reinterpret_cast<int32x4_t>(accs[i]), rescale_parameters.multiplier + ), + rescale_parameters.shift + ); + const int32x4_t offset = reinterpret_cast<int32x4_t>(vdupq_n_u32(_output_quant.offset)); + final_accs[i] = reinterpret_cast<uint32x4_t>(vmaxq_s32(vaddq_s32(y, offset), vdupq_n_s32(0))); +#else // floating point requantisation + float32x4_t fp_acc = vcvtq_f32_s32(reinterpret_cast<int32x4_t>(accs[i])); + fp_acc = vmulq_f32(fp_acc, vdupq_n_f32(rescale_parameters.rescale)); + fp_acc = vaddq_f32(fp_acc, vdupq_n_f32(static_cast<float>(_output_quant.offset))); + fp_acc = vmaxq_f32(fp_acc, vdupq_n_f32(0.0f)); + final_accs[i] = vcvtq_u32_f32(fp_acc); +#endif + } + + uint8x16_t output = vcombine_u8( + vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[0]), vqmovn_u32(final_accs[1]))), + vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[2]), vqmovn_u32(final_accs[3]))) + ); + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = vmaxq_u8(output, vdupq_n_u8(aqmin)); + } + if (Activation == ActivationFunction::ReLU6) + { + output = vminq_u8(output, vdupq_n_u8(aqmax)); + } + + vst1q_u8(outptrs[oi][oj] + n, output); + } + } } +#endif // defined(__aarch64__) + for (; n_channels >= 8; n_channels -= 8, n += 8) + { + const int32x4_t biases[2] = { + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr)), + vld1q_s32(reinterpret_cast<const int32_t *>(wbptr) + 4), + }; + wbptr += 8*sizeof(int32_t); + + uint8x8_t weights[KernelRows][KernelCols]; + for (unsigned int i = 0; i < KernelRows; i++) + { + for (unsigned int j = 0; j < KernelCols; j++) + { + weights[i][j] = vld1_u8(wbptr); + wbptr += 8; + } + } + + uint8x8_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) + { + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) + { + inputs[i][j] = vld1_u8(inptrs[i][j] + n); + } + } + + for (unsigned int oi = 0; oi < OutputTileRows; oi++) + { + for (unsigned int oj = 0; oj < OutputTileCols; oj++) + { + uint32x4_t accs[2]; + for (unsigned int i = 0; i < 2; i++) + { + accs[i] = reinterpret_cast<uint32x4_t>(biases[i]); + } + + for (unsigned int wi = 0; wi < KernelRows; wi++) + { + for (unsigned int wj = 0; wj < KernelCols; wj++) + { + const uint8x8_t w = weights[wi][wj]; + const uint8x8_t x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; + + const uint16x8_t muls = vmull_u8(w, x); + const uint8x8_t woffset = vdup_n_u8(_weights_quant.offset); + const uint16x8_t sum_elems = vmull_u8(x, woffset); + + const uint32x4_t tmps[2] = { + vsubl_u16(vget_low_u16(muls), vget_low_u16(sum_elems)), + vsubl_u16(vget_high_u16(muls), vget_high_u16(sum_elems)), + }; + for (unsigned int i = 0; i < 2; i++) + { + accs[i] = vaddq_u32(accs[i], tmps[i]); + } + } + } + + uint32x4_t final_accs[2]; + for (unsigned int i = 0; i < 2; i++) + { +#ifdef FIXED_POINT_REQUANTISATION + const int32x4_t y = rounding_divide_by_exp2( + saturating_doubling_high_mul( + reinterpret_cast<int32x4_t>(accs[i]), rescale_parameters.multiplier + ), + rescale_parameters.shift + ); + const int32x4_t offset = reinterpret_cast<int32x4_t>(vdupq_n_u32(_output_quant.offset)); + final_accs[i] = reinterpret_cast<uint32x4_t>(vmaxq_s32(vaddq_s32(y, offset), vdupq_n_s32(0))); +#else // floating point requantisation + float32x4_t fp_acc = vcvtq_f32_s32(reinterpret_cast<int32x4_t>(accs[i])); + fp_acc = vmulq_f32(fp_acc, vdupq_n_f32(rescale_parameters.rescale)); + fp_acc = vaddq_f32(fp_acc, vdupq_n_f32(static_cast<float>(_output_quant.offset))); + fp_acc = vmaxq_f32(fp_acc, vdupq_n_f32(0.0f)); + final_accs[i] = vcvtq_u32_f32(fp_acc); +#endif + } + + uint8x8_t output = vqmovn_u16(vcombine_u16(vqmovn_u32(final_accs[0]), vqmovn_u32(final_accs[1]))); + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = vmax_u8(output, vdup_n_u8(aqmin)); + } + if (Activation == ActivationFunction::ReLU6) + { + output = vmin_u8(output, vdup_n_u8(aqmax)); + } - if (actfn == nck::ActivationFunction::ReLU6) { - const int32_t top_rail = output_quant.quantize(6.0f); - clamp_max = std::min(clamp_max, top_rail); + vst1_u8(outptrs[oi][oj] + n, output); + } + } } + for (; n_channels; n_channels--, n++) + { + // Load bias + const int32_t bias = *reinterpret_cast<const int32_t *>(wbptr); + wbptr += sizeof(int32_t); - // Call the tile execution method - tilefn<OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, - StrideCols>(n_channels, packed_params, get_input_ptr, get_output_ptr, - clamp_max, clamp_min, input_quant.offset, - weight_quant.offset, output_quant.offset, - requant.multiplier, requant.shift); -} + // Load weights + uint8_t weights[KernelRows][KernelCols]; + for (unsigned int i = 0; i < KernelRows; i++) + { + for (unsigned int j = 0; j < KernelCols; j++) + { + weights[i][j] = *(wbptr++); + } + } -template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols -> -template <nck::ActivationFunction Activation> -void QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols ->::execute_tile( - int n_channels, - const void* packed_params, - const uint8_t* inptr, - unsigned int in_row_stride, - unsigned int in_col_stride, - uint8_t* outptr, - unsigned int out_row_stride, - unsigned int out_col_stride - ) { - // Construct methods to get pointers - const auto get_input_ptr = [inptr, in_row_stride, in_col_stride]( - const int i, const int j, const int channel) { - return inptr + i * in_row_stride + j * in_col_stride + channel; - }; - - const auto get_output_ptr = [outptr, out_row_stride, out_col_stride]( - const int i, const int j, const int channel) { - return outptr + i * out_row_stride + j * out_col_stride + channel; - }; - - execute_tilefn<OutputTileRows, OutputTileCols, KernelRows, KernelCols, - StrideRows, StrideCols>( - n_channels, packed_params, Activation, get_input_ptr, get_output_ptr, - _inputs_quant, _weights_quant, _output_quant, rescale_parameters); -} + // Load the input activations + uint8_t inputs[Base::inner_tile_rows][Base::inner_tile_cols]; + for (unsigned int i = 0; i < Base::inner_tile_rows; i++) + { + for (unsigned int j = 0; j < Base::inner_tile_cols; j++) + { + inputs[i][j] = *(inptrs[i][j] + n); + } + } -template < - unsigned int OutputTileRows, unsigned int OutputTileCols, - unsigned int KernelRows, unsigned int KernelCols, - unsigned int StrideRows, unsigned int StrideCols -> -template <nck::ActivationFunction Activation> -void QAsymm8DepthwiseConvolution< - OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols ->::execute_tile( - int n_channels, - const void* packed_params, - const uint8_t* inptrs[Base::inner_tile_rows][Base::inner_tile_cols], - uint8_t* outptrs[Base::output_tile_rows][Base::output_tile_cols] - ) { - // Construct methods to get pointers - const auto get_input_ptr = [inptrs](const int i, const int j, - const int channel) { - return inptrs[i][j] + channel; - }; - - const auto get_output_ptr = [outptrs](const int i, const int j, - const int channel) { - return outptrs[i][j] + channel; - }; - - // Call the tile execution method - execute_tilefn<OutputTileRows, OutputTileCols, KernelRows, KernelCols, - StrideRows, StrideCols>( - n_channels, packed_params, Activation, get_input_ptr, get_output_ptr, - _inputs_quant, _weights_quant, _output_quant, rescale_parameters); + // Perform the convolution + for (unsigned int oi = 0; oi < OutputTileRows; oi++) + { + for (unsigned int oj = 0; oj < OutputTileCols; oj++) + { + int32_t acc = bias; + uint32_t element_sum = 0; + + for (unsigned int wi = 0; wi < KernelRows; wi++) + { + for (unsigned int wj = 0; wj < KernelCols; wj++) + { + const auto w = weights[wi][wj], x = inputs[oi*StrideRows + wi][oj*StrideCols + wj]; + acc += static_cast<int32_t>(static_cast<uint32_t>(w) * static_cast<uint32_t>(x)); + element_sum += static_cast<uint32_t>(x); + } + } + + acc -= static_cast<int32_t>(element_sum) * static_cast<int32_t>(_weights_quant.offset); + + // Requantize +#ifdef FIXED_POINT_REQUANTISATION + acc = rounding_divide_by_exp2( + saturating_doubling_high_mul(acc, rescale_parameters.multiplier), + rescale_parameters.shift + ); + acc += _output_quant.offset; + uint8_t output = clamp_to_limits<uint8_t>::clamp_and_cast<int32_t>(acc); +#else // floating point requantization + float fp_acc = static_cast<float>(acc); + fp_acc *= rescale_parameters.rescale; + fp_acc += static_cast<float>(_output_quant.offset); + fp_acc = std::max<float>(fp_acc, 0.0f); + uint8_t output = static_cast<uint8_t>(std::min<int32_t>(static_cast<int32_t>(fp_acc), 255)); +#endif + + // Apply the activation function + if (Activation == ActivationFunction::ReLU || + Activation == ActivationFunction::ReLU6) + { + output = std::max(output, aqmin); + } + if (Activation == ActivationFunction::ReLU6) + { + output = std::min(output, aqmax); + } + + *(outptrs[oi][oj] + n) = output; + } + } + } } } // namespace depthwise diff --git a/src/graph/backends/CL/CLFunctionsFactory.cpp b/src/graph/backends/CL/CLFunctionsFactory.cpp index 9f8064e92..c14100ab4 100644 --- a/src/graph/backends/CL/CLFunctionsFactory.cpp +++ b/src/graph/backends/CL/CLFunctionsFactory.cpp @@ -59,8 +59,8 @@ struct CLConvolutionLayerFunctions /** Collection of CL depthwise convolution functions */ struct CLDepthwiseConvolutionLayerFunctions { - using GenericDepthwiseConvolutionLayer = CLDepthwiseConvolutionLayer; - using DepthwiseConvolutionLayer3x3 = CLDepthwiseConvolutionLayer3x3; + using GenericDepthwiseConvolutionLayer = CLDepthwiseConvolutionLayer; + using OptimizedDepthwiseConvolutionLayer = CLDepthwiseConvolutionLayer3x3; }; /** Collection of CL element-wise functions */ diff --git a/src/graph/backends/NEON/NEFunctionFactory.cpp b/src/graph/backends/NEON/NEFunctionFactory.cpp index c31072661..d4892f53a 100644 --- a/src/graph/backends/NEON/NEFunctionFactory.cpp +++ b/src/graph/backends/NEON/NEFunctionFactory.cpp @@ -65,8 +65,8 @@ struct NEConvolutionLayerFunctions /** Collection of CL depthwise convolution functions */ struct NEDepthwiseConvolutionLayerFunctions { - using GenericDepthwiseConvolutionLayer = NEDepthwiseConvolutionLayer; - using DepthwiseConvolutionLayer3x3 = NEDepthwiseConvolutionLayer3x3; + using GenericDepthwiseConvolutionLayer = NEDepthwiseConvolutionLayer; + using OptimizedDepthwiseConvolutionLayer = NEDepthwiseConvolutionLayerOptimized; }; /** Collection of CL element-wise functions */ diff --git a/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp b/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp index 43288ec4c..45cc2d276 100644 --- a/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp +++ b/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp @@ -363,6 +363,333 @@ void NEDepthwiseConvolutionLayer3x3::prepare() } } +NEDepthwiseConvolutionLayerOptimized::NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager) + : _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(), + _activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false), + _is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false) +{ +} + +void NEDepthwiseConvolutionLayerOptimized::configure_generic(ITensor *input, + const ITensor *weights, + const ITensor *biases, + ITensor *output, + const PadStrideInfo &conv_info, + unsigned int depth_multiplier, + const ActivationLayerInfo &act_info, + const Size2D &dilation) +{ + ARM_COMPUTE_UNUSED(act_info); + + PixelValue zero_value(0.f); + + // Initialize the intermediate accumulator tensor in case of quantized input + if(_is_quantized) + { + TensorShape accum_shape = output->info()->tensor_shape(); + DataLayout accum_layout = output->info()->data_layout(); + if(!_is_nchw) + { + permute(accum_shape, PermutationVector(1U, 2U, 0U)); + accum_layout = DataLayout::NCHW; + } + + _memory_group.manage(&_accumulator); + _accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info())); + _accumulator.info()->set_data_layout(accum_layout); + zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().uniform().offset)); + } + + if(!_is_nchw) + { + _memory_group.manage(&_permuted_input); + _memory_group.manage(&_permuted_output); + + // Configure the function to transform the input tensor from NHWC -> NCHW + _permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U)); + _permuted_input.info()->set_data_layout(DataLayout::NCHW); + + // Configure the function to transform the weights tensor from HWI -> IHW + _permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); + _permuted_weights.info()->set_data_layout(DataLayout::NCHW); + _permuted_output.info()->set_quantization_info(output->info()->quantization_info()); + + // Configure depthwise + _dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation); + + // Configure border handler + _border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value); + + // Allocate tensors + _permuted_input.allocator()->allocate(); + } + else + { + // Configure depthwise convolution kernel + _dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation); + + // Configure border handler + _border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value); + } + + // Configure biases accumulation + if(_is_quantized) + { + const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); + const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform(); + const UniformQuantizationInfo oq_info = (output->info()->total_size() == 0) ? iq_info : output->info()->quantization_info().uniform(); + + float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale; + int output_multiplier; + int output_shift; + quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); + _output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, oq_info.offset); + _accumulator.allocator()->allocate(); + } + else if(_has_bias) + { + _output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases); + } + + // Permute output + if(!_is_nchw) + { + // Configure the function to transform the convoluted output to NHWC + _permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U)); + _permuted_output.allocator()->allocate(); + } +} + +void NEDepthwiseConvolutionLayerOptimized::configure_optimized(const ITensor *input, + const ITensor *weights, + const ITensor *biases, + ITensor *output, + const PadStrideInfo &conv_info, + unsigned int depth_multiplier, + const ActivationLayerInfo &act_info, + const Size2D &dilation) +{ + ActivationLayerInfo act_info_to_use = ActivationLayerInfo(); + const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info); + const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info); + _is_activationlayer_enabled = act_info.enabled() && !(is_relu || is_relu6); + if(!_is_activationlayer_enabled) + { + act_info_to_use = act_info; + } + + if(_is_nchw) + { + _memory_group.manage(&_permuted_input); + _memory_group.manage(&_permuted_output); + + // Configure the function to transform the input tensor from NCHW -> NHWC + _permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U)); + _permuted_input.info()->set_data_layout(DataLayout::NHWC); + + // Configure the function to transform the weights tensor from IHW -> HWI + _permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U)); + _permuted_weights.info()->set_data_layout(DataLayout::NHWC); + + _permuted_output.info()->set_data_layout(DataLayout::NHWC); + _permuted_output.info()->set_quantization_info(output->info()->quantization_info()); + + // Configure optimized depthwise + _dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use, dilation); + + // Configure the function to transform the convoluted output to ACL's native ordering format NCHW + _permuted_output.info()->set_data_layout(DataLayout::NHWC); + _permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U)); + + // Allocate tensors + _permuted_input.allocator()->allocate(); + _permuted_output.allocator()->allocate(); + } + else + { + _dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use, dilation); + } +} + +void NEDepthwiseConvolutionLayerOptimized::configure(ITensor *input, + const ITensor *weights, + const ITensor *biases, + ITensor *output, const PadStrideInfo &conv_info, + unsigned int depth_multiplier, + const ActivationLayerInfo &act_info, + const Size2D &dilation) +{ + ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); + ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); + + // idx_w and idx_h only used for validation + const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); + const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); + ARM_COMPUTE_UNUSED(idx_w); + ARM_COMPUTE_UNUSED(idx_h); + + ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); + ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); + + _original_weights = weights; + _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); + _has_bias = biases != nullptr; + _is_optimized = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(), + weights->info(), + conv_info, + depth_multiplier, + dilation); + _is_nchw = input->info()->data_layout() == DataLayout::NCHW; + _permute = _is_optimized == _is_nchw; + _is_prepared = false; + _is_activationlayer_enabled = act_info.enabled(); + + // Configure appropriate pipeline + if(_is_optimized) + { + configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); + } + else + { + configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); + } + + // Configure activation + if(_is_activationlayer_enabled) + { + _activationlayer_function.configure(output, nullptr, act_info); + } +} + +Status NEDepthwiseConvolutionLayerOptimized::validate(const ITensorInfo *input, + const ITensorInfo *weights, + const ITensorInfo *biases, + const ITensorInfo *output, + const PadStrideInfo &conv_info, + unsigned int depth_multiplier, + const ActivationLayerInfo &act_info, + const Size2D &dilation) +{ + ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); + ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); + ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1); + const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); + const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); + ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); + ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); + + if(biases != nullptr) + { + const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); + ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); + ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx)); + } + + if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation)) + { + const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); + TensorInfo accumulator = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32)); + ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier, dilation)); + + if(is_quantized) + { + ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output)); + } + } + else + { + ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation)); + } + + //Validate Activation Layer + if(act_info.enabled()) + { + ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info)); + } + + return Status{}; +} + +void NEDepthwiseConvolutionLayerOptimized::run_generic() +{ + // Fill border + NEScheduler::get().schedule(&_border_handler, Window::DimX); + + // Execute depthwise convolution + NEScheduler::get().schedule(&_dwc_kernel, Window::DimX); + + // Add biases + if(_has_bias || _is_quantized) + { + NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); + } + + // Permute output + if(!_is_nchw) + { + _permute_output.run(); + } +} + +void NEDepthwiseConvolutionLayerOptimized::run_optimized() +{ + // Run assembly function + _dwc_optimized_func.run(); + + // Permute output + if(_is_nchw) + { + _permute_output.run(); + } +} + +void NEDepthwiseConvolutionLayerOptimized::run() +{ + prepare(); + + MemoryGroupResourceScope scope_mg(_memory_group); + + // Permute input + if(_permute) + { + _permute_input.run(); + } + + _is_optimized ? run_optimized() : run_generic(); + + // Run activation + if(_is_activationlayer_enabled) + { + _activationlayer_function.run(); + } +} + +void NEDepthwiseConvolutionLayerOptimized::prepare() +{ + if(!_is_prepared) + { + // Permute weights + if(_permute) + { + _permuted_weights.allocator()->allocate(); + _permute_weights.run(); + _original_weights->mark_as_unused(); + } + + // Prepare optimized function + if(_is_optimized) + { + _dwc_optimized_func.prepare(); + if(!_permuted_weights.is_used()) + { + _permuted_weights.allocator()->free(); + } + } + + _is_prepared = true; + } +} + NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _permute_input(), _permute_weights(), _permute_output(), _activationlayer_function(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _permuted_input(), _permuted_weights(), diff --git a/src/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.cpp b/src/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.cpp index 5f57bbfe2..b28aaa715 100644 --- a/src/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.cpp +++ b/src/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.cpp @@ -26,7 +26,9 @@ #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/ITensor.h" -#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp" +#include "arm_compute/core/NEON/kernels/assembly/NEDepthwiseConvolutionAssemblyKernelWrapper.h" +#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp" +#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/InfoHelpers.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" @@ -42,19 +44,22 @@ std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor const ITensor *weights, ITensor *output, PadStrideInfo conv_info, - ActivationLayerInfo act_info) + ActivationLayerInfo act_info, + const Size2D &dilation) { + ARM_COMPUTE_UNUSED(dilation); const DataType data_type = input->info()->data_type(); const TensorShape shape = input->info()->tensor_shape(); - const int n_batches = shape[3]; - const int in_rows = shape.z(); - const int in_cols = shape.y(); - const int n_channels = shape.x(); - const int padding_top = conv_info.pad_top(); - const int padding_left = conv_info.pad_left(); - const int padding_bottom = conv_info.pad_bottom(); - const int padding_right = conv_info.pad_right(); + const int n_batches = shape[3]; + const int in_rows = shape.z(); + const int in_cols = shape.y(); + const int n_channels = shape.x(); + const int dilation_factor = dilation.x(); + const int padding_top = conv_info.pad_top(); + const int padding_left = conv_info.pad_left(); + const int padding_bottom = conv_info.pad_bottom(); + const int padding_right = conv_info.pad_right(); const unsigned int stride_x = conv_info.stride().first; @@ -95,11 +100,11 @@ std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor switch(stride_x) { case 1: - return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DepthwiseConvolution<2, 2, 3, 3, 1, 1>>( - n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 1, 1>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); case 2: - return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DepthwiseConvolution<2, 2, 3, 3, 2, 2>>( - n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 2, 2>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } @@ -115,11 +120,11 @@ std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor switch(stride_x) { case 1: - return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 1, 1, float16_t, float16_t, float16_t>>( - n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 1, 1, float16_t, float16_t, float16_t>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: - return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 2, 2, float16_t, float16_t, float16_t>>( - n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 2, 2, float16_t, float16_t, float16_t>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } @@ -131,11 +136,11 @@ std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor switch(stride_x) { case 1: - return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float, float>>( - n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::DilatedDepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float, float>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: - return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float, float>>( - n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right); + return arm_compute::support::cpp14::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float, float>>( + n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } @@ -148,21 +153,30 @@ std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor } } // namespace +struct NEDepthwiseConvolutionAssemblyDispatch::LocalImpl +{ + std::unique_ptr<depthwise::IDepthwiseConvolution> _dwc_assembly_kernel{ nullptr }; + NEDepthwiseConvolutionAssemblyKernelWrapper _dwc_acl_kernel{}; +}; + #ifndef DOXYGEN_SKIP_THIS NEDepthwiseConvolutionAssemblyDispatch::NEDepthwiseConvolutionAssemblyDispatch(std::shared_ptr<arm_compute::IMemoryManager> memory_manager) - : _memory_group(std::move(memory_manager)), _input(nullptr), _weights(nullptr), _bias(nullptr), _output(nullptr), _packed_weights(), _workspace(), _is_prepared(false), _dwc_assembly_kernel(nullptr), - _dwc_acl_kernel() + : _memory_group(std::move(memory_manager)), _input(nullptr), _weights(nullptr), _bias(nullptr), _output(nullptr), _packed_weights(), _workspace(), _is_prepared(false), + _pImpl(support::cpp14::make_unique<LocalImpl>()) { } #endif /* DOXYGEN_SKIP_THIS */ +NEDepthwiseConvolutionAssemblyDispatch::~NEDepthwiseConvolutionAssemblyDispatch() = default; + void NEDepthwiseConvolutionAssemblyDispatch::configure(const ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, - const ActivationLayerInfo &act_info) + const ActivationLayerInfo &act_info, + const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_UNUSED(depth_multiplier); @@ -172,10 +186,11 @@ void NEDepthwiseConvolutionAssemblyDispatch::configure(const ITensor output->info(), conv_info, depth_multiplier, - act_info)); + act_info, + dilation)); // Output auto inizialitation if not yet initialized - const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier); + const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation); auto_init_if_empty(*output->info(), input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->info()->quantization_info())); _input = input; @@ -185,24 +200,24 @@ void NEDepthwiseConvolutionAssemblyDispatch::configure(const ITensor _is_prepared = false; // Create convolver - _dwc_assembly_kernel = create_convolver(input, weights, output, conv_info, act_info); - ARM_COMPUTE_ERROR_ON(_dwc_assembly_kernel == nullptr); + _pImpl->_dwc_assembly_kernel = create_convolver(input, weights, output, conv_info, act_info, dilation); + ARM_COMPUTE_ERROR_ON(_pImpl->_dwc_assembly_kernel == nullptr); // Create assembly kernel wrapper - _dwc_acl_kernel.configure(_dwc_assembly_kernel.get()); + _pImpl->_dwc_acl_kernel.configure(_pImpl->_dwc_assembly_kernel.get()); constexpr size_t alignment = 128; // Create workspace const unsigned int num_threads = NEScheduler::get().num_threads(); - const size_t workspace_size = _dwc_assembly_kernel->get_working_space_size(num_threads); + const size_t workspace_size = _pImpl->_dwc_assembly_kernel->get_working_space_size(num_threads); ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "Workspace size cannot be 0 !"); _workspace.allocator()->init(TensorInfo(TensorShape{ workspace_size }, 1, DataType::S8), alignment); _memory_group.manage(&_workspace); _workspace.allocator()->allocate(); // Create packing tensor - const size_t pack_tensor_size = _dwc_assembly_kernel->get_packed_params_size(); + const size_t pack_tensor_size = _pImpl->_dwc_assembly_kernel->get_packed_params_size(); ARM_COMPUTE_ERROR_ON_MSG(pack_tensor_size == 0, "Pack tensor size cannot be 0 !"); _packed_weights.allocator()->init(TensorInfo(TensorShape{ pack_tensor_size }, 1, DataType::S8), alignment); } @@ -213,7 +228,8 @@ Status NEDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, - const ActivationLayerInfo &act_info) + const ActivationLayerInfo &act_info, + const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); @@ -227,6 +243,7 @@ Status NEDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != 3 || weights->dimension(height_idx) != 3); ARM_COMPUTE_RETURN_ERROR_ON(!((strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2)))); ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier != 1); + ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() != dilation.y()); const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info); const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info); @@ -243,7 +260,7 @@ Status NEDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo // Check output if(output->total_size() != 0) { - const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier); + const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } @@ -283,17 +300,17 @@ bool NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(const ITenso bool supported_strides = (strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2)); // Check for supported padding - const auto pad_top = conv_info.pad_top(); - const auto pad_right = conv_info.pad_right(); - const auto pad_bottom = conv_info.pad_bottom(); - const auto pad_left = conv_info.pad_left(); - PadStrideInfo same_pad = calculate_same_pad(in_shape, TensorShape(3U, 3U), conv_info); - bool is_same_padding = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left()); - bool is_valid_padding = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0); - bool supported_padding = is_same_padding || is_valid_padding; - bool is_dilation_1 = dilation.x() == 1 && dilation.y() == 1; - - return is_data_type_valid && weights_supported && supported_strides && supported_padding && (depth_multiplier == 1) && is_dilation_1; + const auto pad_top = conv_info.pad_top(); + const auto pad_right = conv_info.pad_right(); + const auto pad_bottom = conv_info.pad_bottom(); + const auto pad_left = conv_info.pad_left(); + PadStrideInfo same_pad = calculate_same_pad(in_shape, TensorShape(3U, 3U), conv_info); + bool is_same_padding = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left()); + bool is_valid_padding = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0); + bool supported_padding = is_same_padding || is_valid_padding; + bool is_dilation_supported = (dilation.x() == dilation.y()) || (dilation == Size2D(1U, 1U)); + + return is_data_type_valid && weights_supported && supported_strides && supported_padding && (depth_multiplier == 1) && is_dilation_supported; } void NEDepthwiseConvolutionAssemblyDispatch::run() @@ -305,7 +322,7 @@ void NEDepthwiseConvolutionAssemblyDispatch::run() // Setup inputs/outputs ARM_COMPUTE_ERROR_ON(_workspace.buffer() == nullptr); - _dwc_assembly_kernel->set_working_space(static_cast<void *>(_workspace.buffer())); + _pImpl->_dwc_assembly_kernel->set_working_space(static_cast<void *>(_workspace.buffer())); ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr); const int input_element_size = _input->info()->element_size(); @@ -313,7 +330,7 @@ void NEDepthwiseConvolutionAssemblyDispatch::run() const int input_row_stride = _input->info()->strides_in_bytes().z() / input_element_size; const int input_col_stride = _input->info()->strides_in_bytes().y() / input_element_size; const void *input_ptr = _input->buffer() + _input->info()->offset_first_element_in_bytes(); - _dwc_assembly_kernel->set_input(input_ptr, input_batch_stride, input_row_stride, input_col_stride); + _pImpl->_dwc_assembly_kernel->set_input(input_ptr, input_batch_stride, input_row_stride, input_col_stride); ARM_COMPUTE_ERROR_ON(_output->buffer() == nullptr); const int output_element_size = _output->info()->element_size(); @@ -321,10 +338,10 @@ void NEDepthwiseConvolutionAssemblyDispatch::run() const int output_row_stride = _output->info()->strides_in_bytes().z() / output_element_size; const int output_col_stride = _output->info()->strides_in_bytes().y() / output_element_size; void *output_ptr = _output->buffer() + _output->info()->offset_first_element_in_bytes(); - _dwc_assembly_kernel->set_output(output_ptr, output_batch_stride, output_row_stride, output_col_stride); + _pImpl->_dwc_assembly_kernel->set_output(output_ptr, output_batch_stride, output_row_stride, output_col_stride); // Schedule assembly kernel - NEScheduler::get().schedule(&_dwc_acl_kernel, Window::DimX); + NEScheduler::get().schedule(&_pImpl->_dwc_acl_kernel, Window::DimX); } void NEDepthwiseConvolutionAssemblyDispatch::prepare() @@ -338,12 +355,12 @@ void NEDepthwiseConvolutionAssemblyDispatch::prepare() const int weights_element_size = _weights->info()->element_size(); const int weights_row_stride = _weights->info()->strides_in_bytes().z() / weights_element_size; const int weights_col_stride = _weights->info()->strides_in_bytes().y() / weights_element_size; - _dwc_assembly_kernel->pack_params(_packed_weights.buffer(), - _weights->buffer() + _weights->info()->offset_first_element_in_bytes(), - weights_row_stride, - weights_col_stride, - (_bias != nullptr) ? _bias->buffer() : nullptr); - _dwc_assembly_kernel->set_packed_params_buffer(_packed_weights.buffer()); + _pImpl->_dwc_assembly_kernel->pack_params(_packed_weights.buffer(), + _weights->buffer() + _weights->info()->offset_first_element_in_bytes(), + weights_row_stride, + weights_col_stride, + (_bias != nullptr) ? _bias->buffer() : nullptr); + _pImpl->_dwc_assembly_kernel->set_packed_params_buffer(_packed_weights.buffer()); _weights->mark_as_unused(); if(_bias != nullptr) diff --git a/tests/datasets/DepthwiseConvolutionLayerDataset.h b/tests/datasets/DepthwiseConvolutionLayerDataset.h index 4c78eb87e..440cb88ac 100644 --- a/tests/datasets/DepthwiseConvolutionLayerDataset.h +++ b/tests/datasets/DepthwiseConvolutionLayerDataset.h @@ -215,6 +215,7 @@ public: // Stride 2 add_config(TensorShape(7U, 7U, 32U), Size2D(3U, 3U), PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)); add_config(TensorShape(7U, 7U, 32U), Size2D(3U, 3U), PadStrideInfo(2, 2, 1, 1, 1, 1, DimensionRoundingType::CEIL)); + add_config(TensorShape(9U, 9U, 32U), Size2D(3U, 3U), PadStrideInfo(2, 2, 1, 1, 1, 1, DimensionRoundingType::CEIL), Size2D(2U, 2U)); } }; /** Dataset containing optimized, 3x3 depthwise convolution shapes. */ diff --git a/tests/validation/NEON/DepthwiseConvolutionLayer.cpp b/tests/validation/NEON/DepthwiseConvolutionLayer.cpp index 773ebdeac..2ffe540fb 100644 --- a/tests/validation/NEON/DepthwiseConvolutionLayer.cpp +++ b/tests/validation/NEON/DepthwiseConvolutionLayer.cpp @@ -156,7 +156,7 @@ DATA_TEST_CASE(Validate3x3, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip framework::dataset::make("Expected", { false, false, false, false, false, false, false, false, false, false, true })), input_info, weights_info, biases_info, output_info, conv_info, depth_multiplier,dilation, expected) { - bool is_valid = bool(NEDepthwiseConvolutionLayer3x3::validate(&input_info.clone()->set_is_resizable(false), + bool is_valid = bool(NEDepthwiseConvolutionLayerOptimized::validate(&input_info.clone()->set_is_resizable(false), &weights_info.clone()->set_is_resizable(false), &biases_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), conv_info, depth_multiplier, ActivationLayerInfo(), dilation)); ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS); } @@ -296,7 +296,7 @@ TEST_SUITE_END() // Generic TEST_SUITE(W3x3) template <typename T> -using NEDepthwiseConvolutionLayerFixture3x3 = DepthwiseConvolutionLayerValidationFixture<Tensor, Accessor, NEDepthwiseConvolutionLayer3x3, T>; +using NEDepthwiseConvolutionLayerFixture3x3 = DepthwiseConvolutionLayerValidationFixture<Tensor, Accessor, NEDepthwiseConvolutionLayerOptimized, T>; FIXTURE_DATA_TEST_CASE(RunSmall, NEDepthwiseConvolutionLayerFixture3x3<float>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallDepthwiseConvolutionLayerDataset3x3(), depth_multipliers), framework::dataset::make("DataType", @@ -409,7 +409,7 @@ TEST_SUITE_END() // Dilation TEST_SUITE_END() // Generic TEST_SUITE(W3x3) template <typename T> -using NEDepthwiseConvolutionLayerFixture3x3 = DepthwiseConvolutionLayerValidationFixture<Tensor, Accessor, NEDepthwiseConvolutionLayer3x3, T>; +using NEDepthwiseConvolutionLayerFixture3x3 = DepthwiseConvolutionLayerValidationFixture<Tensor, Accessor, NEDepthwiseConvolutionLayerOptimized, T>; FIXTURE_DATA_TEST_CASE(RunSmall, NEDepthwiseConvolutionLayerFixture3x3<half>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallDepthwiseConvolutionLayerDataset3x3(), depth_multipliers), framework::dataset::make("DataType", @@ -480,7 +480,7 @@ TEST_SUITE_END() // FP16 TEST_SUITE_END() // Float template <typename T> -using NEDepthwiseConvolutionLayerQuantizedFixture3x3 = DepthwiseConvolutionLayerValidationQuantizedFixture<Tensor, Accessor, NEDepthwiseConvolutionLayer3x3, T>; +using NEDepthwiseConvolutionLayerQuantizedFixture3x3 = DepthwiseConvolutionLayerValidationQuantizedFixture<Tensor, Accessor, NEDepthwiseConvolutionLayerOptimized, T>; template <typename T> using NEDepthwiseConvolutionLayerQuantizedFixture = DepthwiseConvolutionLayerValidationQuantizedFixture<Tensor, Accessor, NEDepthwiseConvolutionLayer, T>; |