summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichalis Spyrou <michalis.spyrou@arm.com>2021-01-20 16:41:12 +0000
committerMichalis Spyrou <michalis.spyrou@arm.com>2021-02-09 18:25:46 +0000
commit373b407558f99eb4bba632c170d03d807941dd2a (patch)
tree448bb0225fa8b5fdfa48ddee973ec0b51a115f44
parent4841c97170b85be0706b65d424e967e561cef932 (diff)
downloadarmcl-373b407558f99eb4bba632c170d03d807941dd2a.tar.gz
armcl-373b407558f99eb4bba632c170d03d807941dd2a.tar.bz2
armcl-373b407558f99eb4bba632c170d03d807941dd2a.zip
Make Softmax kernels and operator stateless
COMPMID-3997 Change-Id: I3a3cc76d8247dd769d9a5e6e171d718ea909312c Signed-off-by: Michalis Spyrou <michalis.spyrou@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4986 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--Android.bp3
-rw-r--r--arm_compute/core/experimental/Types.h2
-rw-r--r--arm_compute/runtime/NEON/functions/NEFillBorder.h3
-rw-r--r--arm_compute/runtime/NEON/functions/NESoftmaxLayer.h45
-rw-r--r--docs/00_introduction.dox12
-rw-r--r--src/core/NEON/NEKernels.h1
-rw-r--r--src/core/NEON/kernels/NESoftmaxLayerKernel.h141
-rw-r--r--src/core/cpu/kernels/CpuSoftmaxKernel.cpp (renamed from src/core/NEON/kernels/NESoftmaxLayerKernel.cpp)184
-rw-r--r--src/core/cpu/kernels/CpuSoftmaxKernel.h107
-rw-r--r--src/core/cpu/kernels/softmax/impl/NEON/list.h (renamed from src/core/NEON/kernels/softmax/impl/NEON/list.h)4
-rw-r--r--src/core/cpu/kernels/softmax/impl/SVE/list.h (renamed from src/core/NEON/kernels/softmax/impl/SVE/list.h)0
-rw-r--r--src/runtime/NEON/functions/NEFillBorder.cpp7
-rw-r--r--src/runtime/NEON/functions/NESoftmaxLayer.cpp149
-rw-r--r--src/runtime/cpu/operators/CpuSoftmax.cpp204
-rw-r--r--src/runtime/cpu/operators/CpuSoftmax.h105
15 files changed, 604 insertions, 363 deletions
diff --git a/Android.bp b/Android.bp
index 31bc14b6b..04f9d93c6 100644
--- a/Android.bp
+++ b/Android.bp
@@ -300,7 +300,6 @@ cc_library_static {
"src/core/NEON/kernels/NESobel3x3Kernel.cpp",
"src/core/NEON/kernels/NESobel5x5Kernel.cpp",
"src/core/NEON/kernels/NESobel7x7Kernel.cpp",
- "src/core/NEON/kernels/NESoftmaxLayerKernel.cpp",
"src/core/NEON/kernels/NESpaceToBatchLayerKernel.cpp",
"src/core/NEON/kernels/NESpaceToDepthLayerKernel.cpp",
"src/core/NEON/kernels/NEStackLayerKernel.cpp",
@@ -405,6 +404,7 @@ cc_library_static {
"src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.cpp",
"src/core/cpu/kernels/CpuPoolingKernel.cpp",
"src/core/cpu/kernels/CpuReshapeKernel.cpp",
+ "src/core/cpu/kernels/CpuSoftmaxKernel.cpp",
"src/core/cpu/kernels/CpuSubKernel.cpp",
"src/core/cpu/kernels/activation/NEON/fp16.cpp",
"src/core/cpu/kernels/activation/NEON/fp32.cpp",
@@ -801,6 +801,7 @@ cc_library_static {
"src/runtime/cpu/operators/CpuPooling.cpp",
"src/runtime/cpu/operators/CpuPoolingAssemblyDispatch.cpp",
"src/runtime/cpu/operators/CpuReshape.cpp",
+ "src/runtime/cpu/operators/CpuSoftmax.cpp",
"src/runtime/cpu/operators/CpuSub.cpp",
"src/runtime/gpu/cl/operators/ClActivation.cpp",
"src/runtime/gpu/cl/operators/ClAdd.cpp",
diff --git a/arm_compute/core/experimental/Types.h b/arm_compute/core/experimental/Types.h
index 81b4dc875..f615678e3 100644
--- a/arm_compute/core/experimental/Types.h
+++ b/arm_compute/core/experimental/Types.h
@@ -46,10 +46,12 @@ enum TensorType : int32_t
ACL_DST = 30,
ACL_DST_0 = 30,
ACL_DST_1 = 31,
+ ACL_DST_2 = 32,
ACL_INT = 50,
ACL_INT_0 = 50,
ACL_INT_1 = 51,
ACL_INT_2 = 52,
+ ACL_INT_3 = 53,
ACL_SRC_VEC = 256,
};
diff --git a/arm_compute/runtime/NEON/functions/NEFillBorder.h b/arm_compute/runtime/NEON/functions/NEFillBorder.h
index e9a08ef7e..8a8a0c7dc 100644
--- a/arm_compute/runtime/NEON/functions/NEFillBorder.h
+++ b/arm_compute/runtime/NEON/functions/NEFillBorder.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -39,6 +39,7 @@ class NEFillBorderKernel;
class NEFillBorder : public IFunction
{
public:
+ NEFillBorder();
/** Initialize the function's source, destination and border_mode.
*
* @note This function fills the borders within the XY-planes.
diff --git a/arm_compute/runtime/NEON/functions/NESoftmaxLayer.h b/arm_compute/runtime/NEON/functions/NESoftmaxLayer.h
index 40fa38afd..8a2ae1012 100644
--- a/arm_compute/runtime/NEON/functions/NESoftmaxLayer.h
+++ b/arm_compute/runtime/NEON/functions/NESoftmaxLayer.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -26,33 +26,14 @@
#include "arm_compute/runtime/IFunction.h"
#include "arm_compute/runtime/MemoryGroup.h"
-#include "arm_compute/runtime/NEON/functions/NEPermute.h"
-#include "arm_compute/runtime/Tensor.h"
#include <memory>
namespace arm_compute
{
class ITensor;
-class NELogits1DMaxKernel;
-template <bool IS_LOG>
-class NELogits1DSoftmaxKernel;
-class NEFillBorderKernel;
+class ITensorInfo;
-/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer.
- *
- * Softmax is calculated by :
- * @f[ out = exp((x - max(x)) * beta) / sum(exp((x - max(x)) * beta)) @f]
- *
- * Log Softmax is calculated by :
- * @f[ out = (x - max(x) * beta) - log(\sum{e^{x - max(x) * beta}}) @f]
- *
- * This function runs the following function/kernels:
- * -# If axis is not 0:
- * -# @ref NEPermute
- * -# @ref NEFillBorderKernel
- * -# @ref NELogits1DMaxKernel
- * -# @ref NELogits1DSoftmaxKernel
- */
+/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer. */
template <bool IS_LOG = false>
class NESoftmaxLayerGeneric : public IFunction
{
@@ -62,17 +43,17 @@ public:
/** Prevent instances of this class from being copied (As this class contains pointers) */
NESoftmaxLayerGeneric(const NESoftmaxLayerGeneric &) = delete;
/** Default move constructor */
- NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&) = default;
+ NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&);
/** Prevent instances of this class from being copied (As this class contains pointers) */
NESoftmaxLayerGeneric &operator=(const NESoftmaxLayerGeneric &) = delete;
/** Default move assignment operator */
- NESoftmaxLayerGeneric &operator=(NESoftmaxLayerGeneric &&) = default;
+ NESoftmaxLayerGeneric &operator=(NESoftmaxLayerGeneric &&);
/** Default destructor */
~NESoftmaxLayerGeneric();
/** Set the input and output tensors.
*
* @param[in,out] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32. If the width is not a
- * multiple of the internal processing block size, @ref NEFillBorderKernel replicates the
+ * multiple of the internal processing block size, @ref NEFillBorder replicates the
* last value of each row to the nearest multiple.
* @param[out] output Destination tensor. Data types supported: same as @p input.
* @param[in] beta (Optional) A scaling factor for the exponent.
@@ -96,17 +77,9 @@ public:
void run() override;
private:
- MemoryGroup _memory_group;
- NEPermute _permute_input;
- NEPermute _permute_output;
- std::unique_ptr<NELogits1DMaxKernel> _max_kernel;
- std::unique_ptr<NELogits1DSoftmaxKernel<IS_LOG>> _softmax_kernel;
- std::unique_ptr<NEFillBorderKernel> _fill_border_kernel;
- Tensor _max;
- Tensor _tmp;
- Tensor _input_permuted;
- Tensor _output_permuted;
- bool _needs_permute;
+ MemoryGroup _memory_group;
+ struct Impl;
+ std::unique_ptr<Impl> _impl;
};
using NESoftmaxLayer = NESoftmaxLayerGeneric<false>;
diff --git a/docs/00_introduction.dox b/docs/00_introduction.dox
index 4c1112f2d..3dc86fe05 100644
--- a/docs/00_introduction.dox
+++ b/docs/00_introduction.dox
@@ -96,8 +96,8 @@ v21.02 Public major release
- @ref NEActivationLayer
- @ref NEArithmeticAddition
- @ref NEBatchNormalizationLayerKernel
- - @ref NELogits1DSoftmaxKernel
- - @ref NELogits1DMaxKernel
+ - NELogits1DSoftmaxKernel
+ - NELogits1DMaxKernel
- NEElementwiseUnaryKernel
- Remove padding from OpenCL kernels:
- @ref CLDirectConvolutionLayerKernel
@@ -460,8 +460,8 @@ v20.08 Public major release
- @ref NEBatchNormalizationLayerKernel
- NEArithmeticSubtractionKernel
- @ref NEBoundingBoxTransformKernel
- - @ref NELogits1DMaxKernel
- - @ref NELogits1DSoftmaxKernel
+ - NELogits1DMaxKernel
+ - NELogits1DSoftmaxKernel
- @ref NEROIPoolingLayerKernel
- @ref NEROIAlignLayerKernel
- NEYOLOLayerKernel
@@ -1269,7 +1269,7 @@ v17.04 Public bug fixes release
- NEHarrisScoreFP16Kernel
- @ref NEHarrisScoreKernel
- @ref NEHOGDetectorKernel
- - @ref NELogits1DMaxKernel
+ - NELogits1DMaxKernel
- NELogits1DShiftExpSumKernel
- NELogits1DNormKernel
- @ref NENonMaximaSuppression3x3FP16Kernel
@@ -1284,7 +1284,7 @@ v17.03.1 First Major public release of the sources
- New NEON kernels / functions:
- @ref NENormalizationLayerKernel / @ref NENormalizationLayer
- @ref NETransposeKernel / @ref NETranspose
- - @ref NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
+ - NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
- @ref NEIm2ColKernel, @ref NECol2ImKernel, NEConvolutionLayerWeightsReshapeKernel / @ref NEConvolutionLayer
- NEGEMMMatrixAccumulateBiasesKernel / @ref NEFullyConnectedLayer
- @ref NEGEMMLowpMatrixMultiplyKernel / NEGEMMLowp
diff --git a/src/core/NEON/NEKernels.h b/src/core/NEON/NEKernels.h
index c636e5b3b..66309f929 100644
--- a/src/core/NEON/NEKernels.h
+++ b/src/core/NEON/NEKernels.h
@@ -117,7 +117,6 @@
#include "src/core/NEON/kernels/NESobel3x3Kernel.h"
#include "src/core/NEON/kernels/NESobel5x5Kernel.h"
#include "src/core/NEON/kernels/NESobel7x7Kernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
#include "src/core/NEON/kernels/NESpaceToBatchLayerKernel.h"
#include "src/core/NEON/kernels/NESpaceToDepthLayerKernel.h"
#include "src/core/NEON/kernels/NEStackLayerKernel.h"
diff --git a/src/core/NEON/kernels/NESoftmaxLayerKernel.h b/src/core/NEON/kernels/NESoftmaxLayerKernel.h
deleted file mode 100644
index 70e2417fc..000000000
--- a/src/core/NEON/kernels/NESoftmaxLayerKernel.h
+++ /dev/null
@@ -1,141 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H
-#define ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-#include "src/core/NEON/INESimpleKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** Interface for the identifying the max value of 1D Logits */
-class NELogits1DMaxKernel : public INESimpleKernel
-{
-public:
- const char *name() const override
- {
- return "NELogits1DMaxKernel";
- }
- /** Default constructor */
- NELogits1DMaxKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NELogits1DMaxKernel(const NELogits1DMaxKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NELogits1DMaxKernel &operator=(const NELogits1DMaxKernel &) = delete;
- /** Allow instances of this class to be moved */
- NELogits1DMaxKernel(NELogits1DMaxKernel &&) = default;
- /** Allow instances of this class to be moved */
- NELogits1DMaxKernel &operator=(NELogits1DMaxKernel &&) = default;
- /** Default destructor */
- ~NELogits1DMaxKernel() = default;
- /** Set the input and output tensors.
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[out] output Destination tensor. Data types supported: same as @p input
- */
- void configure(const ITensor *input, ITensor *output);
- /** Static function to check if given info will lead to a valid configuration of @ref NELogits1DMaxKernel
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] output Destination tensor. Data types supported: same as @p input
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *output);
-
- // Inherited methods overridden:
- void run(const Window &window, const ThreadInfo &info) override;
- BorderSize border_size() const override;
-
-private:
- BorderSize _border_size;
-};
-
-/** Interface for softmax computation for QASYMM8 with pre-computed max. */
-template <bool IS_LOG = false>
-class NELogits1DSoftmaxKernel : public INEKernel
-{
-public:
- const char *name() const override
- {
- if(IS_LOG)
- {
- return "NELogits1DSoftmaxKernel";
- }
- else
- {
- return "NELogits1DLogSoftmaxKernel";
- }
- }
- /** Default constructor */
- NELogits1DSoftmaxKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NELogits1DSoftmaxKernel(const NELogits1DSoftmaxKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NELogits1DSoftmaxKernel &operator=(const NELogits1DSoftmaxKernel &) = delete;
- /** Allow instances of this class to be moved */
- NELogits1DSoftmaxKernel(NELogits1DSoftmaxKernel &&) = default;
- /** Allow instances of this class to be moved */
- NELogits1DSoftmaxKernel &operator=(NELogits1DSoftmaxKernel &&) = default;
- /** Default destructor */
- ~NELogits1DSoftmaxKernel() = default;
- /** Set the input and output tensors.
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] max Max values tensor. Same shape as input with dimension 0 set to 1.
- * Data types supported: same as @p input.
- * @param[out] output Destination tensor. Data types supported: same as @p input.
- * @param[in] beta A scaling factor for the exponent.
- *
- * @param tmp Auxiliary tensor. Must be type F32 and same shape as the input.
- */
- void configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp);
- /** Static function to check if given info will lead to a valid configuration of @ref NELogits1DSoftmaxKernel
- *
- * @param[in] input Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] max Max values tensor info. Same shape as input with dimension 0 set to 1.
- * Data types supported: same as @p input.
- * @param[in] output Destination tensor info. Data types supported: same as @p input.
- * @param[in] beta A scaling factor for the exponent.
- * @param[in] tmp Tensor info of auxiliary. Must be type F32 and same shape as the input.
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *max,
- const ITensorInfo *output, const float beta, const ITensorInfo *tmp);
-
- // Inherited methods overridden:
- void run(const Window &window, const ThreadInfo &info) override;
-
-private:
- const ITensor *_input;
- const ITensor *_max;
- ITensor *_output;
- float _beta;
- ITensor *_tmp; //Temporary. Used internally
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H */
diff --git a/src/core/NEON/kernels/NESoftmaxLayerKernel.cpp b/src/core/cpu/kernels/CpuSoftmaxKernel.cpp
index fe09f1ec5..a8542b6be 100644
--- a/src/core/NEON/kernels/NESoftmaxLayerKernel.cpp
+++ b/src/core/cpu/kernels/CpuSoftmaxKernel.cpp
@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
@@ -33,12 +33,16 @@
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
-#include "src/core/NEON/kernels/softmax/impl/NEON/list.h"
-#include "src/core/NEON/kernels/softmax/impl/SVE/list.h"
#include "src/core/common/Registrars.h"
+#include "src/core/cpu/kernels/softmax/impl/NEON/list.h"
+#include "src/core/cpu/kernels/softmax/impl/SVE/list.h"
namespace arm_compute
{
+namespace cpu
+{
+namespace kernels
+{
namespace
{
struct SoftmaxSelectorData
@@ -208,98 +212,90 @@ Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorI
} // namespace
-NELogits1DMaxKernel::NELogits1DMaxKernel()
- : _border_size()
+CpuLogits1DMaxKernel::CpuLogits1DMaxKernel()
{
}
-BorderSize NELogits1DMaxKernel::border_size() const
+void CpuLogits1DMaxKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
{
- return _border_size;
-}
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
-void NELogits1DMaxKernel::configure(const ITensor *input, ITensor *output)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), output->info());
// Perform validation step
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*input->info(), *output->info()));
- // Configure kernel window
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*src, *dst));
// Softmax across the x dimension
- const TensorShape output_shape = TensorShape(input->info()->tensor_shape()).set(0, 1);
+ const TensorShape output_shape = TensorShape(src->tensor_shape()).set(0, 1);
// Output auto initialization if not yet initialized
- auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());
+ auto_init_if_empty(*dst, output_shape, 1, src->data_type(), src->quantization_info());
- Window win = calculate_max_window(*input->info(), Steps());
+ Window win = calculate_max_window(*src, Steps());
Coordinates coord;
- coord.set_num_dimensions(output->info()->num_dimensions());
- output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
-
- _input = input;
- _output = output;
-
- const int input_width = input->info()->valid_region().shape.x();
- const int num_elems_processed_per_iteration = 16U / data_size_from_type(input->info()->data_type());
- const int num_elems_read_per_iteration = ceil_to_multiple(input_width, num_elems_processed_per_iteration);
+ coord.set_num_dimensions(dst->num_dimensions());
+ dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
- _border_size = BorderSize(0, num_elems_read_per_iteration - input_width, 0, 0);
-
- INEKernel::configure(win);
+ ICpuKernel::configure(win);
}
-Status NELogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
+Status CpuLogits1DMaxKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*input, *output));
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*src, *dst));
return Status{};
}
-void NELogits1DMaxKernel::run(const Window &window, const ThreadInfo &info)
+void CpuLogits1DMaxKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
- const auto *uk = get_implementation_logits_max(SoftmaxSelectorData{ _input->info()->data_type() });
- uk->ukernel(_input, _output, window);
+ const auto *uk = get_implementation_logits_max(SoftmaxSelectorData{ src->info()->data_type() });
+ uk->ukernel(src, dst, window);
+}
+
+const char *CpuLogits1DMaxKernel::name() const
+{
+ return "CpuLogits1DMaxKernel";
}
namespace
{
-Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensorInfo &max,
- const ITensorInfo &output, const float beta, const ITensorInfo &tmp, bool is_log)
+Status validate_arguments_logits_softmax(const ITensorInfo &src, const ITensorInfo &max,
+ const ITensorInfo &dst, const float beta, const ITensorInfo &tmp, bool is_log)
{
ARM_COMPUTE_UNUSED(beta);
// Check input
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
- const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input.data_type());
+ const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());
// Check max
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &max);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(input.tensor_shape()).set(0, 1), max.tensor_shape());
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &max);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &max);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(src.tensor_shape()).set(0, 1), max.tensor_shape());
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&src, &max);
// Check output if configured
- if(output.total_size() != 0)
+ if(dst.total_size() != 0)
{
- const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input.data_type(), is_log) : output.quantization_info();
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &output);
- ARM_COMPUTE_RETURN_ERROR_ON(output.quantization_info() != output_quantization);
+ const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src.data_type(), is_log) : dst.quantization_info();
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
+ ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != output_quantization);
}
// Check tmp if configured
if(tmp.total_size() != 0)
{
- const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input.data_type();
+ const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src.data_type();
ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type);
// We could potentially reduce tmp memory if we could predict or make an assumption
// on the maximum number of threads that will run in parallel.
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &tmp);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &tmp);
}
return Status{};
@@ -307,74 +303,90 @@ Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensor
} // namespace
template <bool IS_LOG>
-NELogits1DSoftmaxKernel<IS_LOG>::NELogits1DSoftmaxKernel()
- : _input(nullptr), _max(nullptr), _output(nullptr), _beta(1.0f), _tmp(nullptr)
+CpuLogits1DSoftmaxKernel<IS_LOG>::CpuLogits1DSoftmaxKernel()
+ : _beta(1.0f)
{
}
template <bool IS_LOG>
-void NELogits1DSoftmaxKernel<IS_LOG>::configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp)
+void CpuLogits1DSoftmaxKernel<IS_LOG>::configure(const ITensorInfo *src, const ITensorInfo *max, ITensorInfo *dst, const float beta, ITensorInfo *tmp)
{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
- ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), max->info(), output->info(), tmp->info());
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
// Perform validation step
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*input->info(), *max->info(), *output->info(), beta, *tmp->info(), IS_LOG));
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
+
+ _beta = beta;
// Configure kernel window
- const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
+ const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
// Output auto initialization if not yet initialized
- const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input->info()->data_type(), IS_LOG) : output->info()->quantization_info();
- auto_init_if_empty(*output->info(), TensorInfo(*input->info()).set_quantization_info(output_quantization).reset_padding());
+ const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src->data_type(), IS_LOG) : dst->quantization_info();
+ auto_init_if_empty(*dst, TensorInfo(*src).set_quantization_info(output_quantization).reset_padding());
// Tmp auto initialization if not yet initialized
- const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input->info()->data_type();
- auto_init_if_empty(*tmp->info(), TensorInfo(*input->info()).set_data_type(tmp_data_type).reset_padding());
+ const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src->data_type();
+ auto_init_if_empty(*tmp, TensorInfo(*src).set_data_type(tmp_data_type).reset_padding());
// Configure kernel window
- Window win = calculate_max_window(*max->info(), Steps());
+ Window win = calculate_max_window(*max, Steps());
Coordinates coord;
- coord.set_num_dimensions(output->info()->num_dimensions());
- output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
-
- _input = input;
- _max = max;
- _output = output;
- _beta = beta;
- _tmp = tmp;
+ coord.set_num_dimensions(dst->num_dimensions());
+ dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
- INEKernel::configure(win);
+ ICpuKernel::configure(win);
}
template <bool IS_LOG>
-Status NELogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *max,
- const ITensorInfo *output, const float beta, const ITensorInfo *tmp)
+Status CpuLogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *src, const ITensorInfo *max,
+ const ITensorInfo *dst, const float beta, const ITensorInfo *tmp)
{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*input, *max, *output, beta, *tmp, IS_LOG));
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
return Status{};
}
template <bool IS_LOG>
-void NELogits1DSoftmaxKernel<IS_LOG>::run(const Window &window, const ThreadInfo &info)
+void CpuLogits1DSoftmaxKernel<IS_LOG>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
- const unsigned int num_elems_processed_per_iteration = _input->info()->valid_region().shape.x();
- const unsigned int tmp_size_for_thread = _tmp->info()->element_size() * num_elems_processed_per_iteration;
+ const auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto max = tensors.get_tensor(TensorType::ACL_SRC_1);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST_0);
+ auto tmp = tensors.get_tensor(TensorType::ACL_DST_1);
- ARM_COMPUTE_ERROR_ON(_tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
+ const unsigned int num_elems_processed_per_iteration = src->info()->valid_region().shape.x();
+ const unsigned int tmp_size_for_thread = tmp->info()->element_size() * num_elems_processed_per_iteration;
- void *tmp_for_thread = _tmp->buffer() + (info.thread_id * tmp_size_for_thread);
+ ARM_COMPUTE_ERROR_ON(tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
+
+ void *tmp_for_thread = tmp->buffer() + (info.thread_id * tmp_size_for_thread);
+
+ const auto *uk = get_implementation_logits(SoftmaxSelectorData{ src->info()->data_type() });
+ uk->ukernel(src, max, tmp_for_thread, dst, _beta, IS_LOG, window);
+}
- const auto *uk = get_implementation_logits(SoftmaxSelectorData{ _input->info()->data_type() });
- uk->ukernel(_input, _max, tmp_for_thread, _output, _beta, IS_LOG, window);
+template <bool IS_LOG>
+const char *CpuLogits1DSoftmaxKernel<IS_LOG>::name() const
+{
+ if(IS_LOG)
+ {
+ return "CpuLogits1DSoftmaxKernel";
+ }
+ else
+ {
+ return "CpuLogits1DLogSoftmaxKernel";
+ }
}
-template class NELogits1DSoftmaxKernel<true>;
-template class NELogits1DSoftmaxKernel<false>;
+template class CpuLogits1DSoftmaxKernel<true>;
+template class CpuLogits1DSoftmaxKernel<false>;
+} // namespace kernels
+} // namespace cpu
} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuSoftmaxKernel.h b/src/core/cpu/kernels/CpuSoftmaxKernel.h
new file mode 100644
index 000000000..aa1046796
--- /dev/null
+++ b/src/core/cpu/kernels/CpuSoftmaxKernel.h
@@ -0,0 +1,107 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_SOFTMAXKERNEL_H
+#define ARM_COMPUTE_CPU_SOFTMAXKERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Interface for the identifying the max value of 1D Logits */
+class CpuLogits1DMaxKernel : public ICpuKernel
+{
+public:
+ /** Constructor */
+ CpuLogits1DMaxKernel();
+ ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuLogits1DMaxKernel);
+ /** Set the input and output tensors.
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[out] dst Destination tensor info. Data types supported: same as @p input
+ */
+ void configure(const ITensorInfo *src, ITensorInfo *dst);
+ /** Static function to check if given info will lead to a valid configuration of @ref CpuLogits1DMaxKernel
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[in] dst Destination tensor info. Data types supported: same as @p input
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *src, const ITensorInfo *dst);
+
+ // Inherited methods overridden:
+ void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+ const char *name() const override;
+};
+
+/** Interface for softmax computation for QASYMM8 with pre-computed max. */
+template <bool IS_LOG = false>
+class CpuLogits1DSoftmaxKernel : public ICpuKernel
+{
+public:
+ /** Default constructor */
+ CpuLogits1DSoftmaxKernel();
+ ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuLogits1DSoftmaxKernel);
+
+ /** Set the input and output tensors.
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[in] max Max values tensor info. Same shape as input with dimension 0 set to 1.
+ * Data types supported: same as @p input.
+ * @param[out] dst Destination tensor info. Data types supported: same as @p input.
+ * @param[in] beta A scaling factor for the exponent.
+ *
+ * @param tmp Auxiliary tensor info. Must be type F32 and same shape as the input.
+ */
+ void configure(const ITensorInfo *src, const ITensorInfo *max, ITensorInfo *dst, const float beta, ITensorInfo *tmp);
+ /** Static function to check if given info will lead to a valid configuration of @ref CpuLogits1DSoftmaxKernel
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[in] max Max values tensor info. Same shape as input with dimension 0 set to 1.
+ * Data types supported: same as @p input.
+ * @param[in] dst Destination tensor info. Data types supported: same as @p input.
+ * @param[in] beta A scaling factor for the exponent.
+ * @param[in] tmp Tensor info of auxiliary. Must be type F32 and same shape as the input.
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *src, const ITensorInfo *max,
+ const ITensorInfo *dst, const float beta, const ITensorInfo *tmp);
+
+ // Inherited methods overridden:
+ void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+ const char *name() const override;
+
+private:
+ float _beta;
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_SOFTMAXKERNEL_H */
diff --git a/src/core/NEON/kernels/softmax/impl/NEON/list.h b/src/core/cpu/kernels/softmax/impl/NEON/list.h
index a8f781f43..1aa7e8fac 100644
--- a/src/core/NEON/kernels/softmax/impl/NEON/list.h
+++ b/src/core/cpu/kernels/softmax/impl/NEON/list.h
@@ -24,10 +24,10 @@
#ifndef SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
#define SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
-#include "src/core/NEON/wrapper/wrapper.h"
-#include "support/SaturateCast.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "support/SaturateCast.h"
namespace arm_compute
{
diff --git a/src/core/NEON/kernels/softmax/impl/SVE/list.h b/src/core/cpu/kernels/softmax/impl/SVE/list.h
index 0936bd5a5..0936bd5a5 100644
--- a/src/core/NEON/kernels/softmax/impl/SVE/list.h
+++ b/src/core/cpu/kernels/softmax/impl/SVE/list.h
diff --git a/src/runtime/NEON/functions/NEFillBorder.cpp b/src/runtime/NEON/functions/NEFillBorder.cpp
index bb57222eb..256aad6d3 100644
--- a/src/runtime/NEON/functions/NEFillBorder.cpp
+++ b/src/runtime/NEON/functions/NEFillBorder.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -29,6 +29,11 @@
namespace arm_compute
{
+NEFillBorder::NEFillBorder()
+ : _border_handler(nullptr)
+{
+}
+
void NEFillBorder::configure(ITensor *input, unsigned int border_width, BorderMode border_mode, const PixelValue &constant_border_value)
{
_border_handler = std::make_unique<NEFillBorderKernel>();
diff --git a/src/runtime/NEON/functions/NESoftmaxLayer.cpp b/src/runtime/NEON/functions/NESoftmaxLayer.cpp
index 6be34ad1a..3f1e43a8f 100644
--- a/src/runtime/NEON/functions/NESoftmaxLayer.cpp
+++ b/src/runtime/NEON/functions/NESoftmaxLayer.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -22,49 +22,62 @@
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h"
-
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "arm_compute/runtime/NEON/NEScheduler.h"
-#include "src/core/NEON/kernels/NEFillBorderKernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/runtime/Tensor.h"
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
#include "src/core/helpers/SoftmaxHelpers.h"
+#include "src/runtime/cpu/operators/CpuSoftmax.h"
namespace arm_compute
{
template <bool IS_LOG>
-NESoftmaxLayerGeneric<IS_LOG>::~NESoftmaxLayerGeneric() = default;
+struct NESoftmaxLayerGeneric<IS_LOG>::Impl
+{
+ const ITensor *src{ nullptr };
+ ITensor *dst{ nullptr };
+ Tensor max{ nullptr };
+ Tensor tmp{ nullptr };
+ Tensor input_permuted{ nullptr };
+ Tensor output_permuted{ nullptr };
+ std::unique_ptr<cpu::CpuSoftmaxGeneric<IS_LOG>> op{ nullptr };
+};
template <bool IS_LOG>
NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
- : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _fill_border_kernel(), _max(), _tmp(), _input_permuted(), _output_permuted(),
- _needs_permute(false)
+ : _memory_group(std::move(memory_manager)), _impl(std::make_unique<Impl>())
{
}
template <bool IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&) = default;
+template <bool IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG> &NESoftmaxLayerGeneric<IS_LOG>::operator=(NESoftmaxLayerGeneric &&) = default;
+template <bool IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG>::~NESoftmaxLayerGeneric() = default;
+
+template <bool IS_LOG>
void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, float beta, int32_t axis)
{
- // Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayerGeneric::validate(input->info(), output->info(), beta, axis));
- const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
+ _impl->src = input;
+ _impl->dst = output;
+ _impl->op = std::make_unique<cpu::CpuSoftmaxGeneric<IS_LOG>>();
+ _impl->op->configure(input->info(), output->info(), beta, axis);
- _needs_permute = actual_axis > 0;
-
- if(_needs_permute)
+ const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
+ const bool needs_permute = actual_axis > 0;
+ if(needs_permute)
{
// Add to the memory manager _input_permuted
- _memory_group.manage(&_input_permuted);
-
- _permute_input.configure(input, &_input_permuted, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+ auto permute_input = std::make_unique<cpu::CpuPermute>();
+ _memory_group.manage(&_impl->input_permuted);
+ permute_input->configure(input->info(), _impl->input_permuted.info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
}
// We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
// or it is the original input case (2D case)
- ITensor *tmp_input = (_needs_permute ? &_input_permuted : input);
+ ITensor *tmp_input = (needs_permute ? &_impl->input_permuted : input);
// Create intermediate tensors shapes
const TensorInfo input_info = tmp_input->info()->clone()->reset_padding().set_is_resizable(true);
@@ -74,80 +87,49 @@ void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, f
// Init intermediate tensors
TensorShape max_sum_shape = tmp_input->info()->tensor_shape();
max_sum_shape.set(0, 1);
- _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
- _tmp.allocator()->init(tensor_info_tmp);
+ _impl->max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
+ _impl->tmp.allocator()->init(tensor_info_tmp);
// Manage intermediate buffers
- _memory_group.manage(&_max);
- _memory_group.manage(&_tmp);
+ _memory_group.manage(&_impl->max);
+ _memory_group.manage(&_impl->tmp);
// Configure kernels
- _max_kernel = std::make_unique<NELogits1DMaxKernel>();
- _softmax_kernel = std::make_unique<NELogits1DSoftmaxKernel<IS_LOG>>();
- _max_kernel->configure(tmp_input, &_max);
- if(_needs_permute)
+ auto max_kernel = std::make_unique<cpu::kernels::CpuLogits1DMaxKernel>();
+ auto softmax_kernel = std::make_unique<cpu::kernels::CpuLogits1DSoftmaxKernel<IS_LOG>>();
+ max_kernel->configure(tmp_input->info(), _impl->max.info());
+
+ if(needs_permute)
{
+ auto permute_output = std::make_unique<cpu::CpuPermute>();
// Add to the memory manager _output_permuted
- _memory_group.manage(&_output_permuted);
+ _memory_group.manage(&_impl->output_permuted);
// The normalization kernel stores the result in a permuted output tensor
- _softmax_kernel->configure(tmp_input, &_max, &_output_permuted, beta, &_tmp);
- _input_permuted.allocator()->allocate();
+ softmax_kernel->configure(tmp_input->info(), _impl->max.info(), _impl->output_permuted.info(), beta, _impl->tmp.info());
+ _impl->input_permuted.allocator()->allocate();
// Re-permute the permuted output into the requested (4D) output
- _permute_output.configure(&_output_permuted, output, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+ permute_output->configure(_impl->output_permuted.info(), output->info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
// Allocate the intermediate permuted tensors
- _output_permuted.allocator()->allocate();
+ _impl->output_permuted.allocator()->allocate();
}
else
{
- // Softmax 2D case
- _fill_border_kernel = std::make_unique<NEFillBorderKernel>();
- _fill_border_kernel->configure(tmp_input, _max_kernel->border_size(), BorderMode::REPLICATE);
- _softmax_kernel->configure(tmp_input, &_max, output, beta, &_tmp);
+ softmax_kernel->configure(tmp_input->info(), _impl->max.info(), output->info(), beta, _impl->tmp.info());
}
// Allocate intermediate buffers
- _max.allocator()->allocate();
- _tmp.allocator()->allocate();
+ _impl->max.allocator()->allocate();
+ _impl->tmp.allocator()->allocate();
}
template <bool IS_LOG>
Status NESoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis)
{
- // Perform validation step
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
- ARM_COMPUTE_UNUSED(beta);
- ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-input->num_dimensions()) || static_cast<int32_t>(input->num_dimensions()) <= axis);
-
- // Create intermediate tensor info
- DataType tmp_data_type = input->data_type();
- const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
-
- TensorShape max_sum_shape = input->tensor_shape();
- max_sum_shape.set(0, 1);
- const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true));
- const TensorInfo dont_care;
-
- const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->num_dimensions())));
-
- const bool needs_permute = actual_axis > 0;
-
- if(needs_permute)
- {
- const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis);
- const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector);
- TensorInfo input_permuted(input->clone()->set_tensor_shape(permuted_shape));
- ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &input_permuted, permutation_vector));
- TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape));
- ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&output_permuted, output, permutation_vector));
- }
-
- ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum));
- ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel<IS_LOG>::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care));
-
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuSoftmaxGeneric<IS_LOG>::validate(input, output, beta, axis));
return Status{};
}
@@ -155,23 +137,14 @@ template <bool IS_LOG>
void NESoftmaxLayerGeneric<IS_LOG>::run()
{
MemoryGroupResourceScope scope_mg(_memory_group);
-
- if(_needs_permute)
- {
- _permute_input.run();
- }
- else
- {
- NEScheduler::get().schedule(_fill_border_kernel.get(), Window::DimY);
- }
-
- NEScheduler::get().schedule(_max_kernel.get(), Window::DimY);
- NEScheduler::get().schedule(_softmax_kernel.get(), Window::DimY);
-
- if(_needs_permute)
- {
- _permute_output.run();
- }
+ ITensorPack pack;
+ pack.add_tensor(TensorType::ACL_SRC, _impl->src);
+ pack.add_tensor(TensorType::ACL_DST, _impl->dst);
+ pack.add_tensor(TensorType::ACL_INT_0, &_impl->tmp);
+ pack.add_tensor(TensorType::ACL_INT_1, &_impl->max);
+ pack.add_tensor(TensorType::ACL_INT_2, &_impl->input_permuted);
+ pack.add_tensor(TensorType::ACL_INT_3, &_impl->output_permuted);
+ _impl->op->run(pack);
}
template class NESoftmaxLayerGeneric<false>;
diff --git a/src/runtime/cpu/operators/CpuSoftmax.cpp b/src/runtime/cpu/operators/CpuSoftmax.cpp
new file mode 100644
index 000000000..0e1bcd5c6
--- /dev/null
+++ b/src/runtime/cpu/operators/CpuSoftmax.cpp
@@ -0,0 +1,204 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/runtime/cpu/operators/CpuSoftmax.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
+#include "src/core/helpers/SoftmaxHelpers.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+template <bool IS_LOG>
+CpuSoftmaxGeneric<IS_LOG>::CpuSoftmaxGeneric()
+ : _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _max(nullptr), _tmp(nullptr), _input_permuted(nullptr), _output_permuted(nullptr), _needs_permute(false)
+{
+}
+
+template <bool IS_LOG>
+void CpuSoftmaxGeneric<IS_LOG>::configure(const ITensorInfo *src, ITensorInfo *dst, float beta, int32_t axis)
+{
+ // Perform validation step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(CpuSoftmaxGeneric::validate(src, dst, beta, axis));
+
+ const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(src->num_dimensions())));
+
+ _needs_permute = actual_axis > 0;
+
+ if(_needs_permute)
+ {
+ _input_permuted = std::make_unique<TensorInfo>();
+ _permute_input.configure(src, _input_permuted.get(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+ }
+
+ // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
+ // or it is the original input case (2D case)
+ const ITensorInfo *tmp_input = (_needs_permute ? _input_permuted.get() : src);
+
+ // Create intermediate tensors shapes
+ TensorShape max_sum_shape = tmp_input->tensor_shape();
+ max_sum_shape.set(0, 1);
+ const TensorInfo input_info = tmp_input->clone()->reset_padding().set_is_resizable(true);
+ DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->data_type()) ? DataType::F32 : tmp_input->data_type();
+ TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
+ TensorInfo max_info(tmp_input->clone()->set_tensor_shape(max_sum_shape));
+
+ // Init intermediate tensors
+ _max = std::make_unique<TensorInfo>(max_info);
+ _tmp = std::make_unique<TensorInfo>(tensor_info_tmp);
+
+ // Configure kernels
+ auto mk = std::make_unique<kernels::CpuLogits1DMaxKernel>();
+ mk->configure(tmp_input, _max.get());
+ _max_kernel = std::move(mk);
+
+ auto sm = std::make_unique<kernels::CpuLogits1DSoftmaxKernel<IS_LOG>>();
+ if(_needs_permute)
+ {
+ _output_permuted = std::make_unique<TensorInfo>();
+
+ // The normalization kernel stores the result in a permuted output tensor
+ sm->configure(tmp_input, _max.get(), _output_permuted.get(), beta, _tmp.get());
+
+ // Re-permute the permuted output into the requested (4D) output
+ _permute_output.configure(_output_permuted.get(), dst, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+ }
+ else
+ {
+ // Softmax 2D case
+ sm->configure(tmp_input, _max.get(), dst, beta, _tmp.get());
+ }
+ _softmax_kernel = std::move(sm);
+}
+
+template <bool IS_LOG>
+Status CpuSoftmaxGeneric<IS_LOG>::validate(const ITensorInfo *src, const ITensorInfo *dst, float beta, int32_t axis)
+{
+ // Perform validation step
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->num_dimensions() > 4, "Only up to 4 dimensions are supported");
+ ARM_COMPUTE_UNUSED(beta);
+ ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-src->num_dimensions()) || static_cast<int32_t>(src->num_dimensions()) <= axis);
+
+ // Create intermediate tensor info
+ DataType tmp_data_type = src->data_type();
+ const TensorInfo tensor_info_tmp(src->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
+
+ TensorShape max_sum_shape = src->tensor_shape();
+ max_sum_shape.set(0, 1);
+ const TensorInfo tensor_info_max_sum(src->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(src->quantization_info()).set_is_resizable(true));
+ const TensorInfo dont_care;
+
+ const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(src->num_dimensions())));
+
+ const bool needs_permute = actual_axis > 0;
+
+ if(needs_permute)
+ {
+ const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis);
+ const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*src, permutation_vector);
+ TensorInfo input_permuted(src->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(src, &input_permuted, permutation_vector));
+ TensorInfo output_permuted(dst->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(&output_permuted, dst, permutation_vector));
+ }
+
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DMaxKernel::validate(src, &tensor_info_max_sum));
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DSoftmaxKernel<IS_LOG>::validate(&tensor_info_tmp, &tensor_info_max_sum, dst, beta, &dont_care));
+
+ return Status{};
+}
+
+template <bool IS_LOG>
+void CpuSoftmaxGeneric<IS_LOG>::run(ITensorPack &tensors)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
+
+ ITensorPack max_pack;
+ ITensorPack softmax_pack;
+
+ if(_needs_permute)
+ {
+ ITensorPack permute_in_pack;
+ permute_in_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC));
+ permute_in_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_2));
+ _permute_input.run(permute_in_pack);
+
+ max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_2));
+
+ softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_tensor(ACL_INT_2));
+ softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1));
+ softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_INT_3));
+ softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0));
+ }
+ else
+ {
+ max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC));
+ softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_const_tensor(ACL_SRC));
+ softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1));
+ softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_DST));
+ softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0));
+ }
+
+ max_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_1));
+
+ NEScheduler::get().schedule_op(_max_kernel.get(), Window::DimY, _max_kernel->window(), max_pack);
+ NEScheduler::get().schedule_op(_softmax_kernel.get(), Window::DimY, _softmax_kernel->window(), softmax_pack);
+
+ if(_needs_permute)
+ {
+ ITensorPack permute_out_pack;
+ permute_out_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_3));
+ permute_out_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_DST));
+ _permute_output.run(permute_out_pack);
+ }
+}
+
+template <bool IS_LOG>
+experimental::MemoryRequirements CpuSoftmaxGeneric<IS_LOG>::workspace() const
+{
+ experimental::MemoryRequirements req{};
+
+ req.push_back({ TensorType::ACL_INT_0, _tmp->total_size(), 0 });
+ req.push_back({ TensorType::ACL_INT_1, _max->total_size(), 0 });
+
+ if(_needs_permute)
+ {
+ req.push_back({ TensorType::ACL_INT_2, _input_permuted->total_size(), 0 });
+ req.push_back({ TensorType::ACL_INT_3, _output_permuted->total_size(), 0 });
+ }
+
+ return req;
+}
+
+template class CpuSoftmaxGeneric<false>;
+template class CpuSoftmaxGeneric<true>;
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/runtime/cpu/operators/CpuSoftmax.h b/src/runtime/cpu/operators/CpuSoftmax.h
new file mode 100644
index 000000000..9f18e0e4c
--- /dev/null
+++ b/src/runtime/cpu/operators/CpuSoftmax.h
@@ -0,0 +1,105 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_SOFTMAX_H
+#define ARM_COMPUTE_CPU_SOFTMAX_H
+
+#include "arm_compute/core/ITensorInfo.h"
+#include "arm_compute/core/experimental/Types.h"
+#include "src/core/cpu/ICpuKernel.h"
+#include "src/runtime/cpu/ICpuOperator.h"
+#include "src/runtime/cpu/operators/CpuPermute.h"
+#include <memory>
+
+namespace arm_compute
+{
+namespace cpu
+{
+class CpuLogits1DMaxKernel;
+template <bool IS_LOG>
+class CpuLogits1DSoftmaxKernel;
+
+/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer.
+ *
+ * Softmax is calculated by :
+ * @f[ out = exp((x - max(x)) * beta) / sum(exp((x - max(x)) * beta)) @f]
+ *
+ * Log Softmax is calculated by :
+ * @f[ out = (x - max(x) * beta) - log(\sum{e^{x - max(x) * beta}}) @f]
+ *
+ * This function runs the following function/kernels:
+ * -# If axis is not 0:
+ * -# @ref CpuPermute
+ * -# @ref kernels::CpuLogits1DMaxKernel
+ * -# @ref kernels::CpuLogits1DSoftmaxKernel
+ */
+template <bool IS_LOG = false>
+class CpuSoftmaxGeneric : public ICpuOperator
+{
+public:
+ /** Constructor */
+ CpuSoftmaxGeneric();
+ /** Set the input and output tensors.
+ *
+ * @param[in,out] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * last value of each row to the nearest multiple.
+ * @param[out] dst Destination tensor ifo. Data types supported: same as @p input.
+ * @param[in] beta (Optional) A scaling factor for the exponent.
+ * @param[in] axis (Optional) The dimension in which to apply the function. E.g. for input of shape 4x5x6 and
+ * axis=1, softmax will be applied to 4x6=24 vectors of size 5. Defaults to 0
+ */
+ void configure(const ITensorInfo *src, ITensorInfo *dst, float beta = 1.0f, int32_t axis = 0);
+
+ /** Static function to check if given info will lead to a valid configuration of @ref CpuSoftmax
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[in] dst Destination tensor info. Data types supported: same as @p input
+ * @param[in] beta (Optional) A scaling factor for the exponent.
+ * @param[in] axis (Optional) The dimension in which to apply the function. E.g. for input of shape 4x5x6 and
+ * axis=1, softmax will be applied to 4x6=24 vectors of size 5. Defaults to 0
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *src, const ITensorInfo *dst, float beta = 1.0f, int32_t axis = 0);
+
+ // Inherited methods overridden:
+ void run(ITensorPack &tensors) override;
+ experimental::MemoryRequirements workspace() const override;
+
+private:
+ CpuPermute _permute_input;
+ CpuPermute _permute_output;
+ std::unique_ptr<ICpuKernel> _max_kernel;
+ std::unique_ptr<ICpuKernel> _softmax_kernel;
+ std::unique_ptr<ITensorInfo> _max;
+ std::unique_ptr<ITensorInfo> _tmp;
+ std::unique_ptr<ITensorInfo> _input_permuted;
+ std::unique_ptr<ITensorInfo> _output_permuted;
+ bool _needs_permute;
+};
+using CpuSoftmax = CpuSoftmaxGeneric<false>;
+using CpuLogSoftmax = CpuSoftmaxGeneric<true>;
+
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_SOFTMAX_H */