/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 2.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader operator performance tests. *//*--------------------------------------------------------------------*/ #include "es2pShaderOperatorTests.hpp" #include "glsCalibration.hpp" #include "gluShaderUtil.hpp" #include "gluShaderProgram.hpp" #include "gluPixelTransfer.hpp" #include "tcuTestLog.hpp" #include "tcuRenderTarget.hpp" #include "tcuCommandLine.hpp" #include "tcuSurface.hpp" #include "deStringUtil.hpp" #include "deSharedPtr.hpp" #include "deClock.h" #include "deMath.h" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include #include #include #include namespace deqp { namespace gles2 { namespace Performance { using namespace gls; using namespace glu; using tcu::Vec2; using tcu::Vec4; using tcu::TestLog; using de::SharedPtr; using std::string; using std::vector; #define MEASUREMENT_FAIL() throw tcu::InternalError("Unable to get sensible measurements for estimation", DE_NULL, __FILE__, __LINE__) // Number of measurements in OperatorPerformanceCase for each workload size, unless specified otherwise by a command line argument. static const int DEFAULT_NUM_MEASUREMENTS_PER_WORKLOAD = 3; // How many different workload sizes are used by OperatorPerformanceCase. static const int NUM_WORKLOADS = 8; // Maximum workload size that can be attempted. In a sensible case, this most likely won't be reached. static const int MAX_WORKLOAD_SIZE = 1<<29; // BinaryOpCase-specific constants for shader generation. static const int BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS = 4; static const int BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT = 2; static const int BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT = 4; // FunctionCase-specific constants for shader generation. static const int FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS = 4; static const char* const s_swizzles[][4] = { { "x", "yx", "yzx", "wzyx" }, { "y", "zy", "wyz", "xwzy" }, { "z", "wy", "zxy", "yzwx" }, { "w", "xw", "yxw", "zyxw" } }; template static tcu::Vector mean (const vector >& data) { tcu::Vector sum(0.0f); for (int i = 0; i < (int)data.size(); i++) sum += data[i]; return sum / tcu::Vector((float)data.size()); } static void uniformNfv (const glw::Functions& gl, int n, int location, int count, const float* data) { switch (n) { case 1: gl.uniform1fv(location, count, data); break; case 2: gl.uniform2fv(location, count, data); break; case 3: gl.uniform3fv(location, count, data); break; case 4: gl.uniform4fv(location, count, data); break; default: DE_ASSERT(false); } } static void uniformNiv (const glw::Functions& gl, int n, int location, int count, const int* data) { switch (n) { case 1: gl.uniform1iv(location, count, data); break; case 2: gl.uniform2iv(location, count, data); break; case 3: gl.uniform3iv(location, count, data); break; case 4: gl.uniform4iv(location, count, data); break; default: DE_ASSERT(false); } } static void uniformMatrixNfv (const glw::Functions& gl, int n, int location, int count, const float* data) { switch (n) { case 2: gl.uniformMatrix2fv(location, count, GL_FALSE, &data[0]); break; case 3: gl.uniformMatrix3fv(location, count, GL_FALSE, &data[0]); break; case 4: gl.uniformMatrix4fv(location, count, GL_FALSE, &data[0]); break; default: DE_ASSERT(false); } } static glu::DataType getDataTypeFloatOrVec (int size) { return size == 1 ? glu::TYPE_FLOAT : glu::getDataTypeFloatVec(size); } static int getIterationCountOrDefault (const tcu::CommandLine& cmdLine, int def) { const int cmdLineVal = cmdLine.getTestIterationCount(); return cmdLineVal > 0 ? cmdLineVal : def; } static string lineParamsString (const LineParameters& params) { return "y = " + de::toString(params.offset) + " + " + de::toString(params.coefficient) + "*x"; } namespace { /*--------------------------------------------------------------------*//*! * \brief Abstract class for measuring shader operator performance. * * This class draws multiple times with different workload sizes (set * via a uniform, by subclass). Time for each frame is measured, and the * slope of the workload size vs frame time data is estimated. This slope * tells us the estimated increase in frame time caused by a workload * increase of 1 unit (what 1 workload unit means is up to subclass). * * Generally, the shaders contain not just the operation we're interested * in (e.g. addition) but also some other stuff (e.g. loop overhead). To * eliminate this cost, we actually do the stuff described in the above * paragraph with multiple programs (usually two), which contain different * kinds of workload (e.g. different loop contents). Then we can (in * theory) compute the cost of just one operation in a subclass-dependent * manner. * * At this point, the result tells us the increase in frame time caused * by the addition of one operation. Dividing this by the amount of * draw calls in a frame, and further by the amount of vertices or * fragments in a draw call, we get the time cost of one operation. * * In reality, there sometimes isn't just a trivial linear dependence * between workload size and frame time. Instead, there tends to be some * amount of initial "free" operations. That is, it may be that all * workload sizes below some positive integer C yield the same frame time, * and only workload sizes beyond C increase the frame time in a supposedly * linear manner. Graphically, this means that there graph consists of two * parts: a horizontal left part, and a linearly increasing right part; the * right part starts where the left parts ends. The principal task of these * tests is to look at the slope of the increasing right part. Additionally * an estimate for the amount of initial free operations is calculated. * Note that it is also normal to get graphs where the horizontal left part * is of zero width, i.e. there are no free operations. *//*--------------------------------------------------------------------*/ class OperatorPerformanceCase : public tcu::TestCase { public: enum CaseType { CASETYPE_VERTEX = 0, CASETYPE_FRAGMENT, CASETYPE_LAST }; struct InitialCalibration { int initialNumCalls; InitialCalibration (void) : initialNumCalls(1) {} }; typedef SharedPtr InitialCalibrationStorage; OperatorPerformanceCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, CaseType caseType, int numWorkloads, const InitialCalibrationStorage& initialCalibrationStorage); ~OperatorPerformanceCase (void); void init (void); void deinit (void); IterateResult iterate (void); struct AttribSpec { AttribSpec (const char* name_, const tcu::Vec4& p00_, const tcu::Vec4& p01_, const tcu::Vec4& p10_, const tcu::Vec4& p11_) : name (name_) , p00 (p00_) , p01 (p01_) , p10 (p10_) , p11 (p11_) { } AttribSpec (void) {} std::string name; tcu::Vec4 p00; //!< Bottom left. tcu::Vec4 p01; //!< Bottom right. tcu::Vec4 p10; //!< Top left. tcu::Vec4 p11; //!< Top right. }; protected: struct ProgramContext { string vertShaderSource; string fragShaderSource; vector attributes; string description; ProgramContext (void) {} ProgramContext (const string& vs, const string& fs, const vector& attrs, const string& desc) : vertShaderSource(vs), fragShaderSource(fs), attributes(attrs), description(desc) {} }; virtual vector generateProgramData (void) const = 0; //! Sets program-specific uniforms that don't depend on the workload size. virtual void setGeneralUniforms (deUint32 program) const = 0; //! Sets the uniform(s) that specifies the workload size in the shader. virtual void setWorkloadSizeUniform (deUint32 program, int workload) const = 0; //! Computes the cost of a single operation, given the workload costs per program. virtual float computeSingleOperationTime (const vector& perProgramWorkloadCosts) const = 0; //! Logs a human-readable description of what computeSingleOperationTime does. virtual void logSingleOperationCalculationInfo (void) const = 0; glu::RenderContext& m_renderCtx; CaseType m_caseType; private: enum State { STATE_CALIBRATING = 0, //!< Calibrate draw call count, using first program in m_programs, with workload size 1. STATE_FIND_HIGH_WORKLOAD, //!< Find an appropriate lower bound for the highest workload size we intend to use (one with high-enough frame time compared to workload size 1) for each program. STATE_MEASURING, //!< Do actual measurements, for each program in m_programs. STATE_REPORTING, //!< Measurements are done; calculate results and log. STATE_FINISHED, //!< All done. STATE_LAST }; struct WorkloadRecord { int workloadSize; vector frameTimes; //!< In microseconds. WorkloadRecord (int workloadSize_) : workloadSize(workloadSize_) {} bool operator< (const WorkloadRecord& other) const { return this->workloadSize < other.workloadSize; } void addFrameTime (float time) { frameTimes.push_back(time); } float getMedianTime (void) const { vector times = frameTimes; std::sort(times.begin(), times.end()); return times.size() % 2 == 0 ? (times[times.size()/2-1] + times[times.size()/2])*0.5f : times[times.size()/2]; } }; void prepareProgram (int progNdx); //!< Sets attributes and uniforms for m_programs[progNdx]. void prepareWorkload (int progNdx, int workload); //!< Calls setWorkloadSizeUniform and draws, in case the implementation does some draw-time compilation. void prepareNextRound (void); //!< Increases workload and/or updates m_state. void render (int numDrawCalls); deUint64 renderAndMeasure (int numDrawCalls); void adjustAndLogGridAndViewport (void); //!< Log grid and viewport sizes, after possibly reducing them to reduce draw time. vector getWorkloadMedianDataPoints (int progNdx) const; //!< [ Vec2(r.workloadSize, r.getMedianTime()) for r in m_workloadRecords[progNdx] ] const int m_numMeasurementsPerWorkload; const int m_numWorkloads; //!< How many different workload sizes are used for measurement for each program. int m_workloadNdx; //!< Runs from 0 to m_numWorkloads-1. int m_workloadMeasurementNdx; vector > m_workloadRecordsFindHigh; //!< The measurements done during STATE_FIND_HIGH_WORKLOAD. vector > m_workloadRecords; //!< The measurements of each program in m_programs. Generated during STATE_MEASURING, into index specified by m_measureProgramNdx. State m_state; int m_measureProgramNdx; //!< When m_state is STATE_FIND_HIGH_WORKLOAD or STATE_MEASURING, this tells which program in m_programs is being measured. vector m_highWorkloadSizes; //!< The first workload size encountered during STATE_FIND_HIGH_WORKLOAD that was determined suitable, for each program. TheilSenCalibrator m_calibrator; InitialCalibrationStorage m_initialCalibrationStorage; int m_viewportWidth; int m_viewportHeight; int m_gridSizeX; int m_gridSizeY; vector m_programData; vector > m_programs; std::vector m_attribBuffers; }; static inline float triangleInterpolate (float v0, float v1, float v2, float x, float y) { return v0 + (v2-v0)*x + (v1-v0)*y; } static inline float triQuadInterpolate (float x, float y, const tcu::Vec4& quad) { // \note Top left fill rule. if (x + y < 1.0f) return triangleInterpolate(quad.x(), quad.y(), quad.z(), x, y); else return triangleInterpolate(quad.w(), quad.z(), quad.y(), 1.0f-x, 1.0f-y); } static inline int getNumVertices (int gridSizeX, int gridSizeY) { return gridSizeX * gridSizeY * 2 * 3; } static void generateVertices (std::vector& dst, int gridSizeX, int gridSizeY, const OperatorPerformanceCase::AttribSpec& spec) { const int numComponents = 4; DE_ASSERT(gridSizeX >= 1 && gridSizeY >= 1); dst.resize(getNumVertices(gridSizeX, gridSizeY) * numComponents); { int dstNdx = 0; for (int baseY = 0; baseY < gridSizeY; baseY++) for (int baseX = 0; baseX < gridSizeX; baseX++) { const float xf0 = (float)(baseX + 0) / (float)gridSizeX; const float yf0 = (float)(baseY + 0) / (float)gridSizeY; const float xf1 = (float)(baseX + 1) / (float)gridSizeX; const float yf1 = (float)(baseY + 1) / (float)gridSizeY; #define ADD_VERTEX(XF, YF) \ for (int compNdx = 0; compNdx < numComponents; compNdx++) \ dst[dstNdx++] = triQuadInterpolate((XF), (YF), tcu::Vec4(spec.p00[compNdx], spec.p01[compNdx], spec.p10[compNdx], spec.p11[compNdx])) ADD_VERTEX(xf0, yf0); ADD_VERTEX(xf1, yf0); ADD_VERTEX(xf0, yf1); ADD_VERTEX(xf1, yf0); ADD_VERTEX(xf1, yf1); ADD_VERTEX(xf0, yf1); #undef ADD_VERTEX } } } static float intersectionX (const gls::LineParameters& a, const gls::LineParameters& b) { return (a.offset - b.offset) / (b.coefficient - a.coefficient); } static int numDistinctX (const vector& data) { std::set xs; for (int i = 0; i < (int)data.size(); i++) xs.insert(data[i].x()); return (int)xs.size(); } static gls::LineParameters simpleLinearRegression (const vector& data) { const Vec2 mid = mean(data); float slopeNumerator = 0.0f; float slopeDenominator = 0.0f; for (int i = 0; i < (int)data.size(); i++) { const Vec2 diff = data[i] - mid; slopeNumerator += diff.x()*diff.y(); slopeDenominator += diff.x()*diff.x(); } const float slope = slopeNumerator / slopeDenominator; const float offset = mid.y() - slope*mid.x(); return gls::LineParameters(offset, slope); } static float simpleLinearRegressionError (const vector& data) { if (numDistinctX(data) <= 2) return 0.0f; else { const gls::LineParameters estimator = simpleLinearRegression(data); float error = 0.0f; for (int i = 0; i < (int)data.size(); i++) { const float estY = estimator.offset + estimator.coefficient*data[i].x(); const float diff = estY - data[i].y(); error += diff*diff; } return error / (float)data.size(); } } static float verticalVariance (const vector& data) { if (numDistinctX(data) <= 2) return 0.0f; else { const float meanY = mean(data).y(); float error = 0.0f; for (int i = 0; i < (int)data.size(); i++) { const float diff = meanY - data[i].y(); error += diff*diff; } return error / (float)data.size(); } } /*--------------------------------------------------------------------*//*! * \brief Find the x coord that divides the input data into two slopes. * * The operator performance measurements tend to produce results where * we get small operation counts "for free" (e.g. because the operations * are performed during some memory transfer overhead or something), * resulting in a curve with two parts: an initial horizontal line segment, * and a rising line. * * This function finds the x coordinate that divides the input data into * two parts such that the sum of the mean square errors for the * least-squares estimated lines for the two parts is minimized, under the * additional condition that the left line is horizontal. * * This function returns a number X s.t. { pt | pt is in data, pt.x >= X } * is the right line, and the rest of data is the left line. *//*--------------------------------------------------------------------*/ static float findSlopePivotX (const vector& data) { std::set xCoords; for (int i = 0; i < (int)data.size(); i++) xCoords.insert(data[i].x()); float lowestError = std::numeric_limits::infinity(); float bestPivotX = -std::numeric_limits::infinity(); for (std::set::const_iterator pivotX = xCoords.begin(); pivotX != xCoords.end(); ++pivotX) { vector leftData; vector rightData; for (int i = 0; i < (int)data.size(); i++) { if (data[i].x() < *pivotX) leftData.push_back(data[i]); else rightData.push_back(data[i]); } if (numDistinctX(rightData) < 3) // We don't trust the right data if there's too little of it. break; { const float totalError = verticalVariance(leftData) + simpleLinearRegressionError(rightData); if (totalError < lowestError) { lowestError = totalError; bestPivotX = *pivotX; } } } DE_ASSERT(lowestError < std::numeric_limits::infinity()); return bestPivotX; } struct SegmentedEstimator { float pivotX; //!< Value returned by findSlopePivotX, or -infinity if only single line. gls::LineParameters left; gls::LineParameters right; SegmentedEstimator (const gls::LineParameters& l, const gls::LineParameters& r, float pivotX_) : pivotX(pivotX_), left(l), right(r) {} }; /*--------------------------------------------------------------------*//*! * \brief Compute line estimators for (potentially) two-segment data. * * Splits the given data into left and right parts (using findSlopePivotX) * and returns the line estimates for them. * * Sometimes, however (especially in fragment shader cases) the data is * in fact not segmented, but a straight line. This function attempts to * detect if this the case, and if so, sets left.offset = right.offset and * left.slope = 0, meaning essentially that the initial "flat" part of the * data has zero width. *//*--------------------------------------------------------------------*/ static SegmentedEstimator computeSegmentedEstimator (const vector& data) { const float pivotX = findSlopePivotX(data); vector leftData; vector rightData; for (int i = 0; i < (int)data.size(); i++) { if (data[i].x() < pivotX) leftData.push_back(data[i]); else rightData.push_back(data[i]); } { const gls::LineParameters leftLine = gls::theilSenEstimator(leftData); const gls::LineParameters rightLine = gls::theilSenEstimator(rightData); if (numDistinctX(leftData) < 2 || leftLine.coefficient > rightLine.coefficient*0.5f) { // Left data doesn't seem credible; assume the data is just a single line. const gls::LineParameters entireLine = gls::theilSenEstimator(data); return SegmentedEstimator(gls::LineParameters(entireLine.offset, 0.0f), entireLine, -std::numeric_limits::infinity()); } else return SegmentedEstimator(leftLine, rightLine, pivotX); } } OperatorPerformanceCase::OperatorPerformanceCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, CaseType caseType, int numWorkloads, const InitialCalibrationStorage& initialCalibrationStorage) : tcu::TestCase (testCtx, tcu::NODETYPE_PERFORMANCE, name, description) , m_renderCtx (renderCtx) , m_caseType (caseType) , m_numMeasurementsPerWorkload (getIterationCountOrDefault(m_testCtx.getCommandLine(), DEFAULT_NUM_MEASUREMENTS_PER_WORKLOAD)) , m_numWorkloads (numWorkloads) , m_workloadNdx (-1) , m_workloadMeasurementNdx (-1) , m_state (STATE_LAST) , m_measureProgramNdx (-1) , m_initialCalibrationStorage (initialCalibrationStorage) , m_viewportWidth (caseType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getWidth()) , m_viewportHeight (caseType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getHeight()) , m_gridSizeX (caseType == CASETYPE_FRAGMENT ? 1 : 100) , m_gridSizeY (caseType == CASETYPE_FRAGMENT ? 1 : 100) { DE_ASSERT(m_numWorkloads > 0); } OperatorPerformanceCase::~OperatorPerformanceCase (void) { if (!m_attribBuffers.empty()) { m_renderCtx.getFunctions().deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]); m_attribBuffers.clear(); } } static void logRenderTargetInfo (TestLog& log, const tcu::RenderTarget& renderTarget) { log << TestLog::Section("RenderTarget", "Render target") << TestLog::Message << "size: " << renderTarget.getWidth() << "x" << renderTarget.getHeight() << TestLog::EndMessage << TestLog::Message << "bits:" << " R" << renderTarget.getPixelFormat().redBits << " G" << renderTarget.getPixelFormat().greenBits << " B" << renderTarget.getPixelFormat().blueBits << " A" << renderTarget.getPixelFormat().alphaBits << " D" << renderTarget.getDepthBits() << " S" << renderTarget.getStencilBits() << TestLog::EndMessage; if (renderTarget.getNumSamples() != 0) log << TestLog::Message << renderTarget.getNumSamples() << "x MSAA" << TestLog::EndMessage; else log << TestLog::Message << "No MSAA" << TestLog::EndMessage; log << TestLog::EndSection; } vector OperatorPerformanceCase::getWorkloadMedianDataPoints (int progNdx) const { const vector& records = m_workloadRecords[progNdx]; vector result; for (int i = 0; i < (int)records.size(); i++) result.push_back(Vec2((float)records[i].workloadSize, records[i].getMedianTime())); return result; } void OperatorPerformanceCase::prepareProgram (int progNdx) { DE_ASSERT(progNdx < (int)m_programs.size()); DE_ASSERT(m_programData.size() == m_programs.size()); const glw::Functions& gl = m_renderCtx.getFunctions(); const ShaderProgram& program = *m_programs[progNdx]; vector attributes = m_programData[progNdx].attributes; attributes.push_back(AttribSpec("a_position", Vec4(-1.0f, -1.0f, 0.0f, 1.0f), Vec4( 1.0f, -1.0f, 0.0f, 1.0f), Vec4(-1.0f, 1.0f, 0.0f, 1.0f), Vec4( 1.0f, 1.0f, 0.0f, 1.0f))); DE_ASSERT(program.isOk()); // Generate vertices. if (!m_attribBuffers.empty()) gl.deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]); m_attribBuffers.resize(attributes.size(), 0); gl.genBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "glGenBuffers()"); for (int attribNdx = 0; attribNdx < (int)attributes.size(); attribNdx++) { std::vector vertices; generateVertices(vertices, m_gridSizeX, m_gridSizeY, attributes[attribNdx]); gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]); gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertices.size()*sizeof(float)), &vertices[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "Upload buffer data"); } // Setup attribute bindings. for (int attribNdx = 0; attribNdx < (int)attributes.size(); attribNdx++) { int location = gl.getAttribLocation(program.getProgram(), attributes[attribNdx].name.c_str()); if (location >= 0) { gl.enableVertexAttribArray(location); gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]); gl.vertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); } } GLU_EXPECT_NO_ERROR(gl.getError(), "Setup vertex input state"); gl.useProgram(program.getProgram()); setGeneralUniforms(program.getProgram()); gl.viewport(0, 0, m_viewportWidth, m_viewportHeight); } void OperatorPerformanceCase::prepareWorkload (int progNdx, int workload) { setWorkloadSizeUniform(m_programs[progNdx]->getProgram(), workload); render(m_calibrator.getCallCount()); } void OperatorPerformanceCase::prepareNextRound (void) { DE_ASSERT(m_state == STATE_CALIBRATING || m_state == STATE_FIND_HIGH_WORKLOAD || m_state == STATE_MEASURING); TestLog& log = m_testCtx.getLog(); if (m_state == STATE_CALIBRATING && m_calibrator.getState() == TheilSenCalibrator::STATE_FINISHED) { m_measureProgramNdx = 0; m_state = STATE_FIND_HIGH_WORKLOAD; } if (m_state == STATE_CALIBRATING) prepareWorkload(0, 1); else if (m_state == STATE_FIND_HIGH_WORKLOAD) { vector& records = m_workloadRecordsFindHigh[m_measureProgramNdx]; if (records.empty() || records.back().getMedianTime() < 2.0f*records[0].getMedianTime()) { int workloadSize; if (records.empty()) workloadSize = 1; else { workloadSize = records.back().workloadSize*2; if (workloadSize > MAX_WORKLOAD_SIZE) { log << TestLog::Message << "Even workload size " << records.back().workloadSize << " doesn't give high enough frame time for program " << m_measureProgramNdx << ". Can't get sensible result." << TestLog::EndMessage; MEASUREMENT_FAIL(); } } records.push_back(WorkloadRecord(workloadSize)); prepareWorkload(0, workloadSize); m_workloadMeasurementNdx = 0; } else { m_highWorkloadSizes[m_measureProgramNdx] = records.back().workloadSize; m_measureProgramNdx++; if (m_measureProgramNdx >= (int)m_programs.size()) { m_state = STATE_MEASURING; m_workloadNdx = -1; m_measureProgramNdx = 0; } prepareProgram(m_measureProgramNdx); prepareNextRound(); } } else { m_workloadNdx++; if (m_workloadNdx < m_numWorkloads) { DE_ASSERT(m_numWorkloads > 1); const int highWorkload = m_highWorkloadSizes[m_measureProgramNdx]; const int workload = highWorkload > m_numWorkloads ? 1 + m_workloadNdx*(highWorkload-1)/(m_numWorkloads-1) : 1 + m_workloadNdx; prepareWorkload(m_measureProgramNdx, workload); m_workloadMeasurementNdx = 0; m_workloadRecords[m_measureProgramNdx].push_back(WorkloadRecord(workload)); } else { m_measureProgramNdx++; if (m_measureProgramNdx < (int)m_programs.size()) { m_workloadNdx = -1; m_workloadMeasurementNdx = 0; prepareProgram(m_measureProgramNdx); prepareNextRound(); } else m_state = STATE_REPORTING; } } } void OperatorPerformanceCase::init (void) { TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); // Validate that we have sane grid and viewport setup. DE_ASSERT(de::inBounds(m_gridSizeX, 1, 256) && de::inBounds(m_gridSizeY, 1, 256)); TCU_CHECK(de::inRange(m_viewportWidth, 1, m_renderCtx.getRenderTarget().getWidth()) && de::inRange(m_viewportHeight, 1, m_renderCtx.getRenderTarget().getHeight())); logRenderTargetInfo(log, m_renderCtx.getRenderTarget()); log << TestLog::Message << "Using additive blending." << TestLog::EndMessage; gl.enable(GL_BLEND); gl.blendEquation(GL_FUNC_ADD); gl.blendFunc(GL_ONE, GL_ONE); // Generate programs. DE_ASSERT(m_programs.empty()); m_programData = generateProgramData(); DE_ASSERT(!m_programData.empty()); for (int progNdx = 0; progNdx < (int)m_programData.size(); progNdx++) { const string& vert = m_programData[progNdx].vertShaderSource; const string& frag = m_programData[progNdx].fragShaderSource; m_programs.push_back(SharedPtr(new ShaderProgram(m_renderCtx, glu::makeVtxFragSources(vert, frag)))); if (!m_programs.back()->isOk()) { log << *m_programs.back(); TCU_FAIL("Compile failed"); } } // Log all programs. for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++) log << TestLog::Section("Program" + de::toString(progNdx), "Program " + de::toString(progNdx)) << TestLog::Message << m_programData[progNdx].description << TestLog::EndMessage << *m_programs[progNdx] << TestLog::EndSection; m_highWorkloadSizes.resize(m_programData.size()); m_workloadRecordsFindHigh.resize(m_programData.size()); m_workloadRecords.resize(m_programData.size()); m_calibrator.clear(CalibratorParameters(m_initialCalibrationStorage->initialNumCalls, 10 /* calibrate iteration frames */, 2000.0f /* calibrate iteration shortcut threshold (ms) */, 16 /* max calibrate iterations */, 1000.0f/30.0f /* frame time (ms) */, 1000.0f/60.0f /* frame time cap (ms) */, 1000.0f /* target measure duration (ms) */)); m_state = STATE_CALIBRATING; prepareProgram(0); prepareNextRound(); } void OperatorPerformanceCase::deinit (void) { if (!m_attribBuffers.empty()) { m_renderCtx.getFunctions().deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]); m_attribBuffers.clear(); } m_programs.clear(); } void OperatorPerformanceCase::render (int numDrawCalls) { const glw::Functions& gl = m_renderCtx.getFunctions(); const int numVertices = getNumVertices(m_gridSizeX, m_gridSizeY); for (int callNdx = 0; callNdx < numDrawCalls; callNdx++) gl.drawArrays(GL_TRIANGLES, 0, numVertices); glu::readPixels(m_renderCtx, 0, 0, tcu::Surface(1, 1).getAccess()); // \note Serves as a more reliable replacement for glFinish(). } deUint64 OperatorPerformanceCase::renderAndMeasure (int numDrawCalls) { const deUint64 startTime = deGetMicroseconds(); render(numDrawCalls); return deGetMicroseconds() - startTime; } void OperatorPerformanceCase::adjustAndLogGridAndViewport (void) { TestLog& log = m_testCtx.getLog(); // If call count is just 1, and the target frame time still wasn't reached, reduce grid or viewport size. if (m_calibrator.getCallCount() == 1) { const gls::MeasureState& calibratorMeasure = m_calibrator.getMeasureState(); const float drawCallTime = (float)calibratorMeasure.getTotalTime() / (float)calibratorMeasure.frameTimes.size(); const float targetDrawCallTime = m_calibrator.getParameters().targetFrameTimeUs; const float targetRatio = targetDrawCallTime / drawCallTime; if (targetRatio < 0.95f) { // Reduce grid or viewport size assuming draw call time scales proportionally. if (m_caseType == CASETYPE_VERTEX) { const float targetRatioSqrt = deFloatSqrt(targetRatio); m_gridSizeX = (int)(targetRatioSqrt * (float)m_gridSizeX); m_gridSizeY = (int)(targetRatioSqrt * (float)m_gridSizeY); TCU_CHECK_MSG(m_gridSizeX >= 1 && m_gridSizeY >= 1, "Can't decrease grid size enough to achieve low-enough draw times"); log << TestLog::Message << "Note: triangle grid size reduced from original; it's now smaller than during calibration." << TestLog::EndMessage; } else { const float targetRatioSqrt = deFloatSqrt(targetRatio); m_viewportWidth = (int)(targetRatioSqrt * (float)m_viewportWidth); m_viewportHeight = (int)(targetRatioSqrt * (float)m_viewportHeight); TCU_CHECK_MSG(m_viewportWidth >= 1 && m_viewportHeight >= 1, "Can't decrease viewport size enough to achieve low-enough draw times"); log << TestLog::Message << "Note: viewport size reduced from original; it's now smaller than during calibration." << TestLog::EndMessage; } } } prepareProgram(0); // Log grid and viewport sizes. log << TestLog::Message << "Grid size: " << m_gridSizeX << "x" << m_gridSizeY << TestLog::EndMessage; log << TestLog::Message << "Viewport: " << m_viewportWidth << "x" << m_viewportHeight << TestLog::EndMessage; } OperatorPerformanceCase::IterateResult OperatorPerformanceCase::iterate (void) { const TheilSenCalibrator::State calibratorState = m_calibrator.getState(); if (calibratorState != TheilSenCalibrator::STATE_FINISHED) { if (calibratorState == TheilSenCalibrator::STATE_RECOMPUTE_PARAMS) m_calibrator.recomputeParameters(); else if (calibratorState == TheilSenCalibrator::STATE_MEASURE) m_calibrator.recordIteration(renderAndMeasure(m_calibrator.getCallCount())); else DE_ASSERT(false); if (m_calibrator.getState() == TheilSenCalibrator::STATE_FINISHED) { logCalibrationInfo(m_testCtx.getLog(), m_calibrator); adjustAndLogGridAndViewport(); prepareNextRound(); m_initialCalibrationStorage->initialNumCalls = m_calibrator.getCallCount(); } } else if (m_state == STATE_FIND_HIGH_WORKLOAD || m_state == STATE_MEASURING) { if (m_workloadMeasurementNdx < m_numMeasurementsPerWorkload) { vector& records = m_state == STATE_FIND_HIGH_WORKLOAD ? m_workloadRecordsFindHigh[m_measureProgramNdx] : m_workloadRecords[m_measureProgramNdx]; records.back().addFrameTime((float)renderAndMeasure(m_calibrator.getCallCount())); m_workloadMeasurementNdx++; } else prepareNextRound(); } else { DE_ASSERT(m_state == STATE_REPORTING); TestLog& log = m_testCtx.getLog(); const int drawCallCount = m_calibrator.getCallCount(); { // Compute per-program estimators for measurements. vector estimators; for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++) estimators.push_back(computeSegmentedEstimator(getWorkloadMedianDataPoints(progNdx))); // Log measurements and their estimators for all programs. for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++) { const SegmentedEstimator& estimator = estimators[progNdx]; const string progNdxStr = de::toString(progNdx); vector records = m_workloadRecords[progNdx]; std::sort(records.begin(), records.end()); { const tcu::ScopedLogSection section(log, "Program" + progNdxStr + "Measurements", "Measurements for program " + progNdxStr); // Sample list of individual frame times. log << TestLog::SampleList("Program" + progNdxStr + "IndividualFrameTimes", "Individual frame times") << TestLog::SampleInfo << TestLog::ValueInfo("Workload", "Workload", "", QP_SAMPLE_VALUE_TAG_PREDICTOR) << TestLog::ValueInfo("FrameTime", "Frame time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE) << TestLog::EndSampleInfo; for (int i = 0; i < (int)records.size(); i++) for (int j = 0; j < (int)records[i].frameTimes.size(); j++) log << TestLog::Sample << records[i].workloadSize << records[i].frameTimes[j] << TestLog::EndSample; log << TestLog::EndSampleList; // Sample list of median frame times. log << TestLog::SampleList("Program" + progNdxStr + "MedianFrameTimes", "Median frame times") << TestLog::SampleInfo << TestLog::ValueInfo("Workload", "Workload", "", QP_SAMPLE_VALUE_TAG_PREDICTOR) << TestLog::ValueInfo("MedianFrameTime", "Median frame time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE) << TestLog::EndSampleInfo; for (int i = 0; i < (int)records.size(); i++) log << TestLog::Sample << records[i].workloadSize << records[i].getMedianTime() << TestLog::EndSample; log << TestLog::EndSampleList; log << TestLog::Float("Program" + progNdxStr + "WorkloadCostEstimate", "Workload cost estimate", "us / workload", QP_KEY_TAG_TIME, estimator.right.coefficient); if (estimator.pivotX > -std::numeric_limits::infinity()) log << TestLog::Message << "Note: the data points with x coordinate greater than or equal to " << estimator.pivotX << " seem to form a rising line, and the rest of data points seem to form a near-horizontal line" << TestLog::EndMessage << TestLog::Message << "Note: the left line is estimated to be " << lineParamsString(estimator.left) << " and the right line " << lineParamsString(estimator.right) << TestLog::EndMessage; else log << TestLog::Message << "Note: the data seem to form a single line: " << lineParamsString(estimator.right) << TestLog::EndMessage; } } for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++) { if (estimators[progNdx].right.coefficient <= 0.0f) { log << TestLog::Message << "Slope of measurements for program " << progNdx << " isn't positive. Can't get sensible result." << TestLog::EndMessage; MEASUREMENT_FAIL(); } } // \note For each estimator, .right.coefficient is the increase in draw time (in microseconds) when // incrementing shader workload size by 1, when D draw calls are done, with a vertex/fragment count // of R. // // The measurements of any single program can't tell us the final result (time of single operation), // so we use computeSingleOperationTime to compute it from multiple programs' measurements in a // subclass-defined manner. // // After that, microseconds per operation can be calculated as singleOperationTime / (D * R). { vector perProgramSlopes; for (int i = 0; i < (int)m_programs.size(); i++) perProgramSlopes.push_back(estimators[i].right.coefficient); logSingleOperationCalculationInfo(); const float maxSlope = *std::max_element(perProgramSlopes.begin(), perProgramSlopes.end()); const float usecsPerFramePerOp = computeSingleOperationTime(perProgramSlopes); const int vertexOrFragmentCount = m_caseType == CASETYPE_VERTEX ? getNumVertices(m_gridSizeX, m_gridSizeY) : m_viewportWidth*m_viewportHeight; const double usecsPerDrawCallPerOp = usecsPerFramePerOp / (double)drawCallCount; const double usecsPerSingleOp = usecsPerDrawCallPerOp / (double)vertexOrFragmentCount; const double megaOpsPerSecond = (double)(drawCallCount*vertexOrFragmentCount) / usecsPerFramePerOp; const int numFreeOps = de::max(0, (int)deFloatFloor(intersectionX(estimators[0].left, LineParameters(estimators[0].right.offset, usecsPerFramePerOp)))); log << TestLog::Integer("VertexOrFragmentCount", "R = " + string(m_caseType == CASETYPE_VERTEX ? "Vertex" : "Fragment") + " count", "", QP_KEY_TAG_NONE, vertexOrFragmentCount) << TestLog::Integer("DrawCallsPerFrame", "D = Draw calls per frame", "", QP_KEY_TAG_NONE, drawCallCount) << TestLog::Integer("VerticesOrFragmentsPerFrame", "R*D = " + string(m_caseType == CASETYPE_VERTEX ? "Vertices" : "Fragments") + " per frame", "", QP_KEY_TAG_NONE, vertexOrFragmentCount*drawCallCount) << TestLog::Float("TimePerFramePerOp", "Estimated cost of R*D " + string(m_caseType == CASETYPE_VERTEX ? "vertices" : "fragments") + " (i.e. one frame) with one shader operation", "us", QP_KEY_TAG_TIME, (float)usecsPerFramePerOp) << TestLog::Float("TimePerDrawcallPerOp", "Estimated cost of one draw call with one shader operation", "us", QP_KEY_TAG_TIME, (float)usecsPerDrawCallPerOp) << TestLog::Float("TimePerSingleOp", "Estimated cost of a single shader operation", "us", QP_KEY_TAG_TIME, (float)usecsPerSingleOp); // \note Sometimes, when the operation is free or very cheap, it can happen that the shader with the operation runs, // for some reason, a bit faster than the shader without the operation, and thus we get a negative result. The // following threshold values for accepting a negative or almost-zero result are rather quick and dirty. if (usecsPerFramePerOp <= -0.1f*maxSlope) { log << TestLog::Message << "Got strongly negative result." << TestLog::EndMessage; MEASUREMENT_FAIL(); } else if (usecsPerFramePerOp <= 0.001*maxSlope) { log << TestLog::Message << "Cost of operation seems to be approximately zero." << TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); } else { log << TestLog::Float("OpsPerSecond", "Operations per second", "Million/s", QP_KEY_TAG_PERFORMANCE, (float)megaOpsPerSecond) << TestLog::Integer("NumFreeOps", "Estimated number of \"free\" operations", "", QP_KEY_TAG_PERFORMANCE, numFreeOps); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString((float)megaOpsPerSecond, 2).c_str()); } m_state = STATE_FINISHED; } } return STOP; } return CONTINUE; } // Binary operator case. class BinaryOpCase : public OperatorPerformanceCase { public: BinaryOpCase (Context& context, const char* name, const char* description, const char* op, glu::DataType type, glu::Precision precision, bool useSwizzle, bool isVertex, const InitialCalibrationStorage& initialCalibration); protected: vector generateProgramData (void) const; void setGeneralUniforms (deUint32 program) const; void setWorkloadSizeUniform (deUint32 program, int numOperations) const; float computeSingleOperationTime (const vector& perProgramOperationCosts) const; void logSingleOperationCalculationInfo (void) const; private: enum ProgramID { // \note 0-based sequential numbering is relevant, because these are also used as vector indices. // \note The first program should be the heaviest, because OperatorPerformanceCase uses it to reduce grid/viewport size when going too slow. PROGRAM_WITH_BIGGER_LOOP = 0, PROGRAM_WITH_SMALLER_LOOP, PROGRAM_LAST }; ProgramContext generateSingleProgramData (ProgramID) const; const string m_op; const glu::DataType m_type; const glu::Precision m_precision; const bool m_useSwizzle; }; BinaryOpCase::BinaryOpCase (Context& context, const char* name, const char* description, const char* op, glu::DataType type, glu::Precision precision, bool useSwizzle, bool isVertex, const InitialCalibrationStorage& initialCalibration) : OperatorPerformanceCase (context.getTestContext(), context.getRenderContext(), name, description, isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT, NUM_WORKLOADS, initialCalibration) , m_op (op) , m_type (type) , m_precision (precision) , m_useSwizzle (useSwizzle) { } BinaryOpCase::ProgramContext BinaryOpCase::generateSingleProgramData (ProgramID programID) const { DE_ASSERT(glu::isDataTypeFloatOrVec(m_type) || glu::isDataTypeIntOrIVec(m_type)); const bool isVertexCase = m_caseType == CASETYPE_VERTEX; const char* const precision = glu::getPrecisionName(m_precision); const char* const inputPrecision = glu::isDataTypeIntOrIVec(m_type) && m_precision == glu::PRECISION_LOWP ? "mediump" : precision; const char* const typeName = getDataTypeName(m_type); std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = isVertexCase ? vtx : frag; // Attributes. vtx << "attribute highp vec4 a_position;\n"; for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++) vtx << "attribute " << inputPrecision << " vec4 a_in" << i << ";\n"; if (isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } else { for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++) { vtx << "varying " << inputPrecision << " vec4 v_in" << i << ";\n"; frag << "varying " << inputPrecision << " vec4 v_in" << i << ";\n"; } } op << "uniform mediump int u_numLoopIterations;\n"; if (isVertexCase) op << "uniform mediump float u_zero;\n"; vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; if (!isVertexCase) vtx << "\tgl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; // Expression inputs. const char* const prefix = isVertexCase ? "a_" : "v_"; for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++) { const int inSize = getDataTypeScalarSize(m_type); const bool isInt = de::inRange(m_type, TYPE_INT, TYPE_INT_VEC4); const bool cast = isInt || (!m_useSwizzle && m_type != TYPE_FLOAT_VEC4); op << "\t" << precision << " " << typeName << " in" << i << " = "; if (cast) op << typeName << "("; op << prefix << "in" << i; if (m_useSwizzle) op << "." << s_swizzles[i % DE_LENGTH_OF_ARRAY(s_swizzles)][inSize-1]; if (cast) op << ")"; op << ";\n"; } // Operation accumulation variables. for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++) { op << "\t" << precision << " " << typeName << " acc" << i << "a" << " = in" << i+0 << ";\n"; op << "\t" << precision << " " << typeName << " acc" << i << "b" << " = in" << i+1 << ";\n"; } // Loop, with expressions in it. op << "\tfor (int i = 0; i < u_numLoopIterations; i++)\n"; op << "\t{\n"; { const int unrollAmount = programID == PROGRAM_WITH_SMALLER_LOOP ? BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT : BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT; for (int unrollNdx = 0; unrollNdx < unrollAmount; unrollNdx++) { for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++) { if (i > 0 || unrollNdx > 0) op << "\n"; op << "\t\tacc" << i << "a = acc" << i << "b " << m_op << " acc" << i << "a" << ";\n"; op << "\t\tacc" << i << "b = acc" << i << "a " << m_op << " acc" << i << "b" << ";\n"; } } } op << "\t}\n"; op << "\n"; // Result variable (sum of accumulation variables). op << "\t" << precision << " " << typeName << " res ="; for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++) op << (i > 0 ? " "+m_op : "") << " acc" << i << "b"; op << ";\n"; // Convert to color. op << "\tmediump vec4 color = "; if (m_type == TYPE_FLOAT_VEC4) op << "res"; else { int size = getDataTypeScalarSize(m_type); op << "vec4(res"; for (int i = size; i < 4; i++) op << ", " << (i == 3 ? "1.0" : "0.0"); op << ")"; } op << ";\n"; op << "\t" << (isVertexCase ? "v_color" : "gl_FragColor") << " = color;\n"; if (isVertexCase) { vtx << " gl_Position = a_position + u_zero*color;\n"; frag << " gl_FragColor = v_color;\n"; } else { for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++) vtx << " v_in" << i << " = a_in" << i << ";\n"; } vtx << "}\n"; frag << "}\n"; { vector attributes; for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++) attributes.push_back(AttribSpec(("a_in" + de::toString(i)).c_str(), Vec4(2.0f, 2.0f, 2.0f, 1.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4), Vec4(1.0f, 2.0f, 1.0f, 2.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4), Vec4(2.0f, 1.0f, 2.0f, 2.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4), Vec4(1.0f, 1.0f, 2.0f, 1.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4))); { string description = "This is the program with the "; description += programID == PROGRAM_WITH_SMALLER_LOOP ? "smaller" : programID == PROGRAM_WITH_BIGGER_LOOP ? "bigger" : DE_NULL; description += " loop.\n" "Note: workload size for this program means the number of loop iterations."; return ProgramContext(vtx.str(), frag.str(), attributes, description); } } } vector BinaryOpCase::generateProgramData (void) const { vector progData; for (int i = 0; i < PROGRAM_LAST; i++) progData.push_back(generateSingleProgramData((ProgramID)i)); return progData; } void BinaryOpCase::setGeneralUniforms (deUint32 program) const { const glw::Functions& gl = m_renderCtx.getFunctions(); gl.uniform1f(gl.getUniformLocation(program, "u_zero"), 0.0f); } void BinaryOpCase::setWorkloadSizeUniform (deUint32 program, int numLoopIterations) const { const glw::Functions& gl = m_renderCtx.getFunctions(); gl.uniform1i(gl.getUniformLocation(program, "u_numLoopIterations"), numLoopIterations); } float BinaryOpCase::computeSingleOperationTime (const vector& perProgramOperationCosts) const { DE_ASSERT(perProgramOperationCosts.size() == PROGRAM_LAST); const int baseNumOpsInsideLoop = 2 * BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; const int numOpsInsideLoopInSmallProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT; const int numOpsInsideLoopInBigProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT; DE_STATIC_ASSERT(numOpsInsideLoopInBigProgram > numOpsInsideLoopInSmallProgram); const int opDiff = numOpsInsideLoopInBigProgram - numOpsInsideLoopInSmallProgram; const float programOperationCostDiff = perProgramOperationCosts[PROGRAM_WITH_BIGGER_LOOP] - perProgramOperationCosts[PROGRAM_WITH_SMALLER_LOOP]; return programOperationCostDiff / (float)opDiff; } void BinaryOpCase::logSingleOperationCalculationInfo (void) const { const int baseNumOpsInsideLoop = 2 * BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; const int numOpsInsideLoopInSmallProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT; const int numOpsInsideLoopInBigProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT; const int opDiff = numOpsInsideLoopInBigProgram - numOpsInsideLoopInSmallProgram; const char* const opName = m_op == "+" ? "addition" : m_op == "-" ? "subtraction" : m_op == "*" ? "multiplication" : m_op == "/" ? "division" : DE_NULL; DE_ASSERT(opName != DE_NULL); m_testCtx.getLog() << TestLog::Message << "Note: the bigger program contains " << opDiff << " more " << opName << " operations in one loop iteration than the small program; " << "cost of one operation is calculated as (cost_of_bigger_workload - cost_of_smaller_workload) / " << opDiff << TestLog::EndMessage; } // Built-in function case. class FunctionCase : public OperatorPerformanceCase { public: enum { MAX_PARAMS = 3 }; FunctionCase (Context& context, const char* name, const char* description, const char* func, glu::DataType returnType, const glu::DataType paramTypes[MAX_PARAMS], const Vec4& attribute, int modifyParamNdx, //!< Add a compile-time constant (2.0) to the parameter at this index. This is ignored if negative. bool useNearlyConstantINputs, //!< Function inputs shouldn't be much bigger than 'attribute'. glu::Precision precision, bool isVertex, const InitialCalibrationStorage& initialCalibration); protected: vector generateProgramData (void) const; void setGeneralUniforms (deUint32 program) const; void setWorkloadSizeUniform (deUint32 program, int numOperations) const; float computeSingleOperationTime (const vector& perProgramOperationCosts) const; void logSingleOperationCalculationInfo (void) const; private: enum ProgramID { // \note 0-based sequential numbering is relevant, because these are also used as vector indices. // \note The first program should be the heaviest, because OperatorPerformanceCase uses it to reduce grid/viewport size when going too slow. PROGRAM_WITH_FUNCTION_CALLS = 0, PROGRAM_WITHOUT_FUNCTION_CALLS, PROGRAM_LAST }; //! Forms a "sum" expression from aExpr and bExpr; for booleans, this is "equal(a,b)", otherwise actual sum. static string sumExpr (const string& aExpr, const string& bExpr, glu::DataType type); //! Forms an expression used to increment an input value in the shader. If type is boolean, this is just //! baseExpr; otherwise, baseExpr is modified by multiplication or division by a loop index, //! to prevent simple compiler optimizations. See m_useNearlyConstantInputs for more explanation. static string incrementExpr (const string& baseExpr, glu::DataType type, bool divide); ProgramContext generateSingleProgramData (ProgramID) const; const string m_func; const glu::DataType m_returnType; glu::DataType m_paramTypes[MAX_PARAMS]; // \note m_modifyParamNdx, if not negative, specifies the index of the parameter to which a // compile-time constant (2.0) is added. This is a quick and dirty way to deal with // functions like clamp or smoothstep that require that a certain parameter is // greater than a certain other parameter. const int m_modifyParamNdx; // \note m_useNearlyConstantInputs determines whether the inputs given to the function // should increase (w.r.t m_attribute) only by very small amounts. This is relevant // for functions like asin, which requires its inputs to be in a specific range. // In practice, this affects whether expressions used to increment the input // variables use division instead of multiplication; normally, multiplication is used, // but it's hard to keep the increments very small that way, and division shouldn't // be the default, since for many functions (probably not asin, luckily), division // is too heavy and dominates time-wise. const bool m_useNearlyConstantInputs; const Vec4 m_attribute; const glu::Precision m_precision; }; FunctionCase::FunctionCase (Context& context, const char* name, const char* description, const char* func, glu::DataType returnType, const glu::DataType paramTypes[MAX_PARAMS], const Vec4& attribute, int modifyParamNdx, bool useNearlyConstantInputs, glu::Precision precision, bool isVertex, const InitialCalibrationStorage& initialCalibration) : OperatorPerformanceCase (context.getTestContext(), context.getRenderContext(), name, description, isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT, NUM_WORKLOADS, initialCalibration) , m_func (func) , m_returnType (returnType) , m_modifyParamNdx (modifyParamNdx) , m_useNearlyConstantInputs (useNearlyConstantInputs) , m_attribute (attribute) , m_precision (precision) { for (int i = 0; i < MAX_PARAMS; i++) m_paramTypes[i] = paramTypes[i]; } string FunctionCase::sumExpr (const string& aExpr, const string& bExpr, glu::DataType type) { if (glu::isDataTypeBoolOrBVec(type)) { if (type == glu::TYPE_BOOL) return "(" + aExpr + " == " + bExpr + ")"; else return "equal(" + aExpr + ", " + bExpr + ")"; } else return "(" + aExpr + " + " + bExpr + ")"; } string FunctionCase::incrementExpr (const string& baseExpr, glu::DataType type, bool divide) { const string mulOrDiv = divide ? "/" : "*"; return glu::isDataTypeBoolOrBVec(type) ? baseExpr : glu::isDataTypeIntOrIVec(type) ? "(" + baseExpr + mulOrDiv + "(i+1))" : "(" + baseExpr + mulOrDiv + "float(i+1))"; } FunctionCase::ProgramContext FunctionCase::generateSingleProgramData (ProgramID programID) const { const bool isVertexCase = m_caseType == CASETYPE_VERTEX; const char* const precision = glu::getPrecisionName(m_precision); const char* const returnTypeName = getDataTypeName(m_returnType); const string returnPrecisionMaybe = glu::isDataTypeBoolOrBVec(m_returnType) ? "" : string() + precision + " "; const char* inputPrecision = DE_NULL; const bool isMatrixReturn = isDataTypeMatrix(m_returnType); int numParams = 0; const char* paramTypeNames[MAX_PARAMS]; string paramPrecisionsMaybe[MAX_PARAMS]; for (int i = 0; i < MAX_PARAMS; i++) { paramTypeNames[i] = getDataTypeName(m_paramTypes[i]); paramPrecisionsMaybe[i] = glu::isDataTypeBoolOrBVec(m_paramTypes[i]) ? "" : string() + precision + " "; if (inputPrecision == DE_NULL && isDataTypeIntOrIVec(m_paramTypes[i]) && m_precision == glu::PRECISION_LOWP) inputPrecision = "mediump"; if (m_paramTypes[i] != TYPE_INVALID) numParams = i+1; } DE_ASSERT(numParams > 0); if (inputPrecision == DE_NULL) inputPrecision = precision; int numAttributes = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS + numParams - 1; std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = isVertexCase ? vtx : frag; // Attributes. vtx << "attribute highp vec4 a_position;\n"; for (int i = 0; i < numAttributes; i++) vtx << "attribute " << inputPrecision << " vec4 a_in" << i << ";\n"; if (isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } else { for (int i = 0; i < numAttributes; i++) { vtx << "varying " << inputPrecision << " vec4 v_in" << i << ";\n"; frag << "varying " << inputPrecision << " vec4 v_in" << i << ";\n"; } } op << "uniform mediump int u_numLoopIterations;\n"; if (isVertexCase) op << "uniform mediump float u_zero;\n"; for (int paramNdx = 0; paramNdx < numParams; paramNdx++) op << "uniform " << paramPrecisionsMaybe[paramNdx] << paramTypeNames[paramNdx] << " u_inc" << (char)('A'+paramNdx) << ";\n"; vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; if (!isVertexCase) vtx << "\tgl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; // Function call input and return value accumulation variables. { const char* const inPrefix = isVertexCase ? "a_" : "v_"; for (int calcNdx = 0; calcNdx < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; calcNdx++) { for (int paramNdx = 0; paramNdx < numParams; paramNdx++) { const glu::DataType paramType = m_paramTypes[paramNdx]; const bool mustCast = paramType != glu::TYPE_FLOAT_VEC4; op << "\t" << paramPrecisionsMaybe[paramNdx] << paramTypeNames[paramNdx] << " in" << calcNdx << (char)('a'+paramNdx) << " = "; if (mustCast) op << paramTypeNames[paramNdx] << "("; if (glu::isDataTypeMatrix(paramType)) { static const char* const swizzles[3] = { "x", "xy", "xyz" }; const int numRows = glu::getDataTypeMatrixNumRows(paramType); const int numCols = glu::getDataTypeMatrixNumColumns(paramType); const string swizzle = numRows < 4 ? string() + "." + swizzles[numRows-1] : ""; for (int i = 0; i < numCols; i++) op << (i > 0 ? ", " : "") << inPrefix << "in" << calcNdx+paramNdx << swizzle; } else { op << inPrefix << "in" << calcNdx+paramNdx; if (paramNdx == m_modifyParamNdx) { DE_ASSERT(glu::isDataTypeFloatOrVec(paramType)); op << " + 2.0"; } } if (mustCast) op << ")"; op << ";\n"; } op << "\t" << returnPrecisionMaybe << returnTypeName << " res" << calcNdx << " = " << returnTypeName << "(0);\n"; } } // Loop with expressions in it. op << "\tfor (int i = 0; i < u_numLoopIterations; i++)\n"; op << "\t{\n"; for (int calcNdx = 0; calcNdx < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; calcNdx++) { if (calcNdx > 0) op << "\n"; op << "\t\t{\n"; for (int inputNdx = 0; inputNdx < numParams; inputNdx++) { const string inputName = "in" + de::toString(calcNdx) + (char)('a'+inputNdx); const string incName = string() + "u_inc" + (char)('A'+inputNdx); const string incExpr = incrementExpr(incName, m_paramTypes[inputNdx], m_useNearlyConstantInputs); op << "\t\t\t" << inputName << " = " << sumExpr(inputName, incExpr, m_paramTypes[inputNdx]) << ";\n"; } op << "\t\t\t" << returnPrecisionMaybe << returnTypeName << " eval" << calcNdx << " = "; if (programID == PROGRAM_WITH_FUNCTION_CALLS) { op << m_func << "("; for (int paramNdx = 0; paramNdx < numParams; paramNdx++) { if (paramNdx > 0) op << ", "; op << "in" << calcNdx << (char)('a'+paramNdx); } op << ")"; } else { DE_ASSERT(programID == PROGRAM_WITHOUT_FUNCTION_CALLS); op << returnTypeName << "(1)"; } op << ";\n"; { const string resName = "res" + de::toString(calcNdx); const string evalName = "eval" + de::toString(calcNdx); const string incExpr = incrementExpr(evalName, m_returnType, m_useNearlyConstantInputs); op << "\t\t\tres" << calcNdx << " = " << sumExpr(resName, incExpr, m_returnType) << ";\n"; } op << "\t\t}\n"; } op << "\t}\n"; op << "\n"; // Result variables. for (int inputNdx = 0; inputNdx < numParams; inputNdx++) { op << "\t" << paramPrecisionsMaybe[inputNdx] << paramTypeNames[inputNdx] << " sumIn" << (char)('A'+inputNdx) << " = "; { string expr = string() + "in0" + (char)('a'+inputNdx); for (int i = 1; i < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; i++) expr = sumExpr(expr, string() + "in" + de::toString(i) + (char)('a'+inputNdx), m_paramTypes[inputNdx]); op << expr; } op << ";\n"; } op << "\t" << returnPrecisionMaybe << returnTypeName << " sumRes = "; { string expr = "res0"; for (int i = 1; i < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; i++) expr = sumExpr(expr, "res" + de::toString(i), m_returnType); op << expr; } op << ";\n"; { glu::DataType finalResultDataType = glu::TYPE_LAST; if (glu::isDataTypeMatrix(m_returnType)) { finalResultDataType = m_returnType; op << "\t" << precision << " " << returnTypeName << " finalRes = "; for (int inputNdx = 0; inputNdx < numParams; inputNdx++) { DE_ASSERT(m_paramTypes[inputNdx] == m_returnType); op << "sumIn" << (char)('A'+inputNdx) << " + "; } op << "sumRes;\n"; } else { int numFinalResComponents = glu::getDataTypeScalarSize(m_returnType); for (int inputNdx = 0; inputNdx < numParams; inputNdx++) numFinalResComponents = de::max(numFinalResComponents, glu::getDataTypeScalarSize(m_paramTypes[inputNdx])); finalResultDataType = getDataTypeFloatOrVec(numFinalResComponents); { const string finalResType = glu::getDataTypeName(finalResultDataType); op << "\t" << precision << " " << finalResType << " finalRes = "; for (int inputNdx = 0; inputNdx < numParams; inputNdx++) op << finalResType << "(sumIn" << (char)('A'+inputNdx) << ") + "; op << finalResType << "(sumRes);\n"; } } // Convert to color. op << "\tmediump vec4 color = "; if (finalResultDataType == TYPE_FLOAT_VEC4) op << "finalRes"; else { int size = isMatrixReturn ? getDataTypeMatrixNumRows(finalResultDataType) : getDataTypeScalarSize(finalResultDataType); op << "vec4("; if (isMatrixReturn) { for (int i = 0; i < getDataTypeMatrixNumColumns(finalResultDataType); i++) { if (i > 0) op << " + "; op << "finalRes[" << i << "]"; } } else op << "finalRes"; for (int i = size; i < 4; i++) op << ", " << (i == 3 ? "1.0" : "0.0"); op << ")"; } op << ";\n"; op << "\t" << (isVertexCase ? "v_color" : "gl_FragColor") << " = color;\n"; if (isVertexCase) { vtx << " gl_Position = a_position + u_zero*color;\n"; frag << " gl_FragColor = v_color;\n"; } else { for (int i = 0; i < numAttributes; i++) vtx << " v_in" << i << " = a_in" << i << ";\n"; } vtx << "}\n"; frag << "}\n"; } { vector attributes; for (int i = 0; i < numAttributes; i++) attributes.push_back(AttribSpec(("a_in" + de::toString(i)).c_str(), m_attribute.swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4), m_attribute.swizzle((i+1)%4, (i+2)%4, (i+3)%4, (i+0)%4), m_attribute.swizzle((i+2)%4, (i+3)%4, (i+0)%4, (i+1)%4), m_attribute.swizzle((i+3)%4, (i+0)%4, (i+1)%4, (i+2)%4))); { string description = "This is the program "; description += programID == PROGRAM_WITHOUT_FUNCTION_CALLS ? "without" : programID == PROGRAM_WITH_FUNCTION_CALLS ? "with" : DE_NULL; description += " '" + m_func + "' function calls.\n" "Note: workload size for this program means the number of loop iterations."; return ProgramContext(vtx.str(), frag.str(), attributes, description); } } } vector FunctionCase::generateProgramData (void) const { vector progData; for (int i = 0; i < PROGRAM_LAST; i++) progData.push_back(generateSingleProgramData((ProgramID)i)); return progData; } void FunctionCase::setGeneralUniforms (deUint32 program) const { const glw::Functions& gl = m_renderCtx.getFunctions(); gl.uniform1f(gl.getUniformLocation(program, "u_zero"), 0.0f); for (int paramNdx = 0; paramNdx < MAX_PARAMS; paramNdx++) { if (m_paramTypes[paramNdx] != glu::TYPE_INVALID) { const glu::DataType paramType = m_paramTypes[paramNdx]; const int scalarSize = glu::getDataTypeScalarSize(paramType); const int location = gl.getUniformLocation(program, (string() + "u_inc" + (char)('A'+paramNdx)).c_str()); if (glu::isDataTypeFloatOrVec(paramType)) { float values[4]; for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++) values[i] = (float)paramNdx*0.01f + (float)i*0.001f; // Arbitrary small values. uniformNfv(gl, scalarSize, location, 1, &values[0]); } else if (glu::isDataTypeIntOrIVec(paramType)) { int values[4]; for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++) values[i] = paramNdx*100 + i; // Arbitrary values. uniformNiv(gl, scalarSize, location, 1, &values[0]); } else if (glu::isDataTypeBoolOrBVec(paramType)) { int values[4]; for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++) values[i] = (paramNdx >> i) & 1; // Arbitrary values. uniformNiv(gl, scalarSize, location, 1, &values[0]); } else if (glu::isDataTypeMatrix(paramType)) { const int size = glu::getDataTypeMatrixNumRows(paramType); DE_ASSERT(size == glu::getDataTypeMatrixNumColumns(paramType)); float values[4*4]; for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++) values[i] = (float)paramNdx*0.01f + (float)i*0.001f; // Arbitrary values. uniformMatrixNfv(gl, size, location, 1, &values[0]); } else DE_ASSERT(false); } } } void FunctionCase::setWorkloadSizeUniform (deUint32 program, int numLoopIterations) const { const glw::Functions& gl = m_renderCtx.getFunctions(); const int loc = gl.getUniformLocation(program, "u_numLoopIterations"); gl.uniform1i(loc, numLoopIterations); } float FunctionCase::computeSingleOperationTime (const vector& perProgramOperationCosts) const { DE_ASSERT(perProgramOperationCosts.size() == PROGRAM_LAST); const int numFunctionCalls = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; const float programOperationCostDiff = perProgramOperationCosts[PROGRAM_WITH_FUNCTION_CALLS] - perProgramOperationCosts[PROGRAM_WITHOUT_FUNCTION_CALLS]; return programOperationCostDiff / (float)numFunctionCalls; } void FunctionCase::logSingleOperationCalculationInfo (void) const { const int numFunctionCalls = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; m_testCtx.getLog() << TestLog::Message << "Note: program " << (int)PROGRAM_WITH_FUNCTION_CALLS << " contains " << numFunctionCalls << " calls to '" << m_func << "' in one loop iteration; " << "cost of one operation is calculated as " << "(cost_of_workload_with_calls - cost_of_workload_without_calls) / " << numFunctionCalls << TestLog::EndMessage; } } // anonymous ShaderOperatorTests::ShaderOperatorTests (Context& context) : TestCaseGroup(context, "operator", "Operator Performance Tests") { } ShaderOperatorTests::~ShaderOperatorTests (void) { } void ShaderOperatorTests::init (void) { // Binary operator cases static const DataType binaryOpTypes[] = { TYPE_FLOAT, TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC4, TYPE_INT, TYPE_INT_VEC2, TYPE_INT_VEC3, TYPE_INT_VEC4, }; static const Precision precisions[] = { PRECISION_LOWP, PRECISION_MEDIUMP, PRECISION_HIGHP }; static const struct { const char* name; const char* op; bool swizzle; } binaryOps[] = { { "add", "+", false }, { "sub", "-", true }, { "mul", "*", false }, { "div", "/", true } }; tcu::TestCaseGroup* const binaryOpsGroup = new tcu::TestCaseGroup(m_testCtx, "binary_operator", "Binary Operator Performance Tests"); addChild(binaryOpsGroup); for (int opNdx = 0; opNdx < DE_LENGTH_OF_ARRAY(binaryOps); opNdx++) { tcu::TestCaseGroup* const opGroup = new tcu::TestCaseGroup(m_testCtx, binaryOps[opNdx].name, ""); binaryOpsGroup->addChild(opGroup); for (int isFrag = 0; isFrag <= 1; isFrag++) { const BinaryOpCase::InitialCalibrationStorage shaderGroupCalibrationStorage (new BinaryOpCase::InitialCalibration); const bool isVertex = isFrag == 0; tcu::TestCaseGroup* const shaderGroup = new tcu::TestCaseGroup(m_testCtx, isVertex ? "vertex" : "fragment", ""); opGroup->addChild(shaderGroup); for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(binaryOpTypes); typeNdx++) { for (int precNdx = 0; precNdx < DE_LENGTH_OF_ARRAY(precisions); precNdx++) { const DataType type = binaryOpTypes[typeNdx]; const Precision precision = precisions[precNdx]; const char* const op = binaryOps[opNdx].op; const bool useSwizzle = binaryOps[opNdx].swizzle; std::ostringstream name; name << getPrecisionName(precision) << "_" << getDataTypeName(type); shaderGroup->addChild(new BinaryOpCase(m_context, name.str().c_str(), "", op, type, precision, useSwizzle, isVertex, shaderGroupCalibrationStorage)); } } } } // Built-in function cases. // Non-specific (i.e. includes gentypes) parameter types for the functions. enum ValueType { VALUE_NONE = 0, VALUE_FLOAT = (1<<0), // float scalar VALUE_FLOAT_VEC = (1<<1), // float vector VALUE_FLOAT_VEC34 = (1<<2), // float vector of size 3 or 4 VALUE_FLOAT_GENTYPE = (1<<3), // float scalar/vector VALUE_VEC3 = (1<<4), // vec3 only VALUE_VEC4 = (1<<5), // vec4 only VALUE_MATRIX = (1<<6), // matrix VALUE_BOOL = (1<<7), // boolean scalar VALUE_BOOL_VEC = (1<<8), // boolean vector VALUE_BOOL_GENTYPE = (1<<9), // boolean scalar/vector VALUE_INT = (1<<10), // int scalar VALUE_INT_VEC = (1<<11), // int vector VALUE_INT_GENTYPE = (1<<12), // int scalar/vector // Shorthands. N = VALUE_NONE, F = VALUE_FLOAT, FV = VALUE_FLOAT_VEC, VL = VALUE_FLOAT_VEC34, // L for "large" GT = VALUE_FLOAT_GENTYPE, V3 = VALUE_VEC3, V4 = VALUE_VEC4, M = VALUE_MATRIX, B = VALUE_BOOL, BV = VALUE_BOOL_VEC, BGT = VALUE_BOOL_GENTYPE, I = VALUE_INT, IV = VALUE_INT_VEC, IGT = VALUE_INT_GENTYPE, VALUE_ANY_FLOAT = VALUE_FLOAT | VALUE_FLOAT_VEC | VALUE_FLOAT_GENTYPE | VALUE_VEC3 | VALUE_VEC4 | VALUE_FLOAT_VEC34, VALUE_ANY_INT = VALUE_INT | VALUE_INT_VEC | VALUE_INT_GENTYPE, VALUE_ANY_BOOL = VALUE_BOOL | VALUE_BOOL_VEC | VALUE_BOOL_GENTYPE, VALUE_ANY_GENTYPE = VALUE_FLOAT_VEC | VALUE_FLOAT_GENTYPE | VALUE_FLOAT_VEC34 | VALUE_BOOL_VEC | VALUE_BOOL_GENTYPE | VALUE_INT_VEC | VALUE_INT_GENTYPE | VALUE_MATRIX }; enum PrecisionMask { PRECMASK_NA = 0, //!< Precision not applicable (booleans) PRECMASK_LOWP = (1<addChild(funcGroup); vertexSubGroup = new tcu::TestCaseGroup(m_testCtx, "vertex", ""); fragmentSubGroup = new tcu::TestCaseGroup(m_testCtx, "fragment", ""); funcGroup->addChild(vertexSubGroup); funcGroup->addChild(fragmentSubGroup); vertexSubGroupCalibrationStorage = FunctionCase::InitialCalibrationStorage(new FunctionCase::InitialCalibration); fragmentSubGroupCalibrationStorage = FunctionCase::InitialCalibrationStorage(new FunctionCase::InitialCalibration); } DE_ASSERT(vertexSubGroup != DE_NULL); DE_ASSERT(fragmentSubGroup != DE_NULL); // Find the type size range of parameters (e.g. from 2 to 4 in case of vectors). int genTypeFirstSize = 1; int genTypeLastSize = 1; // Find the first return value or parameter with a gentype (if any) and set sizes accordingly. // \note Assumes only matching sizes gentypes are to be found, e.g. no "genType func (vec param)" for (int i = 0; i < FunctionCase::MAX_PARAMS + 1 && genTypeLastSize == 1; i++) { switch (funcTypes[i]) { case VALUE_FLOAT_VEC: case VALUE_BOOL_VEC: case VALUE_INT_VEC: // \note Fall-through. genTypeFirstSize = 2; genTypeLastSize = 4; break; case VALUE_FLOAT_VEC34: genTypeFirstSize = 3; genTypeLastSize = 4; break; case VALUE_FLOAT_GENTYPE: case VALUE_BOOL_GENTYPE: case VALUE_INT_GENTYPE: // \note Fall-through. genTypeFirstSize = 1; genTypeLastSize = 4; break; case VALUE_MATRIX: genTypeFirstSize = 2; genTypeLastSize = 4; break; // If none of the above, keep looping. default: break; } } // Create a case for each possible size of the gentype. for (int curSize = genTypeFirstSize; curSize <= genTypeLastSize; curSize++) { // Determine specific types for return value and the parameters, according to curSize. Non-gentypes not affected by curSize. DataType types[FunctionCase::MAX_PARAMS + 1]; for (int i = 0; i < FunctionCase::MAX_PARAMS + 1; i++) { if (funcTypes[i] == VALUE_NONE) types[i] = TYPE_INVALID; else { int isFloat = funcTypes[i] & VALUE_ANY_FLOAT; int isBool = funcTypes[i] & VALUE_ANY_BOOL; int isInt = funcTypes[i] & VALUE_ANY_INT; int isMat = funcTypes[i] == VALUE_MATRIX; int inSize = (funcTypes[i] & VALUE_ANY_GENTYPE) ? curSize : funcTypes[i] == VALUE_VEC3 ? 3 : funcTypes[i] == VALUE_VEC4 ? 4 : 1; int typeArrayNdx = isMat ? inSize - 2 : inSize - 1; // \note No matrices of size 1. types[i] = isFloat ? floatTypes[typeArrayNdx] : isBool ? boolTypes[typeArrayNdx] : isInt ? intTypes[typeArrayNdx] : isMat ? matrixTypes[typeArrayNdx] : TYPE_LAST; } DE_ASSERT(types[i] != TYPE_LAST); } // Array for just the parameter types. DataType paramTypes[FunctionCase::MAX_PARAMS]; for (int i = 0; i < FunctionCase::MAX_PARAMS; i++) paramTypes[i] = types[i+1]; for (int prec = (int)PRECISION_LOWP; prec < (int)PRECISION_LAST; prec++) { if ((precMask & (1 << prec)) == 0) continue; const string precisionPrefix = booleanCase ? "" : (string(getPrecisionName((Precision)prec)) + "_"); std::ostringstream caseName; caseName << precisionPrefix; // Write the name of each distinct parameter data type into the test case name. for (int i = 1; i < FunctionCase::MAX_PARAMS + 1 && types[i] != TYPE_INVALID; i++) { if (i == 1 || types[i] != types[i-1]) { if (i > 1) caseName << "_"; caseName << getDataTypeName(types[i]); } } for (int fragI = 0; fragI <= 1; fragI++) { const bool vert = fragI == 0; tcu::TestCaseGroup* const group = vert ? vertexSubGroup : fragmentSubGroup; group->addChild (new FunctionCase(m_context, caseName.str().c_str(), "", groupFunc, types[0], paramTypes, groupAttribute, modifyParamNdx, useNearlyConstantInputs, (Precision)prec, vert, vert ? vertexSubGroupCalibrationStorage : fragmentSubGroupCalibrationStorage)); } } } } } } // Performance } // gles2 } // deqp