1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
|
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_UTIL_MOVE_TO_FRONT_H_
#define LIBSPIRV_UTIL_MOVE_TO_FRONT_H_
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <map>
#include <ostream>
#include <set>
#include <sstream>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace spvutils {
// Log(n) move-to-front implementation. Implements the following functions:
// Insert - pushes value to the front of the mtf sequence
// (only unique values allowed).
// Remove - remove value from the sequence.
// ValueFromRank - access value by its 1-indexed rank in the sequence.
// RankFromValue - get the rank of the given value in the sequence.
// Accessing a value with ValueFromRank or RankFromValue moves the value to the
// front of the sequence (rank of 1).
//
// The implementation is based on an AVL-based order statistic tree. The tree
// is ordered by timestamps issued when values are inserted or accessed (recent
// values go to the left side of the tree, old values are gradually rotated to
// the right side).
//
// Terminology
// rank: 1-indexed rank showing how recently the value was inserted or accessed.
// node: handle used internally to access node data.
// size: size of the subtree of a node (including the node).
// height: distance from a node to the farthest leaf.
template <typename Val>
class MoveToFront {
public:
explicit MoveToFront(size_t reserve_capacity = 4) {
nodes_.reserve(reserve_capacity);
// Create NIL node.
nodes_.emplace_back(Node());
}
virtual ~MoveToFront() {}
// Inserts value in the move-to-front sequence. Does nothing if the value is
// already in the sequence. Returns true if insertion was successful.
// The inserted value is placed at the front of the sequence (rank 1).
bool Insert(const Val& value);
// Removes value from move-to-front sequence. Returns false iff the value
// was not found.
bool Remove(const Val& value);
// Computes 1-indexed rank of value in the move-to-front sequence and moves
// the value to the front. Example:
// Before the call: 4 8 2 1 7
// RankFromValue(8) returns 2
// After the call: 8 4 2 1 7
// Returns true iff the value was found in the sequence.
bool RankFromValue(const Val& value, uint32_t* rank);
// Returns value corresponding to a 1-indexed rank in the move-to-front
// sequence and moves the value to the front. Example:
// Before the call: 4 8 2 1 7
// ValueFromRank(2) returns 8
// After the call: 8 4 2 1 7
// Returns true iff the rank is within bounds [1, GetSize()].
bool ValueFromRank(uint32_t rank, Val* value);
// Moves the value to the front of the sequence.
// Returns false iff value is not in the sequence.
bool Promote(const Val& value);
// Returns true iff the move-to-front sequence contains the value.
bool HasValue(const Val& value) const;
// Returns the number of elements in the move-to-front sequence.
uint32_t GetSize() const { return SizeOf(root_); }
protected:
// Internal tree data structure uses handles instead of pointers. Leaves and
// root parent reference a singleton under handle 0. Although dereferencing
// a null pointer is not possible, inappropriate access to handle 0 would
// cause an assertion. Handles are not garbage collected if value was
// deprecated
// with DeprecateValue(). But handles are recycled when a node is
// repositioned.
// Internal tree data structure node.
struct Node {
// Timestamp from a logical clock which updates every time the element is
// accessed through ValueFromRank or RankFromValue.
uint32_t timestamp = 0;
// The size of the node's subtree, including the node.
// SizeOf(LeftOf(node)) + SizeOf(RightOf(node)) + 1.
uint32_t size = 0;
// Handles to connected nodes.
uint32_t left = 0;
uint32_t right = 0;
uint32_t parent = 0;
// Distance to the farthest leaf.
// Leaves have height 0, real nodes at least 1.
uint32_t height = 0;
// Stored value.
Val value = Val();
};
// Creates node and sets correct values. Non-NIL nodes should be created only
// through this function. If the node with this value has been created
// previously
// and since orphaned, reuses the old node instead of creating a new one.
uint32_t CreateNode(uint32_t timestamp, const Val& value) {
uint32_t handle = static_cast<uint32_t>(nodes_.size());
const auto result = value_to_node_.emplace(value, handle);
if (result.second) {
// Create new node.
nodes_.emplace_back(Node());
Node& node = nodes_.back();
node.timestamp = timestamp;
node.value = value;
node.size = 1;
// Non-NIL nodes start with height 1 because their NIL children are
// leaves.
node.height = 1;
} else {
// Reuse old node.
handle = result.first->second;
assert(!IsInTree(handle));
assert(ValueOf(handle) == value);
assert(SizeOf(handle) == 1);
assert(HeightOf(handle) == 1);
MutableTimestampOf(handle) = timestamp;
}
return handle;
}
// Node accessor methods. Naming is designed to be similar to natural
// language as these functions tend to be used in sequences, for example:
// ParentOf(LeftestDescendentOf(RightOf(node)))
// Returns value of the node referenced by |handle|.
Val ValueOf(uint32_t node) const { return nodes_.at(node).value; }
// Returns left child of |node|.
uint32_t LeftOf(uint32_t node) const { return nodes_.at(node).left; }
// Returns right child of |node|.
uint32_t RightOf(uint32_t node) const { return nodes_.at(node).right; }
// Returns parent of |node|.
uint32_t ParentOf(uint32_t node) const { return nodes_.at(node).parent; }
// Returns timestamp of |node|.
uint32_t TimestampOf(uint32_t node) const {
assert(node);
return nodes_.at(node).timestamp;
}
// Returns size of |node|.
uint32_t SizeOf(uint32_t node) const { return nodes_.at(node).size; }
// Returns height of |node|.
uint32_t HeightOf(uint32_t node) const { return nodes_.at(node).height; }
// Returns mutable reference to value of |node|.
Val& MutableValueOf(uint32_t node) {
assert(node);
return nodes_.at(node).value;
}
// Returns mutable reference to handle of left child of |node|.
uint32_t& MutableLeftOf(uint32_t node) {
assert(node);
return nodes_.at(node).left;
}
// Returns mutable reference to handle of right child of |node|.
uint32_t& MutableRightOf(uint32_t node) {
assert(node);
return nodes_.at(node).right;
}
// Returns mutable reference to handle of parent of |node|.
uint32_t& MutableParentOf(uint32_t node) {
assert(node);
return nodes_.at(node).parent;
}
// Returns mutable reference to timestamp of |node|.
uint32_t& MutableTimestampOf(uint32_t node) {
assert(node);
return nodes_.at(node).timestamp;
}
// Returns mutable reference to size of |node|.
uint32_t& MutableSizeOf(uint32_t node) {
assert(node);
return nodes_.at(node).size;
}
// Returns mutable reference to height of |node|.
uint32_t& MutableHeightOf(uint32_t node) {
assert(node);
return nodes_.at(node).height;
}
// Returns true iff |node| is left child of its parent.
bool IsLeftChild(uint32_t node) const {
assert(node);
return LeftOf(ParentOf(node)) == node;
}
// Returns true iff |node| is right child of its parent.
bool IsRightChild(uint32_t node) const {
assert(node);
return RightOf(ParentOf(node)) == node;
}
// Returns true iff |node| has no relatives.
bool IsOrphan(uint32_t node) const {
assert(node);
return !ParentOf(node) && !LeftOf(node) && !RightOf(node);
}
// Returns true iff |node| is in the tree.
bool IsInTree(uint32_t node) const {
assert(node);
return node == root_ || !IsOrphan(node);
}
// Returns the height difference between right and left subtrees.
int BalanceOf(uint32_t node) const {
return int(HeightOf(RightOf(node))) - int(HeightOf(LeftOf(node)));
}
// Updates size and height of the node, assuming that the children have
// correct values.
void UpdateNode(uint32_t node);
// Returns the most LeftOf(LeftOf(... descendent which is not leaf.
uint32_t LeftestDescendantOf(uint32_t node) const {
uint32_t parent = 0;
while (node) {
parent = node;
node = LeftOf(node);
}
return parent;
}
// Returns the most RightOf(RightOf(... descendent which is not leaf.
uint32_t RightestDescendantOf(uint32_t node) const {
uint32_t parent = 0;
while (node) {
parent = node;
node = RightOf(node);
}
return parent;
}
// Inserts node in the tree. The node must be an orphan.
void InsertNode(uint32_t node);
// Removes node from the tree. May change value_to_node_ if removal uses a
// scapegoat. Returns the removed (orphaned) handle for recycling. The
// returned handle may not be equal to |node| if scapegoat was used.
uint32_t RemoveNode(uint32_t node);
// Rotates |node| left, reassigns all connections and returns the node
// which takes place of the |node|.
uint32_t RotateLeft(const uint32_t node);
// Rotates |node| right, reassigns all connections and returns the node
// which takes place of the |node|.
uint32_t RotateRight(const uint32_t node);
// Root node handle. The tree is empty if root_ is 0.
uint32_t root_ = 0;
// Incremented counters for next timestamp and value.
uint32_t next_timestamp_ = 1;
// Holds all tree nodes. Indices of this vector are node handles.
std::vector<Node> nodes_;
// Maps ids to node handles.
std::unordered_map<Val, uint32_t> value_to_node_;
// Cache for the last accessed value in the sequence.
Val last_accessed_value_ = Val();
bool last_accessed_value_valid_ = false;
};
template <typename Val>
class MultiMoveToFront {
public:
// Inserts |value| to sequence with handle |mtf|.
// Returns false if |mtf| already has |value|.
bool Insert(uint64_t mtf, const Val& value) {
if (GetMtf(mtf).Insert(value)) {
val_to_mtfs_[value].insert(mtf);
return true;
}
return false;
}
// Removes |value| from sequence with handle |mtf|.
// Returns false if |mtf| doesn't have |value|.
bool Remove(uint64_t mtf, const Val& value) {
if (GetMtf(mtf).Remove(value)) {
val_to_mtfs_[value].erase(mtf);
return true;
}
assert(val_to_mtfs_[value].count(mtf) == 0);
return false;
}
// Removes |value| from all sequences which have it.
void RemoveFromAll(const Val& value) {
auto it = val_to_mtfs_.find(value);
if (it == val_to_mtfs_.end()) return;
auto& mtfs_containing_value = it->second;
for (uint64_t mtf : mtfs_containing_value) {
GetMtf(mtf).Remove(value);
}
val_to_mtfs_.erase(value);
}
// Computes rank of |value| in sequence |mtf|.
// Returns false if |mtf| doesn't have |value|.
bool RankFromValue(uint64_t mtf, const Val& value, uint32_t* rank) {
return GetMtf(mtf).RankFromValue(value, rank);
}
// Finds |value| with |rank| in sequence |mtf|.
// Returns false if |rank| is out of bounds.
bool ValueFromRank(uint64_t mtf, uint32_t rank, Val* value) {
return GetMtf(mtf).ValueFromRank(rank, value);
}
// Returns size of |mtf| sequence.
uint32_t GetSize(uint64_t mtf) { return GetMtf(mtf).GetSize(); }
// Promotes |value| in all sequences which have it.
void Promote(const Val& value) {
const auto it = val_to_mtfs_.find(value);
if (it == val_to_mtfs_.end()) return;
const auto& mtfs_containing_value = it->second;
for (uint64_t mtf : mtfs_containing_value) {
GetMtf(mtf).Promote(value);
}
}
// Inserts |value| in sequence |mtf| or promotes if it's already there.
void InsertOrPromote(uint64_t mtf, const Val& value) {
if (!Insert(mtf, value)) {
GetMtf(mtf).Promote(value);
}
}
// Returns if |mtf| sequence has |value|.
bool HasValue(uint64_t mtf, const Val& value) {
return GetMtf(mtf).HasValue(value);
}
private:
// Returns actual MoveToFront object corresponding to |handle|.
// As multiple operations are often performed consecutively for the same
// sequence, the last returned value is cached.
MoveToFront<Val>& GetMtf(uint64_t handle) {
if (!cached_mtf_ || cached_handle_ != handle) {
cached_handle_ = handle;
cached_mtf_ = &mtfs_[handle];
}
return *cached_mtf_;
}
// Container holding MoveToFront objects. Map key is sequence handle.
std::map<uint64_t, MoveToFront<Val>> mtfs_;
// Container mapping value to sequences which contain that value.
std::unordered_map<Val, std::set<uint64_t>> val_to_mtfs_;
// Cache for the last accessed sequence.
uint64_t cached_handle_ = 0;
MoveToFront<Val>* cached_mtf_ = nullptr;
};
template <typename Val>
bool MoveToFront<Val>::Insert(const Val& value) {
auto it = value_to_node_.find(value);
if (it != value_to_node_.end() && IsInTree(it->second)) return false;
const uint32_t old_size = GetSize();
(void)old_size;
InsertNode(CreateNode(next_timestamp_++, value));
last_accessed_value_ = value;
last_accessed_value_valid_ = true;
assert(value_to_node_.count(value));
assert(old_size + 1 == GetSize());
return true;
}
template <typename Val>
bool MoveToFront<Val>::Remove(const Val& value) {
auto it = value_to_node_.find(value);
if (it == value_to_node_.end()) return false;
if (!IsInTree(it->second)) return false;
if (last_accessed_value_ == value) last_accessed_value_valid_ = false;
const uint32_t orphan = RemoveNode(it->second);
(void)orphan;
// The node of |value| is still alive but it's orphaned now. Can still be
// reused later.
assert(!IsInTree(orphan));
assert(ValueOf(orphan) == value);
return true;
}
template <typename Val>
bool MoveToFront<Val>::RankFromValue(const Val& value, uint32_t* rank) {
if (last_accessed_value_valid_ && last_accessed_value_ == value) {
*rank = 1;
return true;
}
const uint32_t old_size = GetSize();
if (old_size == 1) {
if (ValueOf(root_) == value) {
*rank = 1;
return true;
} else {
return false;
}
}
const auto it = value_to_node_.find(value);
if (it == value_to_node_.end()) {
return false;
}
uint32_t target = it->second;
if (!IsInTree(target)) {
return false;
}
uint32_t node = target;
*rank = 1 + SizeOf(LeftOf(node));
while (node) {
if (IsRightChild(node)) *rank += 1 + SizeOf(LeftOf(ParentOf(node)));
node = ParentOf(node);
}
// Don't update timestamp if the node has rank 1.
if (*rank != 1) {
// Update timestamp and reposition the node.
target = RemoveNode(target);
assert(ValueOf(target) == value);
assert(old_size == GetSize() + 1);
MutableTimestampOf(target) = next_timestamp_++;
InsertNode(target);
assert(old_size == GetSize());
}
last_accessed_value_ = value;
last_accessed_value_valid_ = true;
return true;
}
template <typename Val>
bool MoveToFront<Val>::HasValue(const Val& value) const {
const auto it = value_to_node_.find(value);
if (it == value_to_node_.end()) {
return false;
}
return IsInTree(it->second);
}
template <typename Val>
bool MoveToFront<Val>::Promote(const Val& value) {
if (last_accessed_value_valid_ && last_accessed_value_ == value) {
return true;
}
const uint32_t old_size = GetSize();
if (old_size == 1) return ValueOf(root_) == value;
const auto it = value_to_node_.find(value);
if (it == value_to_node_.end()) {
return false;
}
uint32_t target = it->second;
if (!IsInTree(target)) {
return false;
}
// Update timestamp and reposition the node.
target = RemoveNode(target);
assert(ValueOf(target) == value);
assert(old_size == GetSize() + 1);
MutableTimestampOf(target) = next_timestamp_++;
InsertNode(target);
assert(old_size == GetSize());
last_accessed_value_ = value;
last_accessed_value_valid_ = true;
return true;
}
template <typename Val>
bool MoveToFront<Val>::ValueFromRank(uint32_t rank, Val* value) {
if (last_accessed_value_valid_ && rank == 1) {
*value = last_accessed_value_;
return true;
}
const uint32_t old_size = GetSize();
if (rank <= 0 || rank > old_size) {
return false;
}
if (old_size == 1) {
*value = ValueOf(root_);
return true;
}
const bool update_timestamp = (rank != 1);
uint32_t node = root_;
while (node) {
const uint32_t left_subtree_num_nodes = SizeOf(LeftOf(node));
if (rank == left_subtree_num_nodes + 1) {
// This is the node we are looking for.
// Don't update timestamp if the node has rank 1.
if (update_timestamp) {
node = RemoveNode(node);
assert(old_size == GetSize() + 1);
MutableTimestampOf(node) = next_timestamp_++;
InsertNode(node);
assert(old_size == GetSize());
}
*value = ValueOf(node);
last_accessed_value_ = *value;
last_accessed_value_valid_ = true;
return true;
}
if (rank < left_subtree_num_nodes + 1) {
// Descend into the left subtree. The rank is still valid.
node = LeftOf(node);
} else {
// Descend into the right subtree. We leave behind the left subtree and
// the current node, adjust the |rank| accordingly.
rank -= left_subtree_num_nodes + 1;
node = RightOf(node);
}
}
assert(0);
return false;
}
template <typename Val>
void MoveToFront<Val>::InsertNode(uint32_t node) {
assert(!IsInTree(node));
assert(SizeOf(node) == 1);
assert(HeightOf(node) == 1);
assert(TimestampOf(node));
if (!root_) {
root_ = node;
return;
}
uint32_t iter = root_;
uint32_t parent = 0;
// Will determine if |node| will become the right or left child after
// insertion (but before balancing).
bool right_child;
// Find the node which will become |node|'s parent after insertion
// (but before balancing).
while (iter) {
parent = iter;
assert(TimestampOf(iter) != TimestampOf(node));
right_child = TimestampOf(iter) > TimestampOf(node);
iter = right_child ? RightOf(iter) : LeftOf(iter);
}
assert(parent);
// Connect node and parent.
MutableParentOf(node) = parent;
if (right_child)
MutableRightOf(parent) = node;
else
MutableLeftOf(parent) = node;
// Insertion is finished. Start the balancing process.
bool needs_rebalancing = true;
parent = ParentOf(node);
while (parent) {
UpdateNode(parent);
if (needs_rebalancing) {
const int parent_balance = BalanceOf(parent);
if (RightOf(parent) == node) {
// Added node to the right subtree.
if (parent_balance > 1) {
// Parent is right heavy, rotate left.
if (BalanceOf(node) < 0) RotateRight(node);
parent = RotateLeft(parent);
} else if (parent_balance == 0 || parent_balance == -1) {
// Parent is balanced or left heavy, no need to balance further.
needs_rebalancing = false;
}
} else {
// Added node to the left subtree.
if (parent_balance < -1) {
// Parent is left heavy, rotate right.
if (BalanceOf(node) > 0) RotateLeft(node);
parent = RotateRight(parent);
} else if (parent_balance == 0 || parent_balance == 1) {
// Parent is balanced or right heavy, no need to balance further.
needs_rebalancing = false;
}
}
}
assert(BalanceOf(parent) >= -1 && (BalanceOf(parent) <= 1));
node = parent;
parent = ParentOf(parent);
}
}
template <typename Val>
uint32_t MoveToFront<Val>::RemoveNode(uint32_t node) {
if (LeftOf(node) && RightOf(node)) {
// If |node| has two children, then use another node as scapegoat and swap
// their contents. We pick the scapegoat on the side of the tree which has
// more nodes.
const uint32_t scapegoat = SizeOf(LeftOf(node)) >= SizeOf(RightOf(node))
? RightestDescendantOf(LeftOf(node))
: LeftestDescendantOf(RightOf(node));
assert(scapegoat);
std::swap(MutableValueOf(node), MutableValueOf(scapegoat));
std::swap(MutableTimestampOf(node), MutableTimestampOf(scapegoat));
value_to_node_[ValueOf(node)] = node;
value_to_node_[ValueOf(scapegoat)] = scapegoat;
node = scapegoat;
}
// |node| may have only one child at this point.
assert(!RightOf(node) || !LeftOf(node));
uint32_t parent = ParentOf(node);
uint32_t child = RightOf(node) ? RightOf(node) : LeftOf(node);
// Orphan |node| and reconnect parent and child.
if (child) MutableParentOf(child) = parent;
if (parent) {
if (LeftOf(parent) == node)
MutableLeftOf(parent) = child;
else
MutableRightOf(parent) = child;
}
MutableParentOf(node) = 0;
MutableLeftOf(node) = 0;
MutableRightOf(node) = 0;
UpdateNode(node);
const uint32_t orphan = node;
if (root_ == node) root_ = child;
// Removal is finished. Start the balancing process.
bool needs_rebalancing = true;
node = child;
while (parent) {
UpdateNode(parent);
if (needs_rebalancing) {
const int parent_balance = BalanceOf(parent);
if (parent_balance == 1 || parent_balance == -1) {
// The height of the subtree was not changed.
needs_rebalancing = false;
} else {
if (RightOf(parent) == node) {
// Removed node from the right subtree.
if (parent_balance < -1) {
// Parent is left heavy, rotate right.
const uint32_t sibling = LeftOf(parent);
if (BalanceOf(sibling) > 0) RotateLeft(sibling);
parent = RotateRight(parent);
}
} else {
// Removed node from the left subtree.
if (parent_balance > 1) {
// Parent is right heavy, rotate left.
const uint32_t sibling = RightOf(parent);
if (BalanceOf(sibling) < 0) RotateRight(sibling);
parent = RotateLeft(parent);
}
}
}
}
assert(BalanceOf(parent) >= -1 && (BalanceOf(parent) <= 1));
node = parent;
parent = ParentOf(parent);
}
return orphan;
}
template <typename Val>
uint32_t MoveToFront<Val>::RotateLeft(const uint32_t node) {
const uint32_t pivot = RightOf(node);
assert(pivot);
// LeftOf(pivot) gets attached to node in place of pivot.
MutableRightOf(node) = LeftOf(pivot);
if (RightOf(node)) MutableParentOf(RightOf(node)) = node;
// Pivot gets attached to ParentOf(node) in place of node.
MutableParentOf(pivot) = ParentOf(node);
if (!ParentOf(node))
root_ = pivot;
else if (IsLeftChild(node))
MutableLeftOf(ParentOf(node)) = pivot;
else
MutableRightOf(ParentOf(node)) = pivot;
// Node is child of pivot.
MutableLeftOf(pivot) = node;
MutableParentOf(node) = pivot;
// Update both node and pivot. Pivot is the new parent of node, so node should
// be updated first.
UpdateNode(node);
UpdateNode(pivot);
return pivot;
}
template <typename Val>
uint32_t MoveToFront<Val>::RotateRight(const uint32_t node) {
const uint32_t pivot = LeftOf(node);
assert(pivot);
// RightOf(pivot) gets attached to node in place of pivot.
MutableLeftOf(node) = RightOf(pivot);
if (LeftOf(node)) MutableParentOf(LeftOf(node)) = node;
// Pivot gets attached to ParentOf(node) in place of node.
MutableParentOf(pivot) = ParentOf(node);
if (!ParentOf(node))
root_ = pivot;
else if (IsLeftChild(node))
MutableLeftOf(ParentOf(node)) = pivot;
else
MutableRightOf(ParentOf(node)) = pivot;
// Node is child of pivot.
MutableRightOf(pivot) = node;
MutableParentOf(node) = pivot;
// Update both node and pivot. Pivot is the new parent of node, so node should
// be updated first.
UpdateNode(node);
UpdateNode(pivot);
return pivot;
}
template <typename Val>
void MoveToFront<Val>::UpdateNode(uint32_t node) {
MutableSizeOf(node) = 1 + SizeOf(LeftOf(node)) + SizeOf(RightOf(node));
MutableHeightOf(node) =
1 + std::max(HeightOf(LeftOf(node)), HeightOf(RightOf(node)));
}
} // namespace spvutils
#endif // LIBSPIRV_UTIL_MOVE_TO_FRONT_H_
|