summaryrefslogtreecommitdiff
path: root/tools/kwbimage.c
blob: 4dce495ff037cac81a55389ff79c9c35217d6f5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
// SPDX-License-Identifier: GPL-2.0+
/*
 * Image manipulator for Marvell SoCs
 *  supports Kirkwood, Dove, Armada 370, Armada XP, Armada 375, Armada 38x and
 *  Armada 39x
 *
 * (C) Copyright 2013 Thomas Petazzoni
 * <thomas.petazzoni@free-electrons.com>
 *
 * (C) Copyright 2022 Pali Rohár <pali@kernel.org>
 */

#define OPENSSL_API_COMPAT 0x10101000L

#include "imagetool.h"
#include <limits.h>
#include <image.h>
#include <stdarg.h>
#include <stdint.h>
#include "kwbimage.h"

#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/evp.h>

#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
    (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
static void RSA_get0_key(const RSA *r,
                 const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
{
   if (n != NULL)
       *n = r->n;
   if (e != NULL)
       *e = r->e;
   if (d != NULL)
       *d = r->d;
}

#elif !defined(LIBRESSL_VERSION_NUMBER)
void EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx)
{
	EVP_MD_CTX_reset(ctx);
}
#endif

/* fls - find last (most-significant) bit set in 4-bit integer */
static inline int fls4(int num)
{
	if (num & 0x8)
		return 4;
	else if (num & 0x4)
		return 3;
	else if (num & 0x2)
		return 2;
	else if (num & 0x1)
		return 1;
	else
		return 0;
}

static struct image_cfg_element *image_cfg;
static int cfgn;
static int verbose_mode;

struct boot_mode {
	unsigned int id;
	const char *name;
};

/*
 * SHA2-256 hash
 */
struct hash_v1 {
	uint8_t hash[32];
};

struct boot_mode boot_modes[] = {
	{ IBR_HDR_I2C_ID, "i2c"  },
	{ IBR_HDR_SPI_ID, "spi"  },
	{ IBR_HDR_NAND_ID, "nand" },
	{ IBR_HDR_SATA_ID, "sata" },
	{ IBR_HDR_PEX_ID, "pex"  },
	{ IBR_HDR_UART_ID, "uart" },
	{ IBR_HDR_SDIO_ID, "sdio" },
	{},
};

struct nand_ecc_mode {
	unsigned int id;
	const char *name;
};

struct nand_ecc_mode nand_ecc_modes[] = {
	{ IBR_HDR_ECC_DEFAULT, "default" },
	{ IBR_HDR_ECC_FORCED_HAMMING, "hamming" },
	{ IBR_HDR_ECC_FORCED_RS, "rs" },
	{ IBR_HDR_ECC_DISABLED, "disabled" },
	{},
};

/* Used to identify an undefined execution or destination address */
#define ADDR_INVALID ((uint32_t)-1)

#define BINARY_MAX_ARGS 255

/* In-memory representation of a line of the configuration file */

enum image_cfg_type {
	IMAGE_CFG_VERSION = 0x1,
	IMAGE_CFG_BOOT_FROM,
	IMAGE_CFG_DEST_ADDR,
	IMAGE_CFG_EXEC_ADDR,
	IMAGE_CFG_NAND_BLKSZ,
	IMAGE_CFG_NAND_BADBLK_LOCATION,
	IMAGE_CFG_NAND_ECC_MODE,
	IMAGE_CFG_NAND_PAGESZ,
	IMAGE_CFG_SATA_BLKSZ,
	IMAGE_CFG_CPU,
	IMAGE_CFG_BINARY,
	IMAGE_CFG_DATA,
	IMAGE_CFG_DATA_DELAY,
	IMAGE_CFG_BAUDRATE,
	IMAGE_CFG_UART_PORT,
	IMAGE_CFG_UART_MPP,
	IMAGE_CFG_DEBUG,
	IMAGE_CFG_KAK,
	IMAGE_CFG_CSK,
	IMAGE_CFG_CSK_INDEX,
	IMAGE_CFG_JTAG_DELAY,
	IMAGE_CFG_BOX_ID,
	IMAGE_CFG_FLASH_ID,
	IMAGE_CFG_SEC_COMMON_IMG,
	IMAGE_CFG_SEC_SPECIALIZED_IMG,
	IMAGE_CFG_SEC_BOOT_DEV,
	IMAGE_CFG_SEC_FUSE_DUMP,

	IMAGE_CFG_COUNT
} type;

static const char * const id_strs[] = {
	[IMAGE_CFG_VERSION] = "VERSION",
	[IMAGE_CFG_BOOT_FROM] = "BOOT_FROM",
	[IMAGE_CFG_DEST_ADDR] = "DEST_ADDR",
	[IMAGE_CFG_EXEC_ADDR] = "EXEC_ADDR",
	[IMAGE_CFG_NAND_BLKSZ] = "NAND_BLKSZ",
	[IMAGE_CFG_NAND_BADBLK_LOCATION] = "NAND_BADBLK_LOCATION",
	[IMAGE_CFG_NAND_ECC_MODE] = "NAND_ECC_MODE",
	[IMAGE_CFG_NAND_PAGESZ] = "NAND_PAGE_SIZE",
	[IMAGE_CFG_SATA_BLKSZ] = "SATA_BLKSZ",
	[IMAGE_CFG_CPU] = "CPU",
	[IMAGE_CFG_BINARY] = "BINARY",
	[IMAGE_CFG_DATA] = "DATA",
	[IMAGE_CFG_DATA_DELAY] = "DATA_DELAY",
	[IMAGE_CFG_BAUDRATE] = "BAUDRATE",
	[IMAGE_CFG_UART_PORT] = "UART_PORT",
	[IMAGE_CFG_UART_MPP] = "UART_MPP",
	[IMAGE_CFG_DEBUG] = "DEBUG",
	[IMAGE_CFG_KAK] = "KAK",
	[IMAGE_CFG_CSK] = "CSK",
	[IMAGE_CFG_CSK_INDEX] = "CSK_INDEX",
	[IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY",
	[IMAGE_CFG_BOX_ID] = "BOX_ID",
	[IMAGE_CFG_FLASH_ID] = "FLASH_ID",
	[IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG",
	[IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG",
	[IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV",
	[IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP"
};

struct image_cfg_element {
	enum image_cfg_type type;
	union {
		unsigned int version;
		unsigned int cpu_sheeva;
		unsigned int bootfrom;
		struct {
			const char *file;
			unsigned int loadaddr;
			unsigned int args[BINARY_MAX_ARGS];
			unsigned int nargs;
		} binary;
		unsigned int dstaddr;
		unsigned int execaddr;
		unsigned int nandblksz;
		unsigned int nandbadblklocation;
		unsigned int nandeccmode;
		unsigned int nandpagesz;
		unsigned int satablksz;
		struct ext_hdr_v0_reg regdata;
		unsigned int regdata_delay;
		unsigned int baudrate;
		unsigned int uart_port;
		unsigned int uart_mpp;
		unsigned int debug;
		const char *key_name;
		int csk_idx;
		uint8_t jtag_delay;
		uint32_t boxid;
		uint32_t flashid;
		bool sec_specialized_img;
		unsigned int sec_boot_dev;
		const char *name;
	};
};

#define IMAGE_CFG_ELEMENT_MAX 256

/*
 * Utility functions to manipulate boot mode and ecc modes (convert
 * them back and forth between description strings and the
 * corresponding numerical identifiers).
 */

static const char *image_boot_mode_name(unsigned int id)
{
	int i;

	for (i = 0; boot_modes[i].name; i++)
		if (boot_modes[i].id == id)
			return boot_modes[i].name;
	return NULL;
}

static int image_boot_mode_id(const char *boot_mode_name)
{
	int i;

	for (i = 0; boot_modes[i].name; i++)
		if (!strcmp(boot_modes[i].name, boot_mode_name))
			return boot_modes[i].id;

	return -1;
}

static const char *image_nand_ecc_mode_name(unsigned int id)
{
	int i;

	for (i = 0; nand_ecc_modes[i].name; i++)
		if (nand_ecc_modes[i].id == id)
			return nand_ecc_modes[i].name;

	return NULL;
}

static int image_nand_ecc_mode_id(const char *nand_ecc_mode_name)
{
	int i;

	for (i = 0; nand_ecc_modes[i].name; i++)
		if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name))
			return nand_ecc_modes[i].id;
	return -1;
}

static struct image_cfg_element *
image_find_option(unsigned int optiontype)
{
	int i;

	for (i = 0; i < cfgn; i++) {
		if (image_cfg[i].type == optiontype)
			return &image_cfg[i];
	}

	return NULL;
}

static unsigned int
image_count_options(unsigned int optiontype)
{
	int i;
	unsigned int count = 0;

	for (i = 0; i < cfgn; i++)
		if (image_cfg[i].type == optiontype)
			count++;

	return count;
}

static int image_get_csk_index(void)
{
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_CSK_INDEX);
	if (!e)
		return -1;

	return e->csk_idx;
}

static bool image_get_spezialized_img(void)
{
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG);
	if (!e)
		return false;

	return e->sec_specialized_img;
}

static int image_get_bootfrom(void)
{
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_BOOT_FROM);
	if (!e)
		/* fallback to SPI if no BOOT_FROM is not provided */
		return IBR_HDR_SPI_ID;

	return e->bootfrom;
}

static int image_is_cpu_sheeva(void)
{
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_CPU);
	if (!e)
		return 0;

	return e->cpu_sheeva;
}

/*
 * Compute a 8-bit checksum of a memory area. This algorithm follows
 * the requirements of the Marvell SoC BootROM specifications.
 */
static uint8_t image_checksum8(void *start, uint32_t len)
{
	uint8_t csum = 0;
	uint8_t *p = start;

	/* check len and return zero checksum if invalid */
	if (!len)
		return 0;

	do {
		csum += *p;
		p++;
	} while (--len);

	return csum;
}

/*
 * Verify checksum over a complete header that includes the checksum field.
 * Return 1 when OK, otherwise 0.
 */
static int main_hdr_checksum_ok(void *hdr)
{
	/* Offsets of checksum in v0 and v1 headers are the same */
	struct main_hdr_v0 *main_hdr = (struct main_hdr_v0 *)hdr;
	uint8_t checksum;

	checksum = image_checksum8(hdr, kwbheader_size_for_csum(hdr));
	/* Calculated checksum includes the header checksum field. Compensate
	 * for that.
	 */
	checksum -= main_hdr->checksum;

	return checksum == main_hdr->checksum;
}

static uint32_t image_checksum32(void *start, uint32_t len)
{
	uint32_t csum = 0;
	uint32_t *p = start;

	/* check len and return zero checksum if invalid */
	if (!len)
		return 0;

	if (len % sizeof(uint32_t)) {
		fprintf(stderr, "Length %d is not in multiple of %zu\n",
			len, sizeof(uint32_t));
		return 0;
	}

	do {
		csum += *p;
		p++;
		len -= sizeof(uint32_t);
	} while (len > 0);

	return csum;
}

static unsigned int options_to_baudrate(uint8_t options)
{
	switch (options & 0x7) {
	case MAIN_HDR_V1_OPT_BAUD_2400:
		return 2400;
	case MAIN_HDR_V1_OPT_BAUD_4800:
		return 4800;
	case MAIN_HDR_V1_OPT_BAUD_9600:
		return 9600;
	case MAIN_HDR_V1_OPT_BAUD_19200:
		return 19200;
	case MAIN_HDR_V1_OPT_BAUD_38400:
		return 38400;
	case MAIN_HDR_V1_OPT_BAUD_57600:
		return 57600;
	case MAIN_HDR_V1_OPT_BAUD_115200:
		return 115200;
	case MAIN_HDR_V1_OPT_BAUD_DEFAULT:
	default:
		return 0;
	}
}

static uint8_t baudrate_to_option(unsigned int baudrate)
{
	switch (baudrate) {
	case 2400:
		return MAIN_HDR_V1_OPT_BAUD_2400;
	case 4800:
		return MAIN_HDR_V1_OPT_BAUD_4800;
	case 9600:
		return MAIN_HDR_V1_OPT_BAUD_9600;
	case 19200:
		return MAIN_HDR_V1_OPT_BAUD_19200;
	case 38400:
		return MAIN_HDR_V1_OPT_BAUD_38400;
	case 57600:
		return MAIN_HDR_V1_OPT_BAUD_57600;
	case 115200:
		return MAIN_HDR_V1_OPT_BAUD_115200;
	default:
		return MAIN_HDR_V1_OPT_BAUD_DEFAULT;
	}
}

static void kwb_msg(const char *fmt, ...)
{
	if (verbose_mode) {
		va_list ap;

		va_start(ap, fmt);
		vfprintf(stdout, fmt, ap);
		va_end(ap);
	}
}

static int openssl_err(const char *msg)
{
	unsigned long ssl_err = ERR_get_error();

	fprintf(stderr, "%s", msg);
	fprintf(stderr, ": %s\n",
		ERR_error_string(ssl_err, 0));

	return -1;
}

static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa)
{
	char path[PATH_MAX];
	RSA *rsa;
	FILE *f;

	if (!keydir)
		keydir = ".";

	snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
	f = fopen(path, "r");
	if (!f) {
		fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
			path, strerror(errno));
		return -ENOENT;
	}

	rsa = PEM_read_RSAPrivateKey(f, 0, NULL, "");
	if (!rsa) {
		openssl_err("Failure reading private key");
		fclose(f);
		return -EPROTO;
	}
	fclose(f);
	*p_rsa = rsa;

	return 0;
}

static int kwb_load_cfg_key(struct image_tool_params *params,
			    unsigned int cfg_option, const char *key_name,
			    RSA **p_key)
{
	struct image_cfg_element *e_key;
	RSA *key;
	int res;

	*p_key = NULL;

	e_key = image_find_option(cfg_option);
	if (!e_key) {
		fprintf(stderr, "%s not configured\n", key_name);
		return -ENOENT;
	}

	res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key);
	if (res < 0) {
		fprintf(stderr, "Failed to load %s\n", key_name);
		return -ENOENT;
	}

	*p_key = key;

	return 0;
}

static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak)
{
	return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak);
}

static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk)
{
	return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk);
}

static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk,
				   struct hash_v1 *hash)
{
	EVP_MD_CTX *ctx;
	unsigned int key_size;
	unsigned int hash_size;
	int ret = 0;

	if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82)
		return -EINVAL;

	key_size = (pk->key[2] << 8) + pk->key[3] + 4;

	ctx = EVP_MD_CTX_create();
	if (!ctx)
		return openssl_err("EVP context creation failed");

	EVP_MD_CTX_init(ctx);
	if (!EVP_DigestInit(ctx, EVP_sha256())) {
		ret = openssl_err("Digest setup failed");
		goto hash_err_ctx;
	}

	if (!EVP_DigestUpdate(ctx, pk->key, key_size)) {
		ret = openssl_err("Hashing data failed");
		goto hash_err_ctx;
	}

	if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) {
		ret = openssl_err("Could not obtain hash");
		goto hash_err_ctx;
	}

	EVP_MD_CTX_cleanup(ctx);

hash_err_ctx:
	EVP_MD_CTX_destroy(ctx);
	return ret;
}

static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname)
{
	RSA *rsa;
	const unsigned char *ptr;

	if (!key || !src)
		goto fail;

	ptr = src->key;
	rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key));
	if (!rsa) {
		openssl_err("error decoding public key");
		goto fail;
	}

	return 0;
fail:
	fprintf(stderr, "Failed to decode %s pubkey\n", keyname);
	return -EINVAL;
}

static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf,
			     char *keyname)
{
	int size_exp, size_mod, size_seq;
	const BIGNUM *key_e, *key_n;
	uint8_t *cur;
	char *errmsg = "Failed to encode %s\n";

	RSA_get0_key(key, NULL, &key_e, NULL);
	RSA_get0_key(key, &key_n, NULL, NULL);

	if (!key || !key_e || !key_n || !dst) {
		fprintf(stderr, "export pk failed: (%p, %p, %p, %p)",
			key, key_e, key_n, dst);
		fprintf(stderr, errmsg, keyname);
		return -EINVAL;
	}

	/*
	 * According to the specs, the key should be PKCS#1 DER encoded.
	 * But unfortunately the really required encoding seems to be different;
	 * it violates DER...! (But it still conformes to BER.)
	 * (Length always in long form w/ 2 byte length code; no leading zero
	 * when MSB of first byte is set...)
	 * So we cannot use the encoding func provided by OpenSSL and have to
	 * do the encoding manually.
	 */

	size_exp = BN_num_bytes(key_e);
	size_mod = BN_num_bytes(key_n);
	size_seq = 4 + size_mod + 4 + size_exp;

	if (size_mod > 256) {
		fprintf(stderr, "export pk failed: wrong mod size: %d\n",
			size_mod);
		fprintf(stderr, errmsg, keyname);
		return -EINVAL;
	}

	if (4 + size_seq > sizeof(dst->key)) {
		fprintf(stderr, "export pk failed: seq too large (%d, %zu)\n",
			4 + size_seq, sizeof(dst->key));
		fprintf(stderr, errmsg, keyname);
		return -ENOBUFS;
	}

	cur = dst->key;

	/* PKCS#1 (RFC3447) RSAPublicKey structure */
	*cur++ = 0x30;		/* SEQUENCE */
	*cur++ = 0x82;
	*cur++ = (size_seq >> 8) & 0xFF;
	*cur++ = size_seq & 0xFF;
	/* Modulus */
	*cur++ = 0x02;		/* INTEGER */
	*cur++ = 0x82;
	*cur++ = (size_mod >> 8) & 0xFF;
	*cur++ = size_mod & 0xFF;
	BN_bn2bin(key_n, cur);
	cur += size_mod;
	/* Exponent */
	*cur++ = 0x02;		/* INTEGER */
	*cur++ = 0x82;
	*cur++ = (size_exp >> 8) & 0xFF;
	*cur++ = size_exp & 0xFF;
	BN_bn2bin(key_e, cur);

	if (hashf) {
		struct hash_v1 pk_hash;
		int i;
		int ret = 0;

		ret = kwb_compute_pubkey_hash(dst, &pk_hash);
		if (ret < 0) {
			fprintf(stderr, errmsg, keyname);
			return ret;
		}

		fprintf(hashf, "SHA256 = ");
		for (i = 0 ; i < sizeof(pk_hash.hash); ++i)
			fprintf(hashf, "%02X", pk_hash.hash[i]);
		fprintf(hashf, "\n");
	}

	return 0;
}

static int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig,
		    char *signame)
{
	EVP_PKEY *evp_key;
	EVP_MD_CTX *ctx;
	unsigned int sig_size;
	int size;
	int ret = 0;

	evp_key = EVP_PKEY_new();
	if (!evp_key)
		return openssl_err("EVP_PKEY object creation failed");

	if (!EVP_PKEY_set1_RSA(evp_key, key)) {
		ret = openssl_err("EVP key setup failed");
		goto err_key;
	}

	size = EVP_PKEY_size(evp_key);
	if (size > sizeof(sig->sig)) {
		fprintf(stderr, "Buffer to small for signature (%d bytes)\n",
			size);
		ret = -ENOBUFS;
		goto err_key;
	}

	ctx = EVP_MD_CTX_create();
	if (!ctx) {
		ret = openssl_err("EVP context creation failed");
		goto err_key;
	}
	EVP_MD_CTX_init(ctx);
	if (!EVP_SignInit(ctx, EVP_sha256())) {
		ret = openssl_err("Signer setup failed");
		goto err_ctx;
	}

	if (!EVP_SignUpdate(ctx, data, datasz)) {
		ret = openssl_err("Signing data failed");
		goto err_ctx;
	}

	if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) {
		ret = openssl_err("Could not obtain signature");
		goto err_ctx;
	}

	EVP_MD_CTX_cleanup(ctx);
	EVP_MD_CTX_destroy(ctx);
	EVP_PKEY_free(evp_key);

	return 0;

err_ctx:
	EVP_MD_CTX_destroy(ctx);
err_key:
	EVP_PKEY_free(evp_key);
	fprintf(stderr, "Failed to create %s signature\n", signame);
	return ret;
}

static int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
		      char *signame)
{
	EVP_PKEY *evp_key;
	EVP_MD_CTX *ctx;
	int size;
	int ret = 0;

	evp_key = EVP_PKEY_new();
	if (!evp_key)
		return openssl_err("EVP_PKEY object creation failed");

	if (!EVP_PKEY_set1_RSA(evp_key, key)) {
		ret = openssl_err("EVP key setup failed");
		goto err_key;
	}

	size = EVP_PKEY_size(evp_key);
	if (size > sizeof(sig->sig)) {
		fprintf(stderr, "Invalid signature size (%d bytes)\n",
			size);
		ret = -EINVAL;
		goto err_key;
	}

	ctx = EVP_MD_CTX_create();
	if (!ctx) {
		ret = openssl_err("EVP context creation failed");
		goto err_key;
	}
	EVP_MD_CTX_init(ctx);
	if (!EVP_VerifyInit(ctx, EVP_sha256())) {
		ret = openssl_err("Verifier setup failed");
		goto err_ctx;
	}

	if (!EVP_VerifyUpdate(ctx, data, datasz)) {
		ret = openssl_err("Hashing data failed");
		goto err_ctx;
	}

	if (EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key) != 1) {
		ret = openssl_err("Could not verify signature");
		goto err_ctx;
	}

	EVP_MD_CTX_cleanup(ctx);
	EVP_MD_CTX_destroy(ctx);
	EVP_PKEY_free(evp_key);

	return 0;

err_ctx:
	EVP_MD_CTX_destroy(ctx);
err_key:
	EVP_PKEY_free(evp_key);
	fprintf(stderr, "Failed to verify %s signature\n", signame);
	return ret;
}

static int kwb_sign_and_verify(RSA *key, void *data, int datasz,
			       struct sig_v1 *sig, char *signame)
{
	if (kwb_sign(key, data, datasz, sig, signame) < 0)
		return -1;

	if (kwb_verify(key, data, datasz, sig, signame) < 0)
		return -1;

	return 0;
}


static int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr)
{
	struct hash_v1 kak_pub_hash;
	struct image_cfg_element *e;
	unsigned int fuse_line;
	int i, idx;
	uint8_t *ptr;
	uint32_t val;
	int ret = 0;

	if (!out || !sec_hdr)
		return -EINVAL;

	ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash);
	if (ret < 0)
		goto done;

	fprintf(out, "# burn KAK pub key hash\n");
	ptr = kak_pub_hash.hash;
	for (fuse_line = 26; fuse_line <= 30; ++fuse_line) {
		fprintf(out, "fuse prog -y %u 0 ", fuse_line);

		for (i = 4; i-- > 0;)
			fprintf(out, "%02hx", (ushort)ptr[i]);
		ptr += 4;
		fprintf(out, " 00");

		if (fuse_line < 30) {
			for (i = 3; i-- > 0;)
				fprintf(out, "%02hx", (ushort)ptr[i]);
			ptr += 3;
		} else {
			fprintf(out, "000000");
		}

		fprintf(out, " 1\n");
	}

	fprintf(out, "# burn CSK selection\n");

	idx = image_get_csk_index();
	if (idx < 0 || idx > 15) {
		ret = -EINVAL;
		goto done;
	}
	if (idx > 0) {
		for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line)
			fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n",
				fuse_line);
	} else {
		fprintf(out, "# CSK index is 0; no mods needed\n");
	}

	e = image_find_option(IMAGE_CFG_BOX_ID);
	if (e) {
		fprintf(out, "# set box ID\n");
		fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid);
	}

	e = image_find_option(IMAGE_CFG_FLASH_ID);
	if (e) {
		fprintf(out, "# set flash ID\n");
		fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid);
	}

	fprintf(out, "# enable secure mode ");
	fprintf(out, "(must be the last fuse line written)\n");

	val = 1;
	e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV);
	if (!e) {
		fprintf(stderr, "ERROR: secured mode boot device not given\n");
		ret = -EINVAL;
		goto done;
	}

	if (e->sec_boot_dev > 0xff) {
		fprintf(stderr, "ERROR: secured mode boot device invalid\n");
		ret = -EINVAL;
		goto done;
	}

	val |= (e->sec_boot_dev << 8);

	fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val);

	fprintf(out, "# lock (unused) fuse lines (0-23)s\n");
	for (fuse_line = 0; fuse_line < 24; ++fuse_line)
		fprintf(out, "fuse prog -y %u 2 1\n", fuse_line);

	fprintf(out, "# OK, that's all :-)\n");

done:
	return ret;
}

static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr)
{
	int ret = 0;
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP);
	if (!e)
		return 0;

	if (!strcmp(e->name, "a38x")) {
		FILE *out = fopen("kwb_fuses_a38x.txt", "w+");

		if (!out) {
			fprintf(stderr, "Couldn't open eFuse settings: '%s': %s\n",
				"kwb_fuses_a38x.txt", strerror(errno));
			return -ENOENT;
		}

		kwb_dump_fuse_cmds_38x(out, sec_hdr);
		fclose(out);
		goto done;
	}

	ret = -ENOSYS;

done:
	return ret;
}

static int image_fill_xip_header(void *image, struct image_tool_params *params)
{
	struct main_hdr_v1 *main_hdr = image; /* kwbimage v0 and v1 have same XIP members */
	int version = kwbimage_version(image);
	uint32_t srcaddr = le32_to_cpu(main_hdr->srcaddr);
	uint32_t startaddr = 0;

	if (main_hdr->blockid != IBR_HDR_SPI_ID) {
		fprintf(stderr, "XIP is supported only for SPI images\n");
		return 0;
	}

	if (version == 0 &&
		   params->addr >= 0xE8000000 && params->addr < 0xEFFFFFFF &&
		   params->ep >= 0xE8000000 && params->ep < 0xEFFFFFFF) {
		/* Load and Execute address is in SPI address space (kwbimage v0) */
		startaddr = 0xE8000000;
	} else if (version != 0 &&
		   params->addr >= 0xD4000000 && params->addr < 0xD7FFFFFF &&
		   params->ep >= 0xD4000000 && params->ep < 0xD7FFFFFF) {
		/* Load and Execute address is in SPI address space (kwbimage v1) */
		startaddr = 0xD4000000;
	} else if (version != 0 &&
		   params->addr >= 0xD8000000 && params->addr < 0xDFFFFFFF &&
		   params->ep >= 0xD8000000 && params->ep < 0xDFFFFFFF) {
		/* Load and Execute address is in Device bus space (kwbimage v1) */
		startaddr = 0xD8000000;
	} else if (params->addr != 0x0) {
		/* Load address is non-zero */
		if (version == 0)
			fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI address space\n");
		else
			fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI nor in Device bus address space\n");
		return 0;
	}

	/*
	 * For XIP destaddr must be set to 0xFFFFFFFF and
	 * execaddr relative to the start of XIP memory address space.
	 */
	main_hdr->destaddr = cpu_to_le32(0xFFFFFFFF);

	if (startaddr == 0) {
		/*
		 * mkimage's --load-address 0x0 means that binary is Position
		 * Independent and in this case mkimage's --entry-point address
		 * is relative offset from beginning of the data part of image.
		 */
		main_hdr->execaddr = cpu_to_le32(srcaddr + params->ep);
	} else {
		/* The lowest possible load address is after the header at srcaddr. */
		if (params->addr - startaddr < srcaddr) {
			fprintf(stderr,
				"Invalid XIP Load Address 0x%08x.\n"
				"The lowest address for this configuration is 0x%08x.\n",
				params->addr, (unsigned)(startaddr + srcaddr));
			return 0;
		}
		main_hdr->srcaddr = cpu_to_le32(params->addr - startaddr);
		main_hdr->execaddr = cpu_to_le32(params->ep - startaddr);
	}

	return 1;
}

static unsigned int image_get_satablksz(void)
{
	struct image_cfg_element *e;
	e = image_find_option(IMAGE_CFG_SATA_BLKSZ);
	return e ? e->satablksz : 512;
}

static size_t image_headersz_align(size_t headersz, uint8_t blockid)
{
	/*
	 * Header needs to be 4-byte aligned, which is already ensured by code
	 * above. Moreover UART images must have header aligned to 128 bytes
	 * (xmodem block size), NAND images to 256 bytes (ECC calculation),
	 * SDIO images to 512 bytes (SDHC/SDXC fixed block size) and SATA
	 * images to specified storage block size (default 512 bytes).
	 * Note that SPI images do not have to have header size aligned
	 * to 256 bytes because it is possible to read from SPI storage from
	 * any offset (read offset does not have to be aligned to block size).
	 */
	if (blockid == IBR_HDR_UART_ID)
		return ALIGN(headersz, 128);
	else if (blockid == IBR_HDR_NAND_ID)
		return ALIGN(headersz, 256);
	else if (blockid == IBR_HDR_SDIO_ID)
		return ALIGN(headersz, 512);
	else if (blockid == IBR_HDR_SATA_ID)
		return ALIGN(headersz, image_get_satablksz());
	else
		return headersz;
}

static size_t image_headersz_v0(int *hasext)
{
	size_t headersz;

	headersz = sizeof(struct main_hdr_v0);
	if (image_count_options(IMAGE_CFG_DATA) > 0) {
		headersz += sizeof(struct ext_hdr_v0);
		if (hasext)
			*hasext = 1;
	}

	return headersz;
}

static void *image_create_v0(size_t *dataoff, struct image_tool_params *params,
			     int payloadsz)
{
	struct image_cfg_element *e;
	size_t headersz;
	struct main_hdr_v0 *main_hdr;
	uint8_t *image;
	int has_ext = 0;

	/*
	 * Calculate the size of the header and the offset of the
	 * payload
	 */
	headersz = image_headersz_v0(&has_ext);
	*dataoff = image_headersz_align(headersz, image_get_bootfrom());

	image = malloc(headersz);
	if (!image) {
		fprintf(stderr, "Cannot allocate memory for image\n");
		return NULL;
	}

	memset(image, 0, headersz);

	main_hdr = (struct main_hdr_v0 *)image;

	/* Fill in the main header */
	main_hdr->blocksize =
		cpu_to_le32(payloadsz);
	main_hdr->srcaddr   = cpu_to_le32(*dataoff);
	main_hdr->ext       = has_ext;
	main_hdr->version   = 0;
	main_hdr->destaddr  = cpu_to_le32(params->addr);
	main_hdr->execaddr  = cpu_to_le32(params->ep);
	main_hdr->blockid   = image_get_bootfrom();

	e = image_find_option(IMAGE_CFG_NAND_ECC_MODE);
	if (e)
		main_hdr->nandeccmode = e->nandeccmode;
	e = image_find_option(IMAGE_CFG_NAND_BLKSZ);
	if (e)
		main_hdr->nandblocksize = e->nandblksz / (64 * 1024);
	e = image_find_option(IMAGE_CFG_NAND_PAGESZ);
	if (e)
		main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz);
	e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION);
	if (e)
		main_hdr->nandbadblklocation = e->nandbadblklocation;

	/* For SATA srcaddr is specified in number of sectors. */
	if (main_hdr->blockid == IBR_HDR_SATA_ID) {
		params->bl_len = image_get_satablksz();
		main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len);
	}

	/* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */
	if (main_hdr->blockid == IBR_HDR_PEX_ID)
		main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF);

	if (params->xflag) {
		if (!image_fill_xip_header(main_hdr, params)) {
			free(image);
			return NULL;
		}
		*dataoff = le32_to_cpu(main_hdr->srcaddr);
	}

	/* Generate the ext header */
	if (has_ext) {
		struct ext_hdr_v0 *ext_hdr;
		int cfgi, datai;

		ext_hdr = (struct ext_hdr_v0 *)
				(image + sizeof(struct main_hdr_v0));
		ext_hdr->offset = cpu_to_le32(0x40);

		for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) {
			e = &image_cfg[cfgi];
			if (e->type != IMAGE_CFG_DATA)
				continue;

			ext_hdr->rcfg[datai].raddr =
				cpu_to_le32(e->regdata.raddr);
			ext_hdr->rcfg[datai].rdata =
				cpu_to_le32(e->regdata.rdata);
			datai++;
		}

		ext_hdr->checksum = image_checksum8(ext_hdr,
						    sizeof(struct ext_hdr_v0));
	}

	main_hdr->checksum = image_checksum8(image,
					     sizeof(struct main_hdr_v0));

	return image;
}

static size_t image_headersz_v1(int *hasext)
{
	struct image_cfg_element *e;
	unsigned int count;
	size_t headersz;
	int cpu_sheeva;
	struct stat s;
	int cfgi;
	int ret;

	headersz = sizeof(struct main_hdr_v1);

	if (image_get_csk_index() >= 0) {
		headersz += sizeof(struct secure_hdr_v1);
		if (hasext)
			*hasext = 1;
	}

	cpu_sheeva = image_is_cpu_sheeva();

	count = 0;
	for (cfgi = 0; cfgi < cfgn; cfgi++) {
		e = &image_cfg[cfgi];

		if (e->type == IMAGE_CFG_DATA)
			count++;

		if (e->type == IMAGE_CFG_DATA_DELAY ||
		    (e->type == IMAGE_CFG_BINARY && count > 0)) {
			headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4;
			count = 0;
		}

		if (e->type != IMAGE_CFG_BINARY)
			continue;

		ret = stat(e->binary.file, &s);
		if (ret < 0) {
			char cwd[PATH_MAX];
			char *dir = cwd;

			memset(cwd, 0, sizeof(cwd));
			if (!getcwd(cwd, sizeof(cwd))) {
				dir = "current working directory";
				perror("getcwd() failed");
			}

			fprintf(stderr,
				"Didn't find the file '%s' in '%s' which is mandatory to generate the image\n"
				"This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n"
				"image for your board. Use 'dumpimage -T kwbimage -p 1' to extract it from an existing image.\n",
				e->binary.file, dir);
			return 0;
		}

		headersz += sizeof(struct opt_hdr_v1) + sizeof(uint32_t) +
			(e->binary.nargs) * sizeof(uint32_t);

		if (e->binary.loadaddr) {
			/*
			 * BootROM loads kwbimage header (in which the
			 * executable code is also stored) to address
			 * 0x40004000 or 0x40000000. Thus there is
			 * restriction for the load address of the N-th
			 * BINARY image.
			 */
			unsigned int base_addr, low_addr, high_addr;

			base_addr = cpu_sheeva ? 0x40004000 : 0x40000000;
			low_addr = base_addr + headersz;
			high_addr = low_addr +
				    (BINARY_MAX_ARGS - e->binary.nargs) * sizeof(uint32_t);

			if (cpu_sheeva && e->binary.loadaddr % 16) {
				fprintf(stderr,
					"Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n"
					"Address for CPU SHEEVA must be 16-byte aligned.\n",
					e->binary.loadaddr, e->binary.file, e->binary.nargs);
				return 0;
			}

			if (e->binary.loadaddr % 4 || e->binary.loadaddr < low_addr ||
			    e->binary.loadaddr > high_addr) {
				fprintf(stderr,
					"Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n"
					"Address must be 4-byte aligned and in range 0x%08x-0x%08x.\n",
					e->binary.loadaddr, e->binary.file,
					e->binary.nargs, low_addr, high_addr);
				return 0;
			}
			headersz = e->binary.loadaddr - base_addr;
		} else if (cpu_sheeva) {
			headersz = ALIGN(headersz, 16);
		} else {
			headersz = ALIGN(headersz, 4);
		}

		headersz += ALIGN(s.st_size, 4) + sizeof(uint32_t);
		if (hasext)
			*hasext = 1;
	}

	if (count > 0)
		headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4;

	/*
	 * For all images except UART, headersz stored in header itself should
	 * contains header size without padding. For UART image BootROM rounds
	 * down headersz to multiply of 128 bytes. Therefore align UART headersz
	 * to multiply of 128 bytes to ensure that remaining UART header bytes
	 * are not ignored by BootROM.
	 */
	if (image_get_bootfrom() == IBR_HDR_UART_ID)
		headersz = ALIGN(headersz, 128);

	return headersz;
}

static int add_binary_header_v1(uint8_t **cur, uint8_t **next_ext,
				struct image_cfg_element *binarye,
				struct main_hdr_v1 *main_hdr)
{
	struct opt_hdr_v1 *hdr = (struct opt_hdr_v1 *)*cur;
	uint32_t base_addr;
	uint32_t add_args;
	uint32_t offset;
	uint32_t *args;
	size_t binhdrsz;
	int cpu_sheeva;
	struct stat s;
	int argi;
	FILE *bin;
	int ret;

	hdr->headertype = OPT_HDR_V1_BINARY_TYPE;

	bin = fopen(binarye->binary.file, "r");
	if (!bin) {
		fprintf(stderr, "Cannot open binary file %s\n",
			binarye->binary.file);
		return -1;
	}

	if (fstat(fileno(bin), &s)) {
		fprintf(stderr, "Cannot stat binary file %s\n",
			binarye->binary.file);
		goto err_close;
	}

	*cur += sizeof(struct opt_hdr_v1);

	args = (uint32_t *)*cur;
	*args = cpu_to_le32(binarye->binary.nargs);
	args++;
	for (argi = 0; argi < binarye->binary.nargs; argi++)
		args[argi] = cpu_to_le32(binarye->binary.args[argi]);

	*cur += (binarye->binary.nargs + 1) * sizeof(uint32_t);

	/*
	 * ARM executable code inside the BIN header on platforms with Sheeva
	 * CPU (A370 and AXP) must always be aligned with the 128-bit boundary.
	 * In the case when this code is not position independent (e.g. ARM
	 * SPL), it must be placed at fixed load and execute address.
	 * This requirement can be met by inserting dummy arguments into
	 * BIN header, if needed.
	 */
	cpu_sheeva = image_is_cpu_sheeva();
	base_addr = cpu_sheeva ? 0x40004000 : 0x40000000;
	offset = *cur - (uint8_t *)main_hdr;
	if (binarye->binary.loadaddr)
		add_args = (binarye->binary.loadaddr - base_addr - offset) / sizeof(uint32_t);
	else if (cpu_sheeva)
		add_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
	else
		add_args = 0;
	if (add_args) {
		*(args - 1) = cpu_to_le32(binarye->binary.nargs + add_args);
		*cur += add_args * sizeof(uint32_t);
	}

	ret = fread(*cur, s.st_size, 1, bin);
	if (ret != 1) {
		fprintf(stderr,
			"Could not read binary image %s\n",
			binarye->binary.file);
		goto err_close;
	}

	fclose(bin);

	*cur += ALIGN(s.st_size, 4);

	*((uint32_t *)*cur) = 0x00000000;
	**next_ext = 1;
	*next_ext = *cur;

	*cur += sizeof(uint32_t);

	binhdrsz = sizeof(struct opt_hdr_v1) +
		(binarye->binary.nargs + add_args + 2) * sizeof(uint32_t) +
		ALIGN(s.st_size, 4);
	hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF);
	hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16;

	return 0;

err_close:
	fclose(bin);

	return -1;
}

static int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr)
{
	FILE *hashf;
	int res;

	hashf = fopen("pub_kak_hash.txt", "w");
	if (!hashf) {
		fprintf(stderr, "Couldn't open hash file: '%s': %s\n",
			"pub_kak_hash.txt", strerror(errno));
		return 1;
	}

	res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK");

	fclose(hashf);

	return res < 0 ? 1 : 0;
}

static int kwb_sign_csk_with_kak(struct image_tool_params *params,
				 struct secure_hdr_v1 *secure_hdr, RSA *csk)
{
	RSA *kak = NULL;
	RSA *kak_pub = NULL;
	int csk_idx = image_get_csk_index();
	struct sig_v1 tmp_sig;

	if (csk_idx < 0 || csk_idx > 15) {
		fprintf(stderr, "Invalid CSK index %d\n", csk_idx);
		return 1;
	}

	if (kwb_load_kak(params, &kak) < 0)
		return 1;

	if (export_pub_kak_hash(kak, secure_hdr))
		return 1;

	if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0)
		return 1;

	if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0)
		return 1;

	if (kwb_sign_and_verify(kak, &secure_hdr->csk,
				sizeof(secure_hdr->csk) +
				sizeof(secure_hdr->csksig),
				&tmp_sig, "CSK") < 0)
		return 1;

	if (kwb_verify(kak_pub, &secure_hdr->csk,
		       sizeof(secure_hdr->csk) +
		       sizeof(secure_hdr->csksig),
		       &tmp_sig, "CSK (2)") < 0)
		return 1;

	secure_hdr->csksig = tmp_sig;

	return 0;
}

static int add_secure_header_v1(struct image_tool_params *params, uint8_t *image_ptr,
				size_t image_size, uint8_t *header_ptr, size_t headersz,
				struct secure_hdr_v1 *secure_hdr)
{
	struct image_cfg_element *e_jtagdelay;
	struct image_cfg_element *e_boxid;
	struct image_cfg_element *e_flashid;
	RSA *csk = NULL;
	struct sig_v1 tmp_sig;
	bool specialized_img = image_get_spezialized_img();

	kwb_msg("Create secure header content\n");

	e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY);
	e_boxid = image_find_option(IMAGE_CFG_BOX_ID);
	e_flashid = image_find_option(IMAGE_CFG_FLASH_ID);

	if (kwb_load_csk(params, &csk) < 0)
		return 1;

	secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE;
	secure_hdr->headersz_msb = 0;
	secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1));
	if (e_jtagdelay)
		secure_hdr->jtag_delay = e_jtagdelay->jtag_delay;
	if (e_boxid && specialized_img)
		secure_hdr->boxid = cpu_to_le32(e_boxid->boxid);
	if (e_flashid && specialized_img)
		secure_hdr->flashid = cpu_to_le32(e_flashid->flashid);

	if (kwb_sign_csk_with_kak(params, secure_hdr, csk))
		return 1;

	if (kwb_sign_and_verify(csk, image_ptr, image_size - 4,
				&secure_hdr->imgsig, "image") < 0)
		return 1;

	if (kwb_sign_and_verify(csk, header_ptr, headersz, &tmp_sig, "header") < 0)
		return 1;

	secure_hdr->hdrsig = tmp_sig;

	kwb_dump_fuse_cmds(secure_hdr);

	return 0;
}

static void finish_register_set_header_v1(uint8_t **cur, uint8_t **next_ext,
					  struct register_set_hdr_v1 *register_set_hdr,
					  int *datai, uint8_t delay)
{
	int size = sizeof(struct register_set_hdr_v1) + 8 * (*datai) + 4;

	register_set_hdr->headertype = OPT_HDR_V1_REGISTER_TYPE;
	register_set_hdr->headersz_lsb = cpu_to_le16(size & 0xFFFF);
	register_set_hdr->headersz_msb = size >> 16;
	register_set_hdr->data[*datai].last_entry.delay = delay;
	*cur += size;
	**next_ext = 1;
	*next_ext = &register_set_hdr->data[*datai].last_entry.next;
	*datai = 0;
}

static void *image_create_v1(size_t *dataoff, struct image_tool_params *params,
			     uint8_t *ptr, int payloadsz)
{
	struct image_cfg_element *e;
	struct main_hdr_v1 *main_hdr;
	struct register_set_hdr_v1 *register_set_hdr;
	struct secure_hdr_v1 *secure_hdr = NULL;
	size_t headersz;
	uint8_t *image, *cur;
	int hasext = 0;
	uint8_t *next_ext = NULL;
	int cfgi, datai;
	uint8_t delay;

	/*
	 * Calculate the size of the header and the offset of the
	 * payload
	 */
	headersz = image_headersz_v1(&hasext);
	if (headersz == 0)
		return NULL;
	*dataoff = image_headersz_align(headersz, image_get_bootfrom());

	image = malloc(headersz);
	if (!image) {
		fprintf(stderr, "Cannot allocate memory for image\n");
		return NULL;
	}

	memset(image, 0, headersz);

	main_hdr = (struct main_hdr_v1 *)image;
	cur = image;
	cur += sizeof(struct main_hdr_v1);
	next_ext = &main_hdr->ext;

	/* Fill the main header */
	main_hdr->blocksize    =
		cpu_to_le32(payloadsz);
	main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF);
	main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16;
	main_hdr->destaddr     = cpu_to_le32(params->addr);
	main_hdr->execaddr     = cpu_to_le32(params->ep);
	main_hdr->srcaddr      = cpu_to_le32(*dataoff);
	main_hdr->ext          = hasext;
	main_hdr->version      = 1;
	main_hdr->blockid      = image_get_bootfrom();

	e = image_find_option(IMAGE_CFG_NAND_BLKSZ);
	if (e)
		main_hdr->nandblocksize = e->nandblksz / (64 * 1024);
	e = image_find_option(IMAGE_CFG_NAND_PAGESZ);
	if (e)
		main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz);
	e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION);
	if (e)
		main_hdr->nandbadblklocation = e->nandbadblklocation;
	e = image_find_option(IMAGE_CFG_BAUDRATE);
	if (e)
		main_hdr->options |= baudrate_to_option(e->baudrate);
	e = image_find_option(IMAGE_CFG_UART_PORT);
	if (e)
		main_hdr->options |= (e->uart_port & 3) << 3;
	e = image_find_option(IMAGE_CFG_UART_MPP);
	if (e)
		main_hdr->options |= (e->uart_mpp & 7) << 5;
	e = image_find_option(IMAGE_CFG_DEBUG);
	if (e)
		main_hdr->flags = e->debug ? 0x1 : 0;

	/* For SATA srcaddr is specified in number of sectors. */
	if (main_hdr->blockid == IBR_HDR_SATA_ID) {
		params->bl_len = image_get_satablksz();
		main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len);
	}

	/* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */
	if (main_hdr->blockid == IBR_HDR_PEX_ID)
		main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF);

	if (params->xflag) {
		if (!image_fill_xip_header(main_hdr, params)) {
			free(image);
			return NULL;
		}
		*dataoff = le32_to_cpu(main_hdr->srcaddr);
	}

	if (image_get_csk_index() >= 0) {
		/*
		 * only reserve the space here; we fill the header later since
		 * we need the header to be complete to compute the signatures
		 */
		secure_hdr = (struct secure_hdr_v1 *)cur;
		cur += sizeof(struct secure_hdr_v1);
		*next_ext = 1;
		next_ext = &secure_hdr->next;
	}

	datai = 0;
	for (cfgi = 0; cfgi < cfgn; cfgi++) {
		e = &image_cfg[cfgi];
		if (e->type != IMAGE_CFG_DATA &&
		    e->type != IMAGE_CFG_DATA_DELAY &&
		    e->type != IMAGE_CFG_BINARY)
			continue;

		if (datai == 0)
			register_set_hdr = (struct register_set_hdr_v1 *)cur;

		/* If delay is not specified, use the smallest possible value. */
		if (e->type == IMAGE_CFG_DATA_DELAY)
			delay = e->regdata_delay;
		else
			delay = REGISTER_SET_HDR_OPT_DELAY_MS(0);

		/*
		 * DATA_DELAY command is the last entry in the register set
		 * header and BINARY command inserts new binary header.
		 * Therefore BINARY command requires to finish register set
		 * header if some DATA command was specified. And DATA_DELAY
		 * command automatically finish register set header even when
		 * there was no DATA command.
		 */
		if (e->type == IMAGE_CFG_DATA_DELAY ||
		    (e->type == IMAGE_CFG_BINARY && datai != 0))
			finish_register_set_header_v1(&cur, &next_ext, register_set_hdr,
						      &datai, delay);

		if (e->type == IMAGE_CFG_DATA) {
			register_set_hdr->data[datai].entry.address =
				cpu_to_le32(e->regdata.raddr);
			register_set_hdr->data[datai].entry.value =
				cpu_to_le32(e->regdata.rdata);
			datai++;
		}

		if (e->type == IMAGE_CFG_BINARY) {
			if (add_binary_header_v1(&cur, &next_ext, e, main_hdr))
				return NULL;
		}
	}
	if (datai != 0) {
		/* Set delay to the smallest possible value. */
		delay = REGISTER_SET_HDR_OPT_DELAY_MS(0);
		finish_register_set_header_v1(&cur, &next_ext, register_set_hdr,
					      &datai, delay);
	}

	if (secure_hdr && add_secure_header_v1(params, ptr + *dataoff, payloadsz,
					       image, headersz, secure_hdr))
		return NULL;

	/* Calculate and set the header checksum */
	main_hdr->checksum = image_checksum8(main_hdr, headersz);

	return image;
}

static int recognize_keyword(char *keyword)
{
	int kw_id;

	for (kw_id = 1; kw_id < IMAGE_CFG_COUNT; ++kw_id)
		if (!strcmp(keyword, id_strs[kw_id]))
			return kw_id;

	return 0;
}

static int image_create_config_parse_oneline(char *line,
					     struct image_cfg_element *el)
{
	char *keyword, *saveptr, *value1, *value2;
	char delimiters[] = " \t";
	int keyword_id, ret, argi;
	char *unknown_msg = "Ignoring unknown line '%s'\n";

	keyword = strtok_r(line, delimiters, &saveptr);
	keyword_id = recognize_keyword(keyword);

	if (!keyword_id) {
		fprintf(stderr, unknown_msg, line);
		return 0;
	}

	el->type = keyword_id;

	value1 = strtok_r(NULL, delimiters, &saveptr);

	if (!value1) {
		fprintf(stderr, "Parameter missing in line '%s'\n", line);
		return -1;
	}

	switch (keyword_id) {
	case IMAGE_CFG_VERSION:
		el->version = atoi(value1);
		break;
	case IMAGE_CFG_CPU:
		if (strcmp(value1, "FEROCEON") == 0)
			el->cpu_sheeva = 0;
		else if (strcmp(value1, "SHEEVA") == 0)
			el->cpu_sheeva = 1;
		else if (strcmp(value1, "A9") == 0)
			el->cpu_sheeva = 0;
		else {
			fprintf(stderr, "Invalid CPU %s\n", value1);
			return -1;
		}
		break;
	case IMAGE_CFG_BOOT_FROM:
		ret = image_boot_mode_id(value1);

		if (ret < 0) {
			fprintf(stderr, "Invalid boot media '%s'\n", value1);
			return -1;
		}
		el->bootfrom = ret;
		break;
	case IMAGE_CFG_NAND_BLKSZ:
		el->nandblksz = strtoul(value1, NULL, 16);
		break;
	case IMAGE_CFG_NAND_BADBLK_LOCATION:
		el->nandbadblklocation = strtoul(value1, NULL, 16);
		break;
	case IMAGE_CFG_NAND_ECC_MODE:
		ret = image_nand_ecc_mode_id(value1);

		if (ret < 0) {
			fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value1);
			return -1;
		}
		el->nandeccmode = ret;
		break;
	case IMAGE_CFG_NAND_PAGESZ:
		el->nandpagesz = strtoul(value1, NULL, 16);
		break;
	case IMAGE_CFG_SATA_BLKSZ:
		el->satablksz = strtoul(value1, NULL, 0);
		if (el->satablksz & (el->satablksz-1)) {
			fprintf(stderr, "Invalid SATA block size '%s'\n", value1);
			return -1;
		}
		break;
	case IMAGE_CFG_BINARY:
		argi = 0;

		el->binary.file = strdup(value1);
		while (1) {
			char *value = strtok_r(NULL, delimiters, &saveptr);
			char *endptr;

			if (!value)
				break;

			if (!strcmp(value, "LOAD_ADDRESS")) {
				value = strtok_r(NULL, delimiters, &saveptr);
				if (!value) {
					fprintf(stderr,
						"Missing address argument for BINARY LOAD_ADDRESS\n");
					return -1;
				}
				el->binary.loadaddr = strtoul(value, &endptr, 16);
				if (*endptr) {
					fprintf(stderr,
						"Invalid argument '%s' for BINARY LOAD_ADDRESS\n",
						value);
					return -1;
				}
				value = strtok_r(NULL, delimiters, &saveptr);
				if (value) {
					fprintf(stderr,
						"Unexpected argument '%s' after BINARY LOAD_ADDRESS\n",
						value);
					return -1;
				}
				break;
			}

			el->binary.args[argi] = strtoul(value, &endptr, 16);
			if (*endptr) {
				fprintf(stderr, "Invalid argument '%s' for BINARY\n", value);
				return -1;
			}
			argi++;
			if (argi >= BINARY_MAX_ARGS) {
				fprintf(stderr,
					"Too many arguments for BINARY\n");
				return -1;
			}
		}
		el->binary.nargs = argi;
		break;
	case IMAGE_CFG_DATA:
		value2 = strtok_r(NULL, delimiters, &saveptr);

		if (!value1 || !value2) {
			fprintf(stderr,
				"Invalid number of arguments for DATA\n");
			return -1;
		}

		el->regdata.raddr = strtoul(value1, NULL, 16);
		el->regdata.rdata = strtoul(value2, NULL, 16);
		break;
	case IMAGE_CFG_DATA_DELAY:
		if (!strcmp(value1, "SDRAM_SETUP"))
			el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP;
		else
			el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_MS(strtoul(value1, NULL, 10));
		if (el->regdata_delay > 255) {
			fprintf(stderr, "Maximal DATA_DELAY is 255\n");
			return -1;
		}
		break;
	case IMAGE_CFG_BAUDRATE:
		el->baudrate = strtoul(value1, NULL, 10);
		break;
	case IMAGE_CFG_UART_PORT:
		el->uart_port = strtoul(value1, NULL, 16);
		break;
	case IMAGE_CFG_UART_MPP:
		el->uart_mpp = strtoul(value1, NULL, 16);
		break;
	case IMAGE_CFG_DEBUG:
		el->debug = strtoul(value1, NULL, 10);
		break;
	case IMAGE_CFG_KAK:
		el->key_name = strdup(value1);
		break;
	case IMAGE_CFG_CSK:
		el->key_name = strdup(value1);
		break;
	case IMAGE_CFG_CSK_INDEX:
		el->csk_idx = strtol(value1, NULL, 0);
		break;
	case IMAGE_CFG_JTAG_DELAY:
		el->jtag_delay = strtoul(value1, NULL, 0);
		break;
	case IMAGE_CFG_BOX_ID:
		el->boxid = strtoul(value1, NULL, 0);
		break;
	case IMAGE_CFG_FLASH_ID:
		el->flashid = strtoul(value1, NULL, 0);
		break;
	case IMAGE_CFG_SEC_SPECIALIZED_IMG:
		el->sec_specialized_img = true;
		break;
	case IMAGE_CFG_SEC_COMMON_IMG:
		el->sec_specialized_img = false;
		break;
	case IMAGE_CFG_SEC_BOOT_DEV:
		el->sec_boot_dev = strtoul(value1, NULL, 0);
		break;
	case IMAGE_CFG_SEC_FUSE_DUMP:
		el->name = strdup(value1);
		break;
	default:
		fprintf(stderr, unknown_msg, line);
	}

	return 0;
}

/*
 * Parse the configuration file 'fcfg' into the array of configuration
 * elements 'image_cfg', and return the number of configuration
 * elements in 'cfgn'.
 */
static int image_create_config_parse(FILE *fcfg)
{
	int ret;
	int cfgi = 0;

	/* Parse the configuration file */
	while (!feof(fcfg)) {
		char *line;
		char buf[256];

		/* Read the current line */
		memset(buf, 0, sizeof(buf));
		line = fgets(buf, sizeof(buf), fcfg);
		if (!line)
			break;

		/* Ignore useless lines */
		if (line[0] == '\n' || line[0] == '#')
			continue;

		/* Strip final newline */
		if (line[strlen(line) - 1] == '\n')
			line[strlen(line) - 1] = 0;

		/* Parse the current line */
		ret = image_create_config_parse_oneline(line,
							&image_cfg[cfgi]);
		if (ret)
			return ret;

		cfgi++;

		if (cfgi >= IMAGE_CFG_ELEMENT_MAX) {
			fprintf(stderr,
				"Too many configuration elements in .cfg file\n");
			return -1;
		}
	}

	cfgn = cfgi;
	return 0;
}

static int image_get_version(void)
{
	struct image_cfg_element *e;

	e = image_find_option(IMAGE_CFG_VERSION);
	if (!e)
		return -1;

	return e->version;
}

static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd,
				struct image_tool_params *params)
{
	FILE *fcfg;
	void *image = NULL;
	int version;
	size_t dataoff = 0;
	size_t datasz;
	uint32_t checksum;
	struct stat s;
	int ret;

	params->bl_len = 1;

	/*
	 * Do not use sbuf->st_size as it contains size with padding.
	 * We need original image data size, so stat original file.
	 */
	if (params->skipcpy) {
		s.st_size = 0;
	} else if (stat(params->datafile, &s)) {
		fprintf(stderr, "Could not stat data file %s: %s\n",
			params->datafile, strerror(errno));
		exit(EXIT_FAILURE);
	}
	datasz = ALIGN(s.st_size, 4);

	fcfg = fopen(params->imagename, "r");
	if (!fcfg) {
		fprintf(stderr, "Could not open input file %s\n",
			params->imagename);
		exit(EXIT_FAILURE);
	}

	image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
			   sizeof(struct image_cfg_element));
	if (!image_cfg) {
		fprintf(stderr, "Cannot allocate memory\n");
		fclose(fcfg);
		exit(EXIT_FAILURE);
	}

	memset(image_cfg, 0,
	       IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
	rewind(fcfg);

	ret = image_create_config_parse(fcfg);
	fclose(fcfg);
	if (ret) {
		free(image_cfg);
		exit(EXIT_FAILURE);
	}

	version = image_get_version();
	switch (version) {
		/*
		 * Fallback to version 0 if no version is provided in the
		 * cfg file
		 */
	case -1:
	case 0:
		image = image_create_v0(&dataoff, params, datasz + 4);
		break;

	case 1:
		image = image_create_v1(&dataoff, params, ptr, datasz + 4);
		break;

	default:
		fprintf(stderr, "Unsupported version %d\n", version);
		free(image_cfg);
		exit(EXIT_FAILURE);
	}

	if (!image) {
		fprintf(stderr, "Could not create image\n");
		free(image_cfg);
		exit(EXIT_FAILURE);
	}

	free(image_cfg);

	/* Build and add image data checksum */
	checksum = cpu_to_le32(image_checksum32((uint8_t *)ptr + dataoff,
						datasz));
	memcpy((uint8_t *)ptr + dataoff + datasz, &checksum, sizeof(uint32_t));

	/* Finally copy the header into the image area */
	memcpy(ptr, image, kwbheader_size(image));

	free(image);
}

static void kwbimage_print_header(const void *ptr, struct image_tool_params *params)
{
	struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr;
	struct bin_hdr_v0 *bhdr;
	struct opt_hdr_v1 *ohdr;

	printf("Image Type:   MVEBU Boot from %s Image\n",
	       image_boot_mode_name(mhdr->blockid));
	printf("Image version:%d\n", kwbimage_version(ptr));

	for_each_opt_hdr_v1 (ohdr, mhdr) {
		if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) {
			printf("BIN Img Size: ");
			genimg_print_size(opt_hdr_v1_size(ohdr) - 12 -
					  4 * ohdr->data[0]);
			printf("BIN Img Offs: ");
			genimg_print_size(((uint8_t *)ohdr - (uint8_t *)mhdr) +
					  8 + 4 * ohdr->data[0]);
		}
	}

	for_each_bin_hdr_v0(bhdr, mhdr) {
		printf("BIN Img Size: ");
		genimg_print_size(le32_to_cpu(bhdr->size));
		printf("BIN Img Addr: %08x\n", le32_to_cpu(bhdr->destaddr));
		printf("BIN Img Entr: %08x\n", le32_to_cpu(bhdr->execaddr));
	}

	printf("Data Size:    ");
	genimg_print_size(le32_to_cpu(mhdr->blocksize) - sizeof(uint32_t));
	printf("Data Offset:  ");
	if (mhdr->blockid == IBR_HDR_SATA_ID)
		printf("%u Sector%s (LBA) = ", le32_to_cpu(mhdr->srcaddr),
		       le32_to_cpu(mhdr->srcaddr) != 1 ? "s" : "");
	genimg_print_size(le32_to_cpu(mhdr->srcaddr) * params->bl_len);
	if (mhdr->blockid == IBR_HDR_SATA_ID)
		printf("Sector Size:  %u Bytes\n", params->bl_len);
	if (mhdr->blockid == IBR_HDR_SPI_ID && le32_to_cpu(mhdr->destaddr) == 0xFFFFFFFF) {
		printf("Load Address: XIP\n");
		printf("Execute Offs: %08x\n", le32_to_cpu(mhdr->execaddr));
	} else {
		printf("Load Address: %08x\n", le32_to_cpu(mhdr->destaddr));
		printf("Entry Point:  %08x\n", le32_to_cpu(mhdr->execaddr));
	}
}

static int kwbimage_check_image_types(uint8_t type)
{
	if (type == IH_TYPE_KWBIMAGE)
		return EXIT_SUCCESS;

	return EXIT_FAILURE;
}

static int kwbimage_verify_header(unsigned char *ptr, int image_size,
				  struct image_tool_params *params)
{
	size_t header_size = kwbheader_size(ptr);
	uint8_t blockid;
	uint32_t offset;
	uint32_t size;
	uint8_t csum;
	int blksz;

	if (header_size > 192*1024)
		return -FDT_ERR_BADSTRUCTURE;

	if (header_size > image_size)
		return -FDT_ERR_BADSTRUCTURE;

	if (!main_hdr_checksum_ok(ptr))
		return -FDT_ERR_BADSTRUCTURE;

	/* Only version 0 extended header has checksum */
	if (kwbimage_version(ptr) == 0) {
		struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr;
		struct ext_hdr_v0 *ext_hdr;
		struct bin_hdr_v0 *bhdr;

		for_each_ext_hdr_v0(ext_hdr, ptr) {
			csum = image_checksum8(ext_hdr, sizeof(*ext_hdr) - 1);
			if (csum != ext_hdr->checksum)
				return -FDT_ERR_BADSTRUCTURE;
		}

		for_each_bin_hdr_v0(bhdr, ptr) {
			csum = image_checksum8(bhdr, (uint8_t *)&bhdr->checksum - (uint8_t *)bhdr - 1);
			if (csum != bhdr->checksum)
				return -FDT_ERR_BADSTRUCTURE;

			if (bhdr->offset > sizeof(*bhdr) || bhdr->offset % 4 != 0)
				return -FDT_ERR_BADSTRUCTURE;

			if (bhdr->offset + bhdr->size + 4 > sizeof(*bhdr) || bhdr->size % 4 != 0)
				return -FDT_ERR_BADSTRUCTURE;

			if (image_checksum32((uint8_t *)bhdr + bhdr->offset, bhdr->size) !=
			    *(uint32_t *)((uint8_t *)bhdr + bhdr->offset + bhdr->size))
				return -FDT_ERR_BADSTRUCTURE;
		}

		blockid = mhdr->blockid;
		offset = le32_to_cpu(mhdr->srcaddr);
		size = le32_to_cpu(mhdr->blocksize);
	} else if (kwbimage_version(ptr) == 1) {
		struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
		const uint8_t *mhdr_end;
		struct opt_hdr_v1 *ohdr;

		mhdr_end = (uint8_t *)mhdr + header_size;
		for_each_opt_hdr_v1 (ohdr, ptr)
			if (!opt_hdr_v1_valid_size(ohdr, mhdr_end))
				return -FDT_ERR_BADSTRUCTURE;

		blockid = mhdr->blockid;
		offset = le32_to_cpu(mhdr->srcaddr);
		size = le32_to_cpu(mhdr->blocksize);
	} else {
		return -FDT_ERR_BADSTRUCTURE;
	}

	if (size < 4 || size % 4 != 0)
		return -FDT_ERR_BADSTRUCTURE;

	/*
	 * For SATA srcaddr is specified in number of sectors.
	 * Try all possible sector sizes which are power of two,
	 * at least 512 bytes and up to the 32 kB.
	 */
	if (blockid == IBR_HDR_SATA_ID) {
		for (blksz = 512; blksz < 0x10000; blksz *= 2) {
			if (offset * blksz > image_size || offset * blksz + size > image_size)
				break;

			if (image_checksum32(ptr + offset * blksz, size - 4) ==
			    *(uint32_t *)(ptr + offset * blksz + size - 4)) {
				params->bl_len = blksz;
				return 0;
			}
		}

		return -FDT_ERR_BADSTRUCTURE;
	}

	/*
	 * For PCIe srcaddr is always set to 0xFFFFFFFF.
	 * This expects that data starts after all headers.
	 */
	if (blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF)
		offset = header_size;

	if (offset % 4 != 0 || offset > image_size || offset + size > image_size)
		return -FDT_ERR_BADSTRUCTURE;

	if (image_checksum32(ptr + offset, size - 4) !=
	    *(uint32_t *)(ptr + offset + size - 4))
		return -FDT_ERR_BADSTRUCTURE;

	params->bl_len = 1;
	return 0;
}

static int kwbimage_generate(struct image_tool_params *params,
			     struct image_type_params *tparams)
{
	FILE *fcfg;
	struct stat s;
	int alloc_len;
	int bootfrom;
	int version;
	void *hdr;
	int ret;
	int align, size;
	unsigned int satablksz;

	fcfg = fopen(params->imagename, "r");
	if (!fcfg) {
		fprintf(stderr, "Could not open input file %s\n",
			params->imagename);
		exit(EXIT_FAILURE);
	}

	if (params->skipcpy) {
		s.st_size = 0;
	} else if (stat(params->datafile, &s)) {
		fprintf(stderr, "Could not stat data file %s: %s\n",
			params->datafile, strerror(errno));
		exit(EXIT_FAILURE);
	}

	image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
			   sizeof(struct image_cfg_element));
	if (!image_cfg) {
		fprintf(stderr, "Cannot allocate memory\n");
		fclose(fcfg);
		exit(EXIT_FAILURE);
	}

	memset(image_cfg, 0,
	       IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
	rewind(fcfg);

	ret = image_create_config_parse(fcfg);
	fclose(fcfg);
	if (ret) {
		free(image_cfg);
		exit(EXIT_FAILURE);
	}

	bootfrom = image_get_bootfrom();
	version = image_get_version();
	satablksz = image_get_satablksz();
	switch (version) {
		/*
		 * Fallback to version 0 if no version is provided in the
		 * cfg file
		 */
	case -1:
	case 0:
		alloc_len = image_headersz_v0(NULL);
		break;

	case 1:
		alloc_len = image_headersz_v1(NULL);
		if (!alloc_len) {
			free(image_cfg);
			exit(EXIT_FAILURE);
		}
		if (alloc_len > 192*1024) {
			fprintf(stderr, "Header is too big (%u bytes), maximal kwbimage header size is %u bytes\n", alloc_len, 192*1024);
			free(image_cfg);
			exit(EXIT_FAILURE);
		}
		break;

	default:
		fprintf(stderr, "Unsupported version %d\n", version);
		free(image_cfg);
		exit(EXIT_FAILURE);
	}

	alloc_len = image_headersz_align(alloc_len, image_get_bootfrom());

	free(image_cfg);

	hdr = malloc(alloc_len);
	if (!hdr) {
		fprintf(stderr, "%s: malloc return failure: %s\n",
			params->cmdname, strerror(errno));
		exit(EXIT_FAILURE);
	}

	memset(hdr, 0, alloc_len);
	tparams->header_size = alloc_len;
	tparams->hdr = hdr;

	/*
	 * Final SATA images must be aligned to disk block size.
	 * Final SDIO images must be aligned to 512 bytes.
	 * Final SPI and NAND images must be aligned to 256 bytes.
	 * Final UART image must be aligned to 128 bytes.
	 */
	if (bootfrom == IBR_HDR_SATA_ID)
		align = satablksz;
	else if (bootfrom == IBR_HDR_SDIO_ID)
		align = 512;
	else if (bootfrom == IBR_HDR_SPI_ID || bootfrom == IBR_HDR_NAND_ID)
		align = 256;
	else if (bootfrom == IBR_HDR_UART_ID)
		align = 128;
	else
		align = 4;

	/*
	 * The resulting image needs to be 4-byte aligned. At least
	 * the Marvell hdrparser tool complains if its unaligned.
	 * After the image data is stored 4-byte checksum.
	 */
	size = 4 + (align - (alloc_len + s.st_size + 4) % align) % align;

	/*
	 * This function should return aligned size of the datafile.
	 * When skipcpy is set (datafile is skipped) then return value of this
	 * function is ignored, so we have to put required kwbimage aligning
	 * into the preallocated header size.
	 */
	if (params->skipcpy) {
		tparams->header_size += size;
		return 0;
	} else {
		return size;
	}
}

static int kwbimage_generate_config(void *ptr, struct image_tool_params *params)
{
	struct main_hdr_v0 *mhdr0 = (struct main_hdr_v0 *)ptr;
	struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
	size_t header_size = kwbheader_size(ptr);
	struct register_set_hdr_v1 *regset_hdr;
	struct ext_hdr_v0_reg *regdata;
	struct ext_hdr_v0 *ehdr0;
	struct bin_hdr_v0 *bhdr0;
	struct opt_hdr_v1 *ohdr;
	int regset_count;
	int params_count;
	unsigned offset;
	int is_v0_ext;
	int cur_idx;
	int version;
	FILE *f;
	int i;

	f = fopen(params->outfile, "w");
	if (!f) {
		fprintf(stderr, "Can't open \"%s\": %s\n", params->outfile, strerror(errno));
		return -1;
	}

	version = kwbimage_version(ptr);

	is_v0_ext = 0;
	if (version == 0) {
		if (mhdr0->ext > 1 || mhdr0->bin ||
		    ((ehdr0 = ext_hdr_v0_first(ptr)) &&
		     (ehdr0->match_addr || ehdr0->match_mask || ehdr0->match_value)))
			is_v0_ext = 1;
	}

	if (version != 0)
		fprintf(f, "VERSION %d\n", version);

	fprintf(f, "BOOT_FROM %s\n", image_boot_mode_name(mhdr->blockid) ?: "<unknown>");

	if (version == 0 && mhdr->blockid == IBR_HDR_NAND_ID)
		fprintf(f, "NAND_ECC_MODE %s\n", image_nand_ecc_mode_name(mhdr0->nandeccmode));

	if (mhdr->blockid == IBR_HDR_NAND_ID)
		fprintf(f, "NAND_PAGE_SIZE 0x%x\n", (unsigned)le16_to_cpu(mhdr->nandpagesize));

	if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext || mhdr->nandblocksize != 0)) {
		if (mhdr->nandblocksize != 0) /* block size explicitly set in 64 kB unit */
			fprintf(f, "NAND_BLKSZ 0x%x\n", (unsigned)mhdr->nandblocksize * 64*1024);
		else if (le16_to_cpu(mhdr->nandpagesize) > 512)
			fprintf(f, "NAND_BLKSZ 0x10000\n"); /* large page NAND flash = 64 kB block size */
		else
			fprintf(f, "NAND_BLKSZ 0x4000\n"); /* small page NAND flash = 16 kB block size */
	}

	if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext))
		fprintf(f, "NAND_BADBLK_LOCATION 0x%x\n", (unsigned)mhdr->nandbadblklocation);

	if (version == 0 && mhdr->blockid == IBR_HDR_SATA_ID)
		fprintf(f, "SATA_PIO_MODE %u\n", (unsigned)mhdr0->satapiomode);

	if (mhdr->blockid == IBR_HDR_SATA_ID)
		fprintf(f, "SATA_BLKSZ %u\n", params->bl_len);

	/*
	 * Addresses and sizes which are specified by mkimage command line
	 * arguments and not in kwbimage config file
	 */

	if (version != 0)
		fprintf(f, "#HEADER_SIZE 0x%x\n",
			((unsigned)mhdr->headersz_msb << 8) | le16_to_cpu(mhdr->headersz_lsb));

	fprintf(f, "#SRC_ADDRESS 0x%x\n", le32_to_cpu(mhdr->srcaddr));
	fprintf(f, "#BLOCK_SIZE 0x%x\n", le32_to_cpu(mhdr->blocksize));
	fprintf(f, "#DEST_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->destaddr));
	fprintf(f, "#EXEC_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->execaddr));

	if (version != 0) {
		if (options_to_baudrate(mhdr->options))
			fprintf(f, "BAUDRATE %u\n", options_to_baudrate(mhdr->options));
		if (options_to_baudrate(mhdr->options) ||
		    ((mhdr->options >> 3) & 0x3) || ((mhdr->options >> 5) & 0x7)) {
			fprintf(f, "UART_PORT %u\n", (unsigned)((mhdr->options >> 3) & 0x3));
			fprintf(f, "UART_MPP 0x%x\n", (unsigned)((mhdr->options >> 5) & 0x7));
		}
		if (mhdr->flags & 0x1)
			fprintf(f, "DEBUG 1\n");
	}

	cur_idx = 1;
	for_each_opt_hdr_v1(ohdr, ptr) {
		if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE) {
			fprintf(f, "#SECURE_HEADER\n");
		} else if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) {
			fprintf(f, "BINARY binary%d.bin", cur_idx);
			for (i = 0; i < ohdr->data[0]; i++)
				fprintf(f, " 0x%x", le32_to_cpu(((uint32_t *)ohdr->data)[i + 1]));
			offset = (unsigned)((uint8_t *)ohdr - (uint8_t *)mhdr) + 8 + 4 * ohdr->data[0];
			fprintf(f, " LOAD_ADDRESS 0x%08x\n", 0x40000000 + offset);
			fprintf(f, " # for CPU SHEEVA: LOAD_ADDRESS 0x%08x\n", 0x40004000 + offset);
			cur_idx++;
		} else if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) {
			regset_hdr = (struct register_set_hdr_v1 *)ohdr;
			if (opt_hdr_v1_size(ohdr) > sizeof(*ohdr))
				regset_count = (opt_hdr_v1_size(ohdr) - sizeof(*ohdr)) /
					       sizeof(regset_hdr->data[0].entry);
			else
				regset_count = 0;
			for (i = 0; i < regset_count; i++)
				fprintf(f, "DATA 0x%08x 0x%08x\n",
					le32_to_cpu(regset_hdr->data[i].entry.address),
					le32_to_cpu(regset_hdr->data[i].entry.value));
			if (regset_count > 0) {
				if (regset_hdr->data[regset_count-1].last_entry.delay !=
				    REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP)
					fprintf(f, "DATA_DELAY %u\n",
						(unsigned)regset_hdr->data[regset_count-1].last_entry.delay);
				else
					fprintf(f, "DATA_DELAY SDRAM_SETUP\n");
			}
		}
	}

	if (version == 0 && !is_v0_ext && le16_to_cpu(mhdr0->ddrinitdelay))
		fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)le16_to_cpu(mhdr0->ddrinitdelay));

	for_each_ext_hdr_v0(ehdr0, ptr) {
		if (is_v0_ext) {
			fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n",
				le32_to_cpu(ehdr0->match_addr),
				le32_to_cpu(ehdr0->match_mask),
				le32_to_cpu(ehdr0->match_value));
			if (ehdr0->rsvd1[0] || ehdr0->rsvd1[1] || ehdr0->rsvd1[2] ||
			    ehdr0->rsvd1[3] || ehdr0->rsvd1[4] || ehdr0->rsvd1[5] ||
			    ehdr0->rsvd1[6] || ehdr0->rsvd1[7])
				fprintf(f, "#DDR_RSVD1 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
					ehdr0->rsvd1[0], ehdr0->rsvd1[1], ehdr0->rsvd1[2],
					ehdr0->rsvd1[3], ehdr0->rsvd1[4], ehdr0->rsvd1[5],
					ehdr0->rsvd1[6], ehdr0->rsvd1[7]);
			if (ehdr0->rsvd2[0] || ehdr0->rsvd2[1] || ehdr0->rsvd2[2] ||
			    ehdr0->rsvd2[3] || ehdr0->rsvd2[4] || ehdr0->rsvd2[5] ||
			    ehdr0->rsvd2[6])
				fprintf(f, "#DDR_RSVD2 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
					ehdr0->rsvd2[0], ehdr0->rsvd2[1], ehdr0->rsvd2[2],
					ehdr0->rsvd2[3], ehdr0->rsvd2[4], ehdr0->rsvd2[5],
					ehdr0->rsvd2[6]);
			if (ehdr0->ddrwritetype)
				fprintf(f, "DDR_WRITE_TYPE %u\n", (unsigned)ehdr0->ddrwritetype);
			if (ehdr0->ddrresetmpp)
				fprintf(f, "DDR_RESET_MPP 0x%x\n", (unsigned)ehdr0->ddrresetmpp);
			if (ehdr0->ddrclkenmpp)
				fprintf(f, "DDR_CLKEN_MPP 0x%x\n", (unsigned)ehdr0->ddrclkenmpp);
			if (ehdr0->ddrinitdelay)
				fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)ehdr0->ddrinitdelay);
		}

		if (ehdr0->offset) {
			for (regdata = (struct ext_hdr_v0_reg *)((uint8_t *)ptr + ehdr0->offset);
			     (uint8_t *)regdata < (uint8_t *)ptr + header_size &&
			     (regdata->raddr || regdata->rdata);
			     regdata++)
				fprintf(f, "DATA 0x%08x 0x%08x\n", le32_to_cpu(regdata->raddr),
					le32_to_cpu(regdata->rdata));
			if ((uint8_t *)regdata != (uint8_t *)ptr + ehdr0->offset)
				fprintf(f, "DATA 0x0 0x0\n");
		}

		if (le32_to_cpu(ehdr0->enddelay))
			fprintf(f, "DATA_DELAY %u\n", le32_to_cpu(ehdr0->enddelay));
		else if (is_v0_ext)
			fprintf(f, "DATA_DELAY SDRAM_SETUP\n");
	}

	cur_idx = 1;
	for_each_bin_hdr_v0(bhdr0, ptr) {
		fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n",
			le32_to_cpu(bhdr0->match_addr),
			le32_to_cpu(bhdr0->match_mask),
			le32_to_cpu(bhdr0->match_value));

		fprintf(f, "BINARY binary%d.bin", cur_idx);
		params_count = fls4(bhdr0->params_flags & 0xF);
		for (i = 0; i < params_count; i++)
			fprintf(f, " 0x%x", (bhdr0->params[i] & (1 << i)) ? bhdr0->params[i] : 0);
		fprintf(f, " LOAD_ADDRESS 0x%08x", le32_to_cpu(bhdr0->destaddr));
		fprintf(f, " EXEC_ADDRESS 0x%08x", le32_to_cpu(bhdr0->execaddr));
		fprintf(f, "\n");

		fprintf(f, "#BINARY_OFFSET 0x%x\n", le32_to_cpu(bhdr0->offset));
		fprintf(f, "#BINARY_SIZE 0x%x\n", le32_to_cpu(bhdr0->size));

		if (bhdr0->rsvd1)
			fprintf(f, "#BINARY_RSVD1 0x%x\n", (unsigned)bhdr0->rsvd1);
		if (bhdr0->rsvd2)
			fprintf(f, "#BINARY_RSVD2 0x%x\n", (unsigned)bhdr0->rsvd2);

		cur_idx++;
	}

	/* Undocumented reserved fields */

	if (version == 0 && (mhdr0->rsvd1[0] || mhdr0->rsvd1[1] || mhdr0->rsvd1[2]))
		fprintf(f, "#RSVD1 0x%x 0x%x 0x%x\n", (unsigned)mhdr0->rsvd1[0],
			(unsigned)mhdr0->rsvd1[1], (unsigned)mhdr0->rsvd1[2]);

	if (version == 0 && le16_to_cpu(mhdr0->rsvd2))
		fprintf(f, "#RSVD2 0x%x\n", (unsigned)le16_to_cpu(mhdr0->rsvd2));

	if (version != 0 && mhdr->reserved4)
		fprintf(f, "#RESERVED4 0x%x\n", (unsigned)mhdr->reserved4);

	if (version != 0 && mhdr->reserved5)
		fprintf(f, "#RESERVED5 0x%x\n", (unsigned)le16_to_cpu(mhdr->reserved5));

	fclose(f);

	return 0;
}

static int kwbimage_extract_subimage(void *ptr, struct image_tool_params *params)
{
	struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
	size_t header_size = kwbheader_size(ptr);
	struct bin_hdr_v0 *bhdr;
	struct opt_hdr_v1 *ohdr;
	int idx = params->pflag;
	int cur_idx;
	uint32_t offset;
	ulong image;
	ulong size;

	/* Generate kwbimage config file when '-p -1' is specified */
	if (idx == -1)
		return kwbimage_generate_config(ptr, params);

	image = 0;
	size = 0;

	if (idx == 0) {
		/* Extract data image when -p is not specified or when '-p 0' is specified */
		offset = le32_to_cpu(mhdr->srcaddr);

		if (mhdr->blockid == IBR_HDR_SATA_ID)
			offset *= params->bl_len;

		if (mhdr->blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF)
			offset = header_size;

		image = (ulong)((uint8_t *)ptr + offset);
		size = le32_to_cpu(mhdr->blocksize) - 4;
	} else {
		/* Extract N-th binary header executabe image when other '-p N' is specified */
		cur_idx = 1;
		for_each_opt_hdr_v1(ohdr, ptr) {
			if (ohdr->headertype != OPT_HDR_V1_BINARY_TYPE)
				continue;

			if (idx == cur_idx) {
				image = (ulong)&ohdr->data[4 + 4 * ohdr->data[0]];
				size = opt_hdr_v1_size(ohdr) - 12 - 4 * ohdr->data[0];
				break;
			}

			++cur_idx;
		}
		for_each_bin_hdr_v0(bhdr, ptr) {
			if (idx == cur_idx) {
				image = (ulong)bhdr + bhdr->offset;
				size = bhdr->size;
				break;
			}
			++cur_idx;
		}

		if (!image) {
			fprintf(stderr, "Argument -p %d is invalid\n", idx);
			fprintf(stderr, "Available subimages:\n");
			fprintf(stderr, " -p -1  - kwbimage config file\n");
			fprintf(stderr, " -p 0   - data image\n");
			if (cur_idx - 1 > 0)
				fprintf(stderr, " -p N   - Nth binary header image (totally: %d)\n",
					cur_idx - 1);
			return -1;
		}
	}

	return imagetool_save_subimage(params->outfile, image, size);
}

static int kwbimage_check_params(struct image_tool_params *params)
{
	if (!params->lflag && !params->iflag && !params->pflag &&
	    (!params->imagename || !strlen(params->imagename))) {
		char *msg = "Configuration file for kwbimage creation omitted";

		fprintf(stderr, "Error:%s - %s\n", params->cmdname, msg);
		return 1;
	}

	return (params->dflag && (params->fflag || params->lflag || params->skipcpy)) ||
		(params->fflag) ||
		(params->lflag && (params->dflag || params->fflag));
}

/*
 * kwbimage type parameters definition
 */
U_BOOT_IMAGE_TYPE(
	kwbimage,
	"Marvell MVEBU Boot Image support",
	0,
	NULL,
	kwbimage_check_params,
	kwbimage_verify_header,
	kwbimage_print_header,
	kwbimage_set_header,
	kwbimage_extract_subimage,
	kwbimage_check_image_types,
	NULL,
	kwbimage_generate
);