1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright (C) 2004-2009, 2015 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
* Chao Fu (B44548@freescale.com)
* Haikun Wang (B53464@freescale.com)
*/
#include <asm/global_data.h>
#include <linux/math64.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <spi.h>
#include <malloc.h>
#include <asm/io.h>
#include <fdtdec.h>
#ifndef CONFIG_M68K
#include <asm/arch/clock.h>
#endif
#include <fsl_dspi.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/printk.h>
#include <linux/time.h>
DECLARE_GLOBAL_DATA_PTR;
/* fsl_dspi_plat flags */
#define DSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
/* idle data value */
#define DSPI_IDLE_VAL 0x0
/* max chipselect signals number */
#define FSL_DSPI_MAX_CHIPSELECT 6
/* default SCK frequency, unit: HZ */
#define FSL_DSPI_DEFAULT_SCK_FREQ 10000000
/* tx/rx data wait timeout value, unit: us */
#define DSPI_TXRX_WAIT_TIMEOUT 1000000
/* CTAR register pre-configure value */
#define DSPI_CTAR_DEFAULT_VALUE (DSPI_CTAR_TRSZ(7) | \
DSPI_CTAR_PCSSCK_1CLK | \
DSPI_CTAR_PASC(0) | \
DSPI_CTAR_PDT(0) | \
DSPI_CTAR_CSSCK(0) | \
DSPI_CTAR_ASC(0) | \
DSPI_CTAR_DT(0))
/* CTAR register pre-configure mask */
#define DSPI_CTAR_SET_MODE_MASK (DSPI_CTAR_TRSZ(15) | \
DSPI_CTAR_PCSSCK(3) | \
DSPI_CTAR_PASC(3) | \
DSPI_CTAR_PDT(3) | \
DSPI_CTAR_CSSCK(15) | \
DSPI_CTAR_ASC(15) | \
DSPI_CTAR_DT(15))
/**
* struct fsl_dspi_plat - platform data for Freescale DSPI
*
* @flags: Flags for DSPI DSPI_FLAG_...
* @speed_hz: Default SCK frequency
* @num_chipselect: Number of DSPI chipselect signals
* @regs_addr: Base address of DSPI registers
*/
struct fsl_dspi_plat {
uint flags;
uint speed_hz;
uint num_chipselect;
fdt_addr_t regs_addr;
};
/**
* struct fsl_dspi_priv - private data for Freescale DSPI
*
* @flags: Flags for DSPI DSPI_FLAG_...
* @mode: SPI mode to use for slave device (see SPI mode flags)
* @mcr_val: MCR register configure value
* @bus_clk: DSPI input clk frequency
* @speed_hz: Default SCK frequency
* @charbit: How many bits in every transfer
* @num_chipselect: Number of DSPI chipselect signals
* @ctar_val: CTAR register configure value of per chipselect slave device
* @regs: Point to DSPI register structure for I/O access
*/
struct fsl_dspi_priv {
uint flags;
uint mode;
uint mcr_val;
uint bus_clk;
uint speed_hz;
uint charbit;
uint num_chipselect;
uint ctar_val[FSL_DSPI_MAX_CHIPSELECT];
struct dspi *regs;
};
__weak void cpu_dspi_port_conf(void)
{
}
__weak int cpu_dspi_claim_bus(uint bus, uint cs)
{
return 0;
}
__weak void cpu_dspi_release_bus(uint bus, uint cs)
{
}
static uint dspi_read32(uint flags, uint *addr)
{
return flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ?
in_be32(addr) : in_le32(addr);
}
static void dspi_write32(uint flags, uint *addr, uint val)
{
flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ?
out_be32(addr, val) : out_le32(addr, val);
}
static void dspi_halt(struct fsl_dspi_priv *priv, u8 halt)
{
uint mcr_val;
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
if (halt)
mcr_val |= DSPI_MCR_HALT;
else
mcr_val &= ~DSPI_MCR_HALT;
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
}
static void fsl_dspi_init_mcr(struct fsl_dspi_priv *priv, uint cfg_val)
{
/* halt DSPI module */
dspi_halt(priv, 1);
dspi_write32(priv->flags, &priv->regs->mcr, cfg_val);
/* resume module */
dspi_halt(priv, 0);
priv->mcr_val = cfg_val;
}
static void fsl_dspi_cfg_cs_active_state(struct fsl_dspi_priv *priv,
uint cs, uint state)
{
uint mcr_val;
dspi_halt(priv, 1);
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
if (state & SPI_CS_HIGH)
/* CSx inactive state is low */
mcr_val &= ~DSPI_MCR_PCSIS(cs);
else
/* CSx inactive state is high */
mcr_val |= DSPI_MCR_PCSIS(cs);
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
dspi_halt(priv, 0);
}
static int fsl_dspi_cfg_ctar_mode(struct fsl_dspi_priv *priv,
uint cs, uint mode)
{
uint bus_setup;
bus_setup = dspi_read32(priv->flags, &priv->regs->ctar[0]);
bus_setup &= ~DSPI_CTAR_SET_MODE_MASK;
bus_setup |= priv->ctar_val[cs];
bus_setup &= ~(DSPI_CTAR_CPOL | DSPI_CTAR_CPHA | DSPI_CTAR_LSBFE);
if (mode & SPI_CPOL)
bus_setup |= DSPI_CTAR_CPOL;
if (mode & SPI_CPHA)
bus_setup |= DSPI_CTAR_CPHA;
if (mode & SPI_LSB_FIRST)
bus_setup |= DSPI_CTAR_LSBFE;
dspi_write32(priv->flags, &priv->regs->ctar[0], bus_setup);
priv->charbit =
((dspi_read32(priv->flags, &priv->regs->ctar[0]) &
DSPI_CTAR_TRSZ(15)) == DSPI_CTAR_TRSZ(15)) ? 16 : 8;
return 0;
}
static void fsl_dspi_clr_fifo(struct fsl_dspi_priv *priv)
{
uint mcr_val;
dspi_halt(priv, 1);
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
/* flush RX and TX FIFO */
mcr_val |= (DSPI_MCR_CTXF | DSPI_MCR_CRXF);
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
dspi_halt(priv, 0);
}
static void dspi_tx(struct fsl_dspi_priv *priv, u32 ctrl, u16 data)
{
int timeout = DSPI_TXRX_WAIT_TIMEOUT;
/* wait for empty entries in TXFIFO or timeout */
while (DSPI_SR_TXCTR(dspi_read32(priv->flags, &priv->regs->sr)) >= 4 &&
timeout--)
udelay(1);
if (timeout >= 0)
dspi_write32(priv->flags, &priv->regs->tfr, (ctrl | data));
else
debug("dspi_tx: waiting timeout!\n");
}
static u16 dspi_rx(struct fsl_dspi_priv *priv)
{
int timeout = DSPI_TXRX_WAIT_TIMEOUT;
/* wait for valid entries in RXFIFO or timeout */
while (DSPI_SR_RXCTR(dspi_read32(priv->flags, &priv->regs->sr)) == 0 &&
timeout--)
udelay(1);
if (timeout >= 0)
return (u16)DSPI_RFR_RXDATA(
dspi_read32(priv->flags, &priv->regs->rfr));
else {
debug("dspi_rx: waiting timeout!\n");
return (u16)(~0);
}
}
static int dspi_xfer(struct fsl_dspi_priv *priv, uint cs, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
u16 *spi_rd16 = NULL, *spi_wr16 = NULL;
u8 *spi_rd = NULL, *spi_wr = NULL;
static u32 ctrl;
uint len = bitlen >> 3;
if (priv->charbit == 16) {
bitlen >>= 1;
spi_wr16 = (u16 *)dout;
spi_rd16 = (u16 *)din;
} else {
spi_wr = (u8 *)dout;
spi_rd = (u8 *)din;
}
if ((flags & SPI_XFER_BEGIN) == SPI_XFER_BEGIN)
ctrl |= DSPI_TFR_CONT;
ctrl = ctrl & DSPI_TFR_CONT;
ctrl = ctrl | DSPI_TFR_CTAS(0) | DSPI_TFR_PCS(cs);
if (len > 1) {
int tmp_len = len - 1;
while (tmp_len--) {
if ((dout != NULL) && (din != NULL)) {
if (priv->charbit == 16) {
dspi_tx(priv, ctrl, *spi_wr16++);
*spi_rd16++ = dspi_rx(priv);
}
else {
dspi_tx(priv, ctrl, *spi_wr++);
*spi_rd++ = dspi_rx(priv);
}
}
else if (dout != NULL) {
if (priv->charbit == 16)
dspi_tx(priv, ctrl, *spi_wr16++);
else
dspi_tx(priv, ctrl, *spi_wr++);
dspi_rx(priv);
}
else if (din != NULL) {
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
if (priv->charbit == 16)
*spi_rd16++ = dspi_rx(priv);
else
*spi_rd++ = dspi_rx(priv);
}
}
len = 1; /* remaining byte */
}
if ((flags & SPI_XFER_END) == SPI_XFER_END)
ctrl &= ~DSPI_TFR_CONT;
if (len) {
if ((dout != NULL) && (din != NULL)) {
if (priv->charbit == 16) {
dspi_tx(priv, ctrl, *spi_wr16++);
*spi_rd16++ = dspi_rx(priv);
}
else {
dspi_tx(priv, ctrl, *spi_wr++);
*spi_rd++ = dspi_rx(priv);
}
}
else if (dout != NULL) {
if (priv->charbit == 16)
dspi_tx(priv, ctrl, *spi_wr16);
else
dspi_tx(priv, ctrl, *spi_wr);
dspi_rx(priv);
}
else if (din != NULL) {
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
if (priv->charbit == 16)
*spi_rd16 = dspi_rx(priv);
else
*spi_rd = dspi_rx(priv);
}
} else {
/* dummy read */
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
dspi_rx(priv);
}
return 0;
}
/**
* Calculate the divide value between input clk frequency and expected SCK frequency
* Formula: SCK = (clkrate/pbr) x ((1+dbr)/br)
* Dbr: use default value 0
*
* @pbr: return Baud Rate Prescaler value
* @br: return Baud Rate Scaler value
* @speed_hz: expected SCK frequency
* @clkrate: input clk frequency
*/
static int fsl_dspi_hz_to_spi_baud(int *pbr, int *br,
int speed_hz, uint clkrate)
{
/* Valid baud rate pre-scaler values */
int pbr_tbl[4] = {2, 3, 5, 7};
int brs[16] = {2, 4, 6, 8,
16, 32, 64, 128,
256, 512, 1024, 2048,
4096, 8192, 16384, 32768};
int temp, i = 0, j = 0;
temp = clkrate / speed_hz;
for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++)
for (j = 0; j < ARRAY_SIZE(brs); j++) {
if (pbr_tbl[i] * brs[j] >= temp) {
*pbr = i;
*br = j;
return 0;
}
}
debug("Can not find valid baud rate,speed_hz is %d, ", speed_hz);
debug("clkrate is %d, we use the max prescaler value.\n", clkrate);
*pbr = ARRAY_SIZE(pbr_tbl) - 1;
*br = ARRAY_SIZE(brs) - 1;
return -EINVAL;
}
static void ns_delay_scale(unsigned char *psc, unsigned char *sc, int delay_ns,
unsigned long clkrate)
{
int scale_needed, scale, minscale = INT_MAX;
int pscale_tbl[4] = {1, 3, 5, 7};
u32 remainder;
int i, j;
scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
&remainder);
if (remainder)
scale_needed++;
for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
for (j = 0; j <= DSPI_CTAR_SCALE_BITS; j++) {
scale = pscale_tbl[i] * (2 << j);
if (scale >= scale_needed) {
if (scale < minscale) {
minscale = scale;
*psc = i;
*sc = j;
}
break;
}
}
if (minscale == INT_MAX) {
pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
delay_ns, clkrate);
*psc = ARRAY_SIZE(pscale_tbl) - 1;
*sc = DSPI_CTAR_SCALE_BITS;
}
}
static int fsl_dspi_cfg_speed(struct fsl_dspi_priv *priv, uint speed)
{
int ret;
uint bus_setup;
int best_i, best_j, bus_clk;
bus_clk = priv->bus_clk;
debug("DSPI set_speed: expected SCK speed %u, bus_clk %u.\n",
speed, bus_clk);
bus_setup = dspi_read32(priv->flags, &priv->regs->ctar[0]);
bus_setup &= ~(DSPI_CTAR_DBR | DSPI_CTAR_PBR(0x3) | DSPI_CTAR_BR(0xf));
ret = fsl_dspi_hz_to_spi_baud(&best_i, &best_j, speed, bus_clk);
if (ret) {
speed = priv->speed_hz;
debug("DSPI set_speed use default SCK rate %u.\n", speed);
fsl_dspi_hz_to_spi_baud(&best_i, &best_j, speed, bus_clk);
}
bus_setup |= (DSPI_CTAR_PBR(best_i) | DSPI_CTAR_BR(best_j));
dspi_write32(priv->flags, &priv->regs->ctar[0], bus_setup);
priv->speed_hz = speed;
return 0;
}
static int fsl_dspi_child_pre_probe(struct udevice *dev)
{
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct fsl_dspi_priv *priv = dev_get_priv(dev->parent);
u32 cs_sck_delay = 0, sck_cs_delay = 0;
unsigned char pcssck = 0, cssck = 0;
unsigned char pasc = 0, asc = 0;
if (slave_plat->cs >= priv->num_chipselect) {
debug("DSPI invalid chipselect number %d(max %d)!\n",
slave_plat->cs, priv->num_chipselect - 1);
return -EINVAL;
}
ofnode_read_u32(dev_ofnode(dev), "fsl,spi-cs-sck-delay",
&cs_sck_delay);
ofnode_read_u32(dev_ofnode(dev), "fsl,spi-sck-cs-delay",
&sck_cs_delay);
/* Set PCS to SCK delay scale values */
ns_delay_scale(&pcssck, &cssck, cs_sck_delay, priv->bus_clk);
/* Set After SCK delay scale values */
ns_delay_scale(&pasc, &asc, sck_cs_delay, priv->bus_clk);
priv->ctar_val[slave_plat->cs] = DSPI_CTAR_DEFAULT_VALUE |
DSPI_CTAR_PCSSCK(pcssck) |
DSPI_CTAR_PASC(pasc);
debug("DSPI pre_probe slave device on CS %u, max_hz %u, mode 0x%x.\n",
slave_plat->cs, slave_plat->max_hz, slave_plat->mode);
return 0;
}
static int fsl_dspi_probe(struct udevice *bus)
{
struct fsl_dspi_plat *plat = dev_get_plat(bus);
struct fsl_dspi_priv *priv = dev_get_priv(bus);
struct dm_spi_bus *dm_spi_bus;
uint mcr_cfg_val;
dm_spi_bus = dev_get_uclass_priv(bus);
/* cpu special pin muxing configure */
cpu_dspi_port_conf();
/* get input clk frequency */
priv->regs = (struct dspi *)plat->regs_addr;
priv->flags = plat->flags;
#ifdef CONFIG_M68K
priv->bus_clk = gd->bus_clk;
#else
priv->bus_clk = mxc_get_clock(MXC_DSPI_CLK);
#endif
priv->num_chipselect = plat->num_chipselect;
priv->speed_hz = plat->speed_hz;
/* frame data length in bits, default 8bits */
priv->charbit = 8;
dm_spi_bus->max_hz = plat->speed_hz;
/* default: all CS signals inactive state is high */
mcr_cfg_val = DSPI_MCR_MSTR | DSPI_MCR_PCSIS_MASK |
DSPI_MCR_CRXF | DSPI_MCR_CTXF;
fsl_dspi_init_mcr(priv, mcr_cfg_val);
debug("%s probe done, bus-num %d.\n", bus->name, dev_seq(bus));
return 0;
}
static int fsl_dspi_claim_bus(struct udevice *dev)
{
uint sr_val;
struct fsl_dspi_priv *priv;
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat =
dev_get_parent_plat(dev);
priv = dev_get_priv(bus);
/* processor special preparation work */
cpu_dspi_claim_bus(dev_seq(bus), slave_plat->cs);
/* configure transfer mode */
fsl_dspi_cfg_ctar_mode(priv, slave_plat->cs, priv->mode);
/* configure active state of CSX */
fsl_dspi_cfg_cs_active_state(priv, slave_plat->cs,
priv->mode);
fsl_dspi_clr_fifo(priv);
/* check module TX and RX status */
sr_val = dspi_read32(priv->flags, &priv->regs->sr);
if ((sr_val & DSPI_SR_TXRXS) != DSPI_SR_TXRXS) {
debug("DSPI RX/TX not ready!\n");
return -EIO;
}
return 0;
}
static int fsl_dspi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct fsl_dspi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat =
dev_get_parent_plat(dev);
/* halt module */
dspi_halt(priv, 1);
/* processor special release work */
cpu_dspi_release_bus(dev_seq(bus), slave_plat->cs);
return 0;
}
/**
* This function doesn't do anything except help with debugging
*/
static int fsl_dspi_bind(struct udevice *bus)
{
debug("%s assigned seq %d.\n", bus->name, dev_seq(bus));
return 0;
}
static int fsl_dspi_of_to_plat(struct udevice *bus)
{
fdt_addr_t addr;
struct fsl_dspi_plat *plat = dev_get_plat(bus);
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
if (fdtdec_get_bool(blob, node, "big-endian"))
plat->flags |= DSPI_FLAG_REGMAP_ENDIAN_BIG;
plat->num_chipselect = fdtdec_get_int(blob, node,
"spi-num-chipselects",
FSL_DSPI_MAX_CHIPSELECT);
addr = dev_read_addr(bus);
if (addr == FDT_ADDR_T_NONE) {
debug("DSPI: Can't get base address or size\n");
return -ENOMEM;
}
plat->regs_addr = addr;
plat->speed_hz = fdtdec_get_int(blob,
node, "spi-max-frequency", FSL_DSPI_DEFAULT_SCK_FREQ);
debug("DSPI: regs=%pa, max-frequency=%d, endianness=%s, num-cs=%d\n",
&plat->regs_addr, plat->speed_hz,
plat->flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le",
plat->num_chipselect);
return 0;
}
static int fsl_dspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_dspi_priv *priv;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
return dspi_xfer(priv, slave_plat->cs, bitlen, dout, din, flags);
}
static int fsl_dspi_set_speed(struct udevice *bus, uint speed)
{
struct fsl_dspi_priv *priv = dev_get_priv(bus);
return fsl_dspi_cfg_speed(priv, speed);
}
static int fsl_dspi_set_mode(struct udevice *bus, uint mode)
{
struct fsl_dspi_priv *priv = dev_get_priv(bus);
debug("DSPI set_mode: mode 0x%x.\n", mode);
/*
* We store some chipselect special configure value in priv->ctar_val,
* and we can't get the correct chipselect number here,
* so just store mode value.
* Do really configuration when claim_bus.
*/
priv->mode = mode;
return 0;
}
static const struct dm_spi_ops fsl_dspi_ops = {
.claim_bus = fsl_dspi_claim_bus,
.release_bus = fsl_dspi_release_bus,
.xfer = fsl_dspi_xfer,
.set_speed = fsl_dspi_set_speed,
.set_mode = fsl_dspi_set_mode,
};
static const struct udevice_id fsl_dspi_ids[] = {
{ .compatible = "fsl,vf610-dspi" },
{ .compatible = "fsl,ls1021a-v1.0-dspi" },
{ }
};
U_BOOT_DRIVER(fsl_dspi) = {
.name = "fsl_dspi",
.id = UCLASS_SPI,
.of_match = fsl_dspi_ids,
.ops = &fsl_dspi_ops,
.of_to_plat = fsl_dspi_of_to_plat,
.plat_auto = sizeof(struct fsl_dspi_plat),
.priv_auto = sizeof(struct fsl_dspi_priv),
.probe = fsl_dspi_probe,
.child_pre_probe = fsl_dspi_child_pre_probe,
.bind = fsl_dspi_bind,
};
|