/* SPDX-License-Identifier: GPL-2.0+ */ /* * (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH * Andreas Heppel * * (C) Copyright 2002 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. */ #ifndef _PCI_H #define _PCI_H #define PCI_CFG_SPACE_SIZE 256 #define PCI_CFG_SPACE_EXP_SIZE 4096 /* * Under PCI, each device has 256 bytes of configuration address space, * of which the first 64 bytes are standardized as follows: */ #define PCI_VENDOR_ID 0x00 /* 16 bits */ #define PCI_DEVICE_ID 0x02 /* 16 bits */ #define PCI_COMMAND 0x04 /* 16 bits */ #define PCI_COMMAND_IO 0x1 /* Enable response in I/O space */ #define PCI_COMMAND_MEMORY 0x2 /* Enable response in Memory space */ #define PCI_COMMAND_MASTER 0x4 /* Enable bus mastering */ #define PCI_COMMAND_SPECIAL 0x8 /* Enable response to special cycles */ #define PCI_COMMAND_INVALIDATE 0x10 /* Use memory write and invalidate */ #define PCI_COMMAND_VGA_PALETTE 0x20 /* Enable palette snooping */ #define PCI_COMMAND_PARITY 0x40 /* Enable parity checking */ #define PCI_COMMAND_WAIT 0x80 /* Enable address/data stepping */ #define PCI_COMMAND_SERR 0x100 /* Enable SERR */ #define PCI_COMMAND_FAST_BACK 0x200 /* Enable back-to-back writes */ #define PCI_STATUS 0x06 /* 16 bits */ #define PCI_STATUS_CAP_LIST 0x10 /* Support Capability List */ #define PCI_STATUS_66MHZ 0x20 /* Support 66 Mhz PCI 2.1 bus */ #define PCI_STATUS_UDF 0x40 /* Support User Definable Features [obsolete] */ #define PCI_STATUS_FAST_BACK 0x80 /* Accept fast-back to back */ #define PCI_STATUS_PARITY 0x100 /* Detected parity error */ #define PCI_STATUS_DEVSEL_MASK 0x600 /* DEVSEL timing */ #define PCI_STATUS_DEVSEL_FAST 0x000 #define PCI_STATUS_DEVSEL_MEDIUM 0x200 #define PCI_STATUS_DEVSEL_SLOW 0x400 #define PCI_STATUS_SIG_TARGET_ABORT 0x800 /* Set on target abort */ #define PCI_STATUS_REC_TARGET_ABORT 0x1000 /* Master ack of " */ #define PCI_STATUS_REC_MASTER_ABORT 0x2000 /* Set on master abort */ #define PCI_STATUS_SIG_SYSTEM_ERROR 0x4000 /* Set when we drive SERR */ #define PCI_STATUS_DETECTED_PARITY 0x8000 /* Set on parity error */ #define PCI_CLASS_REVISION 0x08 /* High 24 bits are class, low 8 revision */ #define PCI_REVISION_ID 0x08 /* Revision ID */ #define PCI_CLASS_PROG 0x09 /* Reg. Level Programming Interface */ #define PCI_CLASS_DEVICE 0x0a /* Device class */ #define PCI_CLASS_CODE 0x0b /* Device class code */ #define PCI_CLASS_CODE_TOO_OLD 0x00 #define PCI_CLASS_CODE_STORAGE 0x01 #define PCI_CLASS_CODE_NETWORK 0x02 #define PCI_CLASS_CODE_DISPLAY 0x03 #define PCI_CLASS_CODE_MULTIMEDIA 0x04 #define PCI_CLASS_CODE_MEMORY 0x05 #define PCI_CLASS_CODE_BRIDGE 0x06 #define PCI_CLASS_CODE_COMM 0x07 #define PCI_CLASS_CODE_PERIPHERAL 0x08 #define PCI_CLASS_CODE_INPUT 0x09 #define PCI_CLASS_CODE_DOCKING 0x0A #define PCI_CLASS_CODE_PROCESSOR 0x0B #define PCI_CLASS_CODE_SERIAL 0x0C #define PCI_CLASS_CODE_WIRELESS 0x0D #define PCI_CLASS_CODE_I2O 0x0E #define PCI_CLASS_CODE_SATELLITE 0x0F #define PCI_CLASS_CODE_CRYPTO 0x10 #define PCI_CLASS_CODE_DATA 0x11 /* Base Class 0x12 - 0xFE is reserved */ #define PCI_CLASS_CODE_OTHER 0xFF #define PCI_CLASS_SUB_CODE 0x0a /* Device sub-class code */ #define PCI_CLASS_SUB_CODE_TOO_OLD_NOTVGA 0x00 #define PCI_CLASS_SUB_CODE_TOO_OLD_VGA 0x01 #define PCI_CLASS_SUB_CODE_STORAGE_SCSI 0x00 #define PCI_CLASS_SUB_CODE_STORAGE_IDE 0x01 #define PCI_CLASS_SUB_CODE_STORAGE_FLOPPY 0x02 #define PCI_CLASS_SUB_CODE_STORAGE_IPIBUS 0x03 #define PCI_CLASS_SUB_CODE_STORAGE_RAID 0x04 #define PCI_CLASS_SUB_CODE_STORAGE_ATA 0x05 #define PCI_CLASS_SUB_CODE_STORAGE_SATA 0x06 #define PCI_CLASS_SUB_CODE_STORAGE_SAS 0x07 #define PCI_CLASS_SUB_CODE_STORAGE_OTHER 0x80 #define PCI_CLASS_SUB_CODE_NETWORK_ETHERNET 0x00 #define PCI_CLASS_SUB_CODE_NETWORK_TOKENRING 0x01 #define PCI_CLASS_SUB_CODE_NETWORK_FDDI 0x02 #define PCI_CLASS_SUB_CODE_NETWORK_ATM 0x03 #define PCI_CLASS_SUB_CODE_NETWORK_ISDN 0x04 #define PCI_CLASS_SUB_CODE_NETWORK_WORLDFIP 0x05 #define PCI_CLASS_SUB_CODE_NETWORK_PICMG 0x06 #define PCI_CLASS_SUB_CODE_NETWORK_OTHER 0x80 #define PCI_CLASS_SUB_CODE_DISPLAY_VGA 0x00 #define PCI_CLASS_SUB_CODE_DISPLAY_XGA 0x01 #define PCI_CLASS_SUB_CODE_DISPLAY_3D 0x02 #define PCI_CLASS_SUB_CODE_DISPLAY_OTHER 0x80 #define PCI_CLASS_SUB_CODE_MULTIMEDIA_VIDEO 0x00 #define PCI_CLASS_SUB_CODE_MULTIMEDIA_AUDIO 0x01 #define PCI_CLASS_SUB_CODE_MULTIMEDIA_PHONE 0x02 #define PCI_CLASS_SUB_CODE_MULTIMEDIA_OTHER 0x80 #define PCI_CLASS_SUB_CODE_MEMORY_RAM 0x00 #define PCI_CLASS_SUB_CODE_MEMORY_FLASH 0x01 #define PCI_CLASS_SUB_CODE_MEMORY_OTHER 0x80 #define PCI_CLASS_SUB_CODE_BRIDGE_HOST 0x00 #define PCI_CLASS_SUB_CODE_BRIDGE_ISA 0x01 #define PCI_CLASS_SUB_CODE_BRIDGE_EISA 0x02 #define PCI_CLASS_SUB_CODE_BRIDGE_MCA 0x03 #define PCI_CLASS_SUB_CODE_BRIDGE_PCI 0x04 #define PCI_CLASS_SUB_CODE_BRIDGE_PCMCIA 0x05 #define PCI_CLASS_SUB_CODE_BRIDGE_NUBUS 0x06 #define PCI_CLASS_SUB_CODE_BRIDGE_CARDBUS 0x07 #define PCI_CLASS_SUB_CODE_BRIDGE_RACEWAY 0x08 #define PCI_CLASS_SUB_CODE_BRIDGE_SEMI_PCI 0x09 #define PCI_CLASS_SUB_CODE_BRIDGE_INFINIBAND 0x0A #define PCI_CLASS_SUB_CODE_BRIDGE_OTHER 0x80 #define PCI_CLASS_SUB_CODE_COMM_SERIAL 0x00 #define PCI_CLASS_SUB_CODE_COMM_PARALLEL 0x01 #define PCI_CLASS_SUB_CODE_COMM_MULTIPORT 0x02 #define PCI_CLASS_SUB_CODE_COMM_MODEM 0x03 #define PCI_CLASS_SUB_CODE_COMM_GPIB 0x04 #define PCI_CLASS_SUB_CODE_COMM_SMARTCARD 0x05 #define PCI_CLASS_SUB_CODE_COMM_OTHER 0x80 #define PCI_CLASS_SUB_CODE_PERIPHERAL_PIC 0x00 #define PCI_CLASS_SUB_CODE_PERIPHERAL_DMA 0x01 #define PCI_CLASS_SUB_CODE_PERIPHERAL_TIMER 0x02 #define PCI_CLASS_SUB_CODE_PERIPHERAL_RTC 0x03 #define PCI_CLASS_SUB_CODE_PERIPHERAL_HOTPLUG 0x04 #define PCI_CLASS_SUB_CODE_PERIPHERAL_SD 0x05 #define PCI_CLASS_SUB_CODE_PERIPHERAL_OTHER 0x80 #define PCI_CLASS_SUB_CODE_INPUT_KEYBOARD 0x00 #define PCI_CLASS_SUB_CODE_INPUT_DIGITIZER 0x01 #define PCI_CLASS_SUB_CODE_INPUT_MOUSE 0x02 #define PCI_CLASS_SUB_CODE_INPUT_SCANNER 0x03 #define PCI_CLASS_SUB_CODE_INPUT_GAMEPORT 0x04 #define PCI_CLASS_SUB_CODE_INPUT_OTHER 0x80 #define PCI_CLASS_SUB_CODE_DOCKING_GENERIC 0x00 #define PCI_CLASS_SUB_CODE_DOCKING_OTHER 0x80 #define PCI_CLASS_SUB_CODE_PROCESSOR_386 0x00 #define PCI_CLASS_SUB_CODE_PROCESSOR_486 0x01 #define PCI_CLASS_SUB_CODE_PROCESSOR_PENTIUM 0x02 #define PCI_CLASS_SUB_CODE_PROCESSOR_ALPHA 0x10 #define PCI_CLASS_SUB_CODE_PROCESSOR_POWERPC 0x20 #define PCI_CLASS_SUB_CODE_PROCESSOR_MIPS 0x30 #define PCI_CLASS_SUB_CODE_PROCESSOR_COPROC 0x40 #define PCI_CLASS_SUB_CODE_SERIAL_1394 0x00 #define PCI_CLASS_SUB_CODE_SERIAL_ACCESSBUS 0x01 #define PCI_CLASS_SUB_CODE_SERIAL_SSA 0x02 #define PCI_CLASS_SUB_CODE_SERIAL_USB 0x03 #define PCI_CLASS_SUB_CODE_SERIAL_FIBRECHAN 0x04 #define PCI_CLASS_SUB_CODE_SERIAL_SMBUS 0x05 #define PCI_CLASS_SUB_CODE_SERIAL_INFINIBAND 0x06 #define PCI_CLASS_SUB_CODE_SERIAL_IPMI 0x07 #define PCI_CLASS_SUB_CODE_SERIAL_SERCOS 0x08 #define PCI_CLASS_SUB_CODE_SERIAL_CANBUS 0x09 #define PCI_CLASS_SUB_CODE_WIRELESS_IRDA 0x00 #define PCI_CLASS_SUB_CODE_WIRELESS_IR 0x01 #define PCI_CLASS_SUB_CODE_WIRELESS_RF 0x10 #define PCI_CLASS_SUB_CODE_WIRELESS_BLUETOOTH 0x11 #define PCI_CLASS_SUB_CODE_WIRELESS_BROADBAND 0x12 #define PCI_CLASS_SUB_CODE_WIRELESS_80211A 0x20 #define PCI_CLASS_SUB_CODE_WIRELESS_80211B 0x21 #define PCI_CLASS_SUB_CODE_WIRELESS_OTHER 0x80 #define PCI_CLASS_SUB_CODE_I2O_V1_0 0x00 #define PCI_CLASS_SUB_CODE_SATELLITE_TV 0x01 #define PCI_CLASS_SUB_CODE_SATELLITE_AUDIO 0x02 #define PCI_CLASS_SUB_CODE_SATELLITE_VOICE 0x03 #define PCI_CLASS_SUB_CODE_SATELLITE_DATA 0x04 #define PCI_CLASS_SUB_CODE_CRYPTO_NETWORK 0x00 #define PCI_CLASS_SUB_CODE_CRYPTO_ENTERTAINMENT 0x10 #define PCI_CLASS_SUB_CODE_CRYPTO_OTHER 0x80 #define PCI_CLASS_SUB_CODE_DATA_DPIO 0x00 #define PCI_CLASS_SUB_CODE_DATA_PERFCNTR 0x01 #define PCI_CLASS_SUB_CODE_DATA_COMMSYNC 0x10 #define PCI_CLASS_SUB_CODE_DATA_MGMT 0x20 #define PCI_CLASS_SUB_CODE_DATA_OTHER 0x80 #define PCI_CACHE_LINE_SIZE 0x0c /* 8 bits */ #define PCI_LATENCY_TIMER 0x0d /* 8 bits */ #define PCI_HEADER_TYPE 0x0e /* 8 bits */ #define PCI_HEADER_TYPE_NORMAL 0 #define PCI_HEADER_TYPE_BRIDGE 1 #define PCI_HEADER_TYPE_CARDBUS 2 #define PCI_BIST 0x0f /* 8 bits */ #define PCI_BIST_CODE_MASK 0x0f /* Return result */ #define PCI_BIST_START 0x40 /* 1 to start BIST, 2 secs or less */ #define PCI_BIST_CAPABLE 0x80 /* 1 if BIST capable */ /* * Base addresses specify locations in memory or I/O space. * Decoded size can be determined by writing a value of * 0xffffffff to the register, and reading it back. Only * 1 bits are decoded. */ #define PCI_BASE_ADDRESS_0 0x10 /* 32 bits */ #define PCI_BASE_ADDRESS_1 0x14 /* 32 bits [htype 0,1 only] */ #define PCI_BASE_ADDRESS_2 0x18 /* 32 bits [htype 0 only] */ #define PCI_BASE_ADDRESS_3 0x1c /* 32 bits */ #define PCI_BASE_ADDRESS_4 0x20 /* 32 bits */ #define PCI_BASE_ADDRESS_5 0x24 /* 32 bits */ #define PCI_BASE_ADDRESS_SPACE 0x01 /* 0 = memory, 1 = I/O */ #define PCI_BASE_ADDRESS_SPACE_IO 0x01 #define PCI_BASE_ADDRESS_SPACE_MEMORY 0x00 #define PCI_BASE_ADDRESS_MEM_TYPE_MASK 0x06 #define PCI_BASE_ADDRESS_MEM_TYPE_32 0x00 /* 32 bit address */ #define PCI_BASE_ADDRESS_MEM_TYPE_1M 0x02 /* Below 1M [obsolete] */ #define PCI_BASE_ADDRESS_MEM_TYPE_64 0x04 /* 64 bit address */ #define PCI_BASE_ADDRESS_MEM_PREFETCH 0x08 /* prefetchable? */ #define PCI_BASE_ADDRESS_MEM_MASK (~0x0fULL) #define PCI_BASE_ADDRESS_IO_MASK (~0x03ULL) /* bit 1 is reserved if address_space = 1 */ /* Header type 0 (normal devices) */ #define PCI_CARDBUS_CIS 0x28 #define PCI_SUBSYSTEM_VENDOR_ID 0x2c #define PCI_SUBSYSTEM_ID 0x2e #define PCI_ROM_ADDRESS 0x30 /* Bits 31..11 are address, 10..1 reserved */ #define PCI_ROM_ADDRESS_ENABLE 0x01 #define PCI_ROM_ADDRESS_MASK (~0x7ffULL) #define PCI_CAPABILITY_LIST 0x34 /* Offset of first capability list entry */ /* 0x35-0x3b are reserved */ #define PCI_INTERRUPT_LINE 0x3c /* 8 bits */ #define PCI_INTERRUPT_PIN 0x3d /* 8 bits */ #define PCI_MIN_GNT 0x3e /* 8 bits */ #define PCI_MAX_LAT 0x3f /* 8 bits */ #define PCI_INTERRUPT_LINE_DISABLE 0xff /* Header type 1 (PCI-to-PCI bridges) */ #define PCI_PRIMARY_BUS 0x18 /* Primary bus number */ #define PCI_SECONDARY_BUS 0x19 /* Secondary bus number */ #define PCI_SUBORDINATE_BUS 0x1a /* Highest bus number behind the bridge */ #define PCI_SEC_LATENCY_TIMER 0x1b /* Latency timer for secondary interface */ #define PCI_IO_BASE 0x1c /* I/O range behind the bridge */ #define PCI_IO_LIMIT 0x1d #define PCI_IO_RANGE_TYPE_MASK 0x0f /* I/O bridging type */ #define PCI_IO_RANGE_TYPE_16 0x00 #define PCI_IO_RANGE_TYPE_32 0x01 #define PCI_IO_RANGE_MASK ~0x0f #define PCI_SEC_STATUS 0x1e /* Secondary status register, only bit 14 used */ #define PCI_MEMORY_BASE 0x20 /* Memory range behind */ #define PCI_MEMORY_LIMIT 0x22 #define PCI_MEMORY_RANGE_TYPE_MASK 0x0f #define PCI_MEMORY_RANGE_MASK ~0x0f #define PCI_PREF_MEMORY_BASE 0x24 /* Prefetchable memory range behind */ #define PCI_PREF_MEMORY_LIMIT 0x26 #define PCI_PREF_RANGE_TYPE_MASK 0x0f #define PCI_PREF_RANGE_TYPE_32 0x00 #define PCI_PREF_RANGE_TYPE_64 0x01 #define PCI_PREF_RANGE_MASK ~0x0f #define PCI_PREF_BASE_UPPER32 0x28 /* Upper half of prefetchable memory range */ #define PCI_PREF_LIMIT_UPPER32 0x2c #define PCI_IO_BASE_UPPER16 0x30 /* Upper half of I/O addresses */ #define PCI_IO_LIMIT_UPPER16 0x32 /* 0x34 same as for htype 0 */ /* 0x35-0x3b is reserved */ #define PCI_ROM_ADDRESS1 0x38 /* Same as PCI_ROM_ADDRESS, but for htype 1 */ /* 0x3c-0x3d are same as for htype 0 */ #define PCI_BRIDGE_CONTROL 0x3e #define PCI_BRIDGE_CTL_PARITY 0x01 /* Enable parity detection on secondary interface */ #define PCI_BRIDGE_CTL_SERR 0x02 /* The same for SERR forwarding */ #define PCI_BRIDGE_CTL_NO_ISA 0x04 /* Disable bridging of ISA ports */ #define PCI_BRIDGE_CTL_VGA 0x08 /* Forward VGA addresses */ #define PCI_BRIDGE_CTL_MASTER_ABORT 0x20 /* Report master aborts */ #define PCI_BRIDGE_CTL_BUS_RESET 0x40 /* Secondary bus reset */ #define PCI_BRIDGE_CTL_FAST_BACK 0x80 /* Fast Back2Back enabled on secondary interface */ /* Header type 2 (CardBus bridges) */ #define PCI_CB_CAPABILITY_LIST 0x14 /* 0x15 reserved */ #define PCI_CB_SEC_STATUS 0x16 /* Secondary status */ #define PCI_CB_PRIMARY_BUS 0x18 /* PCI bus number */ #define PCI_CB_CARD_BUS 0x19 /* CardBus bus number */ #define PCI_CB_SUBORDINATE_BUS 0x1a /* Subordinate bus number */ #define PCI_CB_LATENCY_TIMER 0x1b /* CardBus latency timer */ #define PCI_CB_MEMORY_BASE_0 0x1c #define PCI_CB_MEMORY_LIMIT_0 0x20 #define PCI_CB_MEMORY_BASE_1 0x24 #define PCI_CB_MEMORY_LIMIT_1 0x28 #define PCI_CB_IO_BASE_0 0x2c #define PCI_CB_IO_BASE_0_HI 0x2e #define PCI_CB_IO_LIMIT_0 0x30 #define PCI_CB_IO_LIMIT_0_HI 0x32 #define PCI_CB_IO_BASE_1 0x34 #define PCI_CB_IO_BASE_1_HI 0x36 #define PCI_CB_IO_LIMIT_1 0x38 #define PCI_CB_IO_LIMIT_1_HI 0x3a #define PCI_CB_IO_RANGE_MASK ~0x03 /* 0x3c-0x3d are same as for htype 0 */ #define PCI_CB_BRIDGE_CONTROL 0x3e #define PCI_CB_BRIDGE_CTL_PARITY 0x01 /* Similar to standard bridge control register */ #define PCI_CB_BRIDGE_CTL_SERR 0x02 #define PCI_CB_BRIDGE_CTL_ISA 0x04 #define PCI_CB_BRIDGE_CTL_VGA 0x08 #define PCI_CB_BRIDGE_CTL_MASTER_ABORT 0x20 #define PCI_CB_BRIDGE_CTL_CB_RESET 0x40 /* CardBus reset */ #define PCI_CB_BRIDGE_CTL_16BIT_INT 0x80 /* Enable interrupt for 16-bit cards */ #define PCI_CB_BRIDGE_CTL_PREFETCH_MEM0 0x100 /* Prefetch enable for both memory regions */ #define PCI_CB_BRIDGE_CTL_PREFETCH_MEM1 0x200 #define PCI_CB_BRIDGE_CTL_POST_WRITES 0x400 #define PCI_CB_SUBSYSTEM_VENDOR_ID 0x40 #define PCI_CB_SUBSYSTEM_ID 0x42 #define PCI_CB_LEGACY_MODE_BASE 0x44 /* 16-bit PC Card legacy mode base address (ExCa) */ /* 0x48-0x7f reserved */ /* Capability lists */ #define PCI_CAP_LIST_ID 0 /* Capability ID */ #define PCI_CAP_ID_PM 0x01 /* Power Management */ #define PCI_CAP_ID_AGP 0x02 /* Accelerated Graphics Port */ #define PCI_CAP_ID_VPD 0x03 /* Vital Product Data */ #define PCI_CAP_ID_SLOTID 0x04 /* Slot Identification */ #define PCI_CAP_ID_MSI 0x05 /* Message Signalled Interrupts */ #define PCI_CAP_ID_CHSWP 0x06 /* CompactPCI HotSwap */ #define PCI_CAP_ID_PCIX 0x07 /* PCI-X */ #define PCI_CAP_ID_HT 0x08 /* HyperTransport */ #define PCI_CAP_ID_VNDR 0x09 /* Vendor-Specific */ #define PCI_CAP_ID_DBG 0x0A /* Debug port */ #define PCI_CAP_ID_CCRC 0x0B /* CompactPCI Central Resource Control */ #define PCI_CAP_ID_SHPC 0x0C /* PCI Standard Hot-Plug Controller */ #define PCI_CAP_ID_SSVID 0x0D /* Bridge subsystem vendor/device ID */ #define PCI_CAP_ID_AGP3 0x0E /* AGP Target PCI-PCI bridge */ #define PCI_CAP_ID_SECDEV 0x0F /* Secure Device */ #define PCI_CAP_ID_EXP 0x10 /* PCI Express */ #define PCI_CAP_ID_MSIX 0x11 /* MSI-X */ #define PCI_CAP_ID_SATA 0x12 /* SATA Data/Index Conf. */ #define PCI_CAP_ID_AF 0x13 /* PCI Advanced Features */ #define PCI_CAP_ID_EA 0x14 /* PCI Enhanced Allocation */ #define PCI_CAP_ID_MAX PCI_CAP_ID_EA #define PCI_CAP_LIST_NEXT 1 /* Next capability in the list */ #define PCI_CAP_FLAGS 2 /* Capability defined flags (16 bits) */ #define PCI_CAP_SIZEOF 4 /* Power Management Registers */ #define PCI_PM_CAP_VER_MASK 0x0007 /* Version */ #define PCI_PM_CAP_PME_CLOCK 0x0008 /* PME clock required */ #define PCI_PM_CAP_AUX_POWER 0x0010 /* Auxilliary power support */ #define PCI_PM_CAP_DSI 0x0020 /* Device specific initialization */ #define PCI_PM_CAP_D1 0x0200 /* D1 power state support */ #define PCI_PM_CAP_D2 0x0400 /* D2 power state support */ #define PCI_PM_CAP_PME 0x0800 /* PME pin supported */ #define PCI_PM_CTRL 4 /* PM control and status register */ #define PCI_PM_CTRL_STATE_MASK 0x0003 /* Current power state (D0 to D3) */ #define PCI_PM_CTRL_PME_ENABLE 0x0100 /* PME pin enable */ #define PCI_PM_CTRL_DATA_SEL_MASK 0x1e00 /* Data select (??) */ #define PCI_PM_CTRL_DATA_SCALE_MASK 0x6000 /* Data scale (??) */ #define PCI_PM_CTRL_PME_STATUS 0x8000 /* PME pin status */ #define PCI_PM_PPB_EXTENSIONS 6 /* PPB support extensions (??) */ #define PCI_PM_PPB_B2_B3 0x40 /* Stop clock when in D3hot (??) */ #define PCI_PM_BPCC_ENABLE 0x80 /* Bus power/clock control enable (??) */ #define PCI_PM_DATA_REGISTER 7 /* (??) */ #define PCI_PM_SIZEOF 8 /* AGP registers */ #define PCI_AGP_VERSION 2 /* BCD version number */ #define PCI_AGP_RFU 3 /* Rest of capability flags */ #define PCI_AGP_STATUS 4 /* Status register */ #define PCI_AGP_STATUS_RQ_MASK 0xff000000 /* Maximum number of requests - 1 */ #define PCI_AGP_STATUS_SBA 0x0200 /* Sideband addressing supported */ #define PCI_AGP_STATUS_64BIT 0x0020 /* 64-bit addressing supported */ #define PCI_AGP_STATUS_FW 0x0010 /* FW transfers supported */ #define PCI_AGP_STATUS_RATE4 0x0004 /* 4x transfer rate supported */ #define PCI_AGP_STATUS_RATE2 0x0002 /* 2x transfer rate supported */ #define PCI_AGP_STATUS_RATE1 0x0001 /* 1x transfer rate supported */ #define PCI_AGP_COMMAND 8 /* Control register */ #define PCI_AGP_COMMAND_RQ_MASK 0xff000000 /* Master: Maximum number of requests */ #define PCI_AGP_COMMAND_SBA 0x0200 /* Sideband addressing enabled */ #define PCI_AGP_COMMAND_AGP 0x0100 /* Allow processing of AGP transactions */ #define PCI_AGP_COMMAND_64BIT 0x0020 /* Allow processing of 64-bit addresses */ #define PCI_AGP_COMMAND_FW 0x0010 /* Force FW transfers */ #define PCI_AGP_COMMAND_RATE4 0x0004 /* Use 4x rate */ #define PCI_AGP_COMMAND_RATE2 0x0002 /* Use 4x rate */ #define PCI_AGP_COMMAND_RATE1 0x0001 /* Use 4x rate */ #define PCI_AGP_SIZEOF 12 /* PCI-X registers */ #define PCI_X_CMD_DPERR_E 0x0001 /* Data Parity Error Recovery Enable */ #define PCI_X_CMD_ERO 0x0002 /* Enable Relaxed Ordering */ #define PCI_X_CMD_MAX_READ 0x0000 /* Max Memory Read Byte Count */ #define PCI_X_CMD_MAX_SPLIT 0x0030 /* Max Outstanding Split Transactions */ #define PCI_X_CMD_VERSION(x) (((x) >> 12) & 3) /* Version */ /* Slot Identification */ #define PCI_SID_ESR 2 /* Expansion Slot Register */ #define PCI_SID_ESR_NSLOTS 0x1f /* Number of expansion slots available */ #define PCI_SID_ESR_FIC 0x20 /* First In Chassis Flag */ #define PCI_SID_CHASSIS_NR 3 /* Chassis Number */ /* Message Signalled Interrupts registers */ #define PCI_MSI_FLAGS 2 /* Various flags */ #define PCI_MSI_FLAGS_64BIT 0x80 /* 64-bit addresses allowed */ #define PCI_MSI_FLAGS_QSIZE 0x70 /* Message queue size configured */ #define PCI_MSI_FLAGS_QMASK 0x0e /* Maximum queue size available */ #define PCI_MSI_FLAGS_ENABLE 0x01 /* MSI feature enabled */ #define PCI_MSI_RFU 3 /* Rest of capability flags */ #define PCI_MSI_ADDRESS_LO 4 /* Lower 32 bits */ #define PCI_MSI_ADDRESS_HI 8 /* Upper 32 bits (if PCI_MSI_FLAGS_64BIT set) */ #define PCI_MSI_DATA_32 8 /* 16 bits of data for 32-bit devices */ #define PCI_MSI_DATA_64 12 /* 16 bits of data for 64-bit devices */ #define PCI_MAX_PCI_DEVICES 32 #define PCI_MAX_PCI_FUNCTIONS 8 #define PCI_FIND_CAP_TTL 0x48 #define CAP_START_POS 0x40 /* Extended Capabilities (PCI-X 2.0 and Express) */ #define PCI_EXT_CAP_ID(header) (header & 0x0000ffff) #define PCI_EXT_CAP_VER(header) ((header >> 16) & 0xf) #define PCI_EXT_CAP_NEXT(header) ((header >> 20) & 0xffc) #define PCI_EXT_CAP_ID_ERR 0x01 /* Advanced Error Reporting */ #define PCI_EXT_CAP_ID_VC 0x02 /* Virtual Channel Capability */ #define PCI_EXT_CAP_ID_DSN 0x03 /* Device Serial Number */ #define PCI_EXT_CAP_ID_PWR 0x04 /* Power Budgeting */ #define PCI_EXT_CAP_ID_RCLD 0x05 /* Root Complex Link Declaration */ #define PCI_EXT_CAP_ID_RCILC 0x06 /* Root Complex Internal Link Control */ #define PCI_EXT_CAP_ID_RCEC 0x07 /* Root Complex Event Collector */ #define PCI_EXT_CAP_ID_MFVC 0x08 /* Multi-Function VC Capability */ #define PCI_EXT_CAP_ID_VC9 0x09 /* same as _VC */ #define PCI_EXT_CAP_ID_RCRB 0x0A /* Root Complex RB? */ #define PCI_EXT_CAP_ID_VNDR 0x0B /* Vendor-Specific */ #define PCI_EXT_CAP_ID_CAC 0x0C /* Config Access - obsolete */ #define PCI_EXT_CAP_ID_ACS 0x0D /* Access Control Services */ #define PCI_EXT_CAP_ID_ARI 0x0E /* Alternate Routing ID */ #define PCI_EXT_CAP_ID_ATS 0x0F /* Address Translation Services */ #define PCI_EXT_CAP_ID_SRIOV 0x10 /* Single Root I/O Virtualization */ #define PCI_EXT_CAP_ID_MRIOV 0x11 /* Multi Root I/O Virtualization */ #define PCI_EXT_CAP_ID_MCAST 0x12 /* Multicast */ #define PCI_EXT_CAP_ID_PRI 0x13 /* Page Request Interface */ #define PCI_EXT_CAP_ID_AMD_XXX 0x14 /* Reserved for AMD */ #define PCI_EXT_CAP_ID_REBAR 0x15 /* Resizable BAR */ #define PCI_EXT_CAP_ID_DPA 0x16 /* Dynamic Power Allocation */ #define PCI_EXT_CAP_ID_TPH 0x17 /* TPH Requester */ #define PCI_EXT_CAP_ID_LTR 0x18 /* Latency Tolerance Reporting */ #define PCI_EXT_CAP_ID_SECPCI 0x19 /* Secondary PCIe Capability */ #define PCI_EXT_CAP_ID_PMUX 0x1A /* Protocol Multiplexing */ #define PCI_EXT_CAP_ID_PASID 0x1B /* Process Address Space ID */ #define PCI_EXT_CAP_ID_DPC 0x1D /* Downstream Port Containment */ #define PCI_EXT_CAP_ID_L1SS 0x1E /* L1 PM Substates */ #define PCI_EXT_CAP_ID_PTM 0x1F /* Precision Time Measurement */ #define PCI_EXT_CAP_ID_MAX PCI_EXT_CAP_ID_PTM /* Include the ID list */ #include #ifndef __ASSEMBLY__ #ifdef CONFIG_SYS_PCI_64BIT typedef u64 pci_addr_t; typedef u64 pci_size_t; #else typedef u32 pci_addr_t; typedef u32 pci_size_t; #endif struct pci_region { pci_addr_t bus_start; /* Start on the bus */ phys_addr_t phys_start; /* Start in physical address space */ pci_size_t size; /* Size */ unsigned long flags; /* Resource flags */ pci_addr_t bus_lower; }; #define PCI_REGION_MEM 0x00000000 /* PCI memory space */ #define PCI_REGION_IO 0x00000001 /* PCI IO space */ #define PCI_REGION_TYPE 0x00000001 #define PCI_REGION_PREFETCH 0x00000008 /* prefetchable PCI memory */ #define PCI_REGION_SYS_MEMORY 0x00000100 /* System memory */ #define PCI_REGION_RO 0x00000200 /* Read-only memory */ static inline void pci_set_region(struct pci_region *reg, pci_addr_t bus_start, phys_addr_t phys_start, pci_size_t size, unsigned long flags) { reg->bus_start = bus_start; reg->phys_start = phys_start; reg->size = size; reg->flags = flags; } typedef int pci_dev_t; #define PCI_BUS(d) (((d) >> 16) & 0xff) #define PCI_DEV(d) (((d) >> 11) & 0x1f) #define PCI_FUNC(d) (((d) >> 8) & 0x7) #define PCI_DEVFN(d, f) ((d) << 11 | (f) << 8) #define PCI_MASK_BUS(bdf) ((bdf) & 0xffff) #define PCI_ADD_BUS(bus, devfn) (((bus) << 16) | (devfn)) #define PCI_BDF(b, d, f) ((b) << 16 | PCI_DEVFN(d, f)) #define PCI_VENDEV(v, d) (((v) << 16) | (d)) #define PCI_ANY_ID (~0) struct pci_device_id { unsigned int vendor, device; /* Vendor and device ID or PCI_ANY_ID */ unsigned int subvendor, subdevice; /* Subsystem ID's or PCI_ANY_ID */ unsigned int class, class_mask; /* (class,subclass,prog-if) triplet */ unsigned long driver_data; /* Data private to the driver */ }; struct pci_controller; struct pci_config_table { unsigned int vendor, device; /* Vendor and device ID or PCI_ANY_ID */ unsigned int class; /* Class ID, or PCI_ANY_ID */ unsigned int bus; /* Bus number, or PCI_ANY_ID */ unsigned int dev; /* Device number, or PCI_ANY_ID */ unsigned int func; /* Function number, or PCI_ANY_ID */ void (*config_device)(struct pci_controller* hose, pci_dev_t dev, struct pci_config_table *); unsigned long priv[3]; }; extern void pci_cfgfunc_do_nothing(struct pci_controller* hose, pci_dev_t dev, struct pci_config_table *); extern void pci_cfgfunc_config_device(struct pci_controller* hose, pci_dev_t dev, struct pci_config_table *); #define MAX_PCI_REGIONS 7 #define INDIRECT_TYPE_NO_PCIE_LINK 1 /* * Structure of a PCI controller (host bridge) * * With driver model this is dev_get_uclass_priv(bus) */ struct pci_controller { #ifdef CONFIG_DM_PCI struct udevice *bus; struct udevice *ctlr; #else struct pci_controller *next; #endif int first_busno; int last_busno; volatile unsigned int *cfg_addr; volatile unsigned char *cfg_data; int indirect_type; /* * TODO(sjg@chromium.org): With driver model we use struct * pci_controller for both the controller and any bridge devices * attached to it. But there is only one region list and it is in the * top-level controller. * * This could be changed so that struct pci_controller is only used * for PCI controllers and a separate UCLASS (or perhaps * UCLASS_PCI_GENERIC) is used for bridges. */ struct pci_region regions[MAX_PCI_REGIONS]; int region_count; struct pci_config_table *config_table; void (*fixup_irq)(struct pci_controller *, pci_dev_t); #ifndef CONFIG_DM_PCI /* Low-level architecture-dependent routines */ int (*read_byte)(struct pci_controller*, pci_dev_t, int where, u8 *); int (*read_word)(struct pci_controller*, pci_dev_t, int where, u16 *); int (*read_dword)(struct pci_controller*, pci_dev_t, int where, u32 *); int (*write_byte)(struct pci_controller*, pci_dev_t, int where, u8); int (*write_word)(struct pci_controller*, pci_dev_t, int where, u16); int (*write_dword)(struct pci_controller*, pci_dev_t, int where, u32); #endif /* Used by auto config */ struct pci_region *pci_mem, *pci_io, *pci_prefetch; #ifndef CONFIG_DM_PCI int current_busno; void *priv_data; #endif }; #ifndef CONFIG_DM_PCI static inline void pci_set_ops(struct pci_controller *hose, int (*read_byte)(struct pci_controller*, pci_dev_t, int where, u8 *), int (*read_word)(struct pci_controller*, pci_dev_t, int where, u16 *), int (*read_dword)(struct pci_controller*, pci_dev_t, int where, u32 *), int (*write_byte)(struct pci_controller*, pci_dev_t, int where, u8), int (*write_word)(struct pci_controller*, pci_dev_t, int where, u16), int (*write_dword)(struct pci_controller*, pci_dev_t, int where, u32)) { hose->read_byte = read_byte; hose->read_word = read_word; hose->read_dword = read_dword; hose->write_byte = write_byte; hose->write_word = write_word; hose->write_dword = write_dword; } #endif #ifdef CONFIG_PCI_INDIRECT_BRIDGE extern void pci_setup_indirect(struct pci_controller* hose, u32 cfg_addr, u32 cfg_data); #endif #if !defined(CONFIG_DM_PCI) || defined(CONFIG_DM_PCI_COMPAT) extern phys_addr_t pci_hose_bus_to_phys(struct pci_controller* hose, pci_addr_t addr, unsigned long flags); extern pci_addr_t pci_hose_phys_to_bus(struct pci_controller* hose, phys_addr_t addr, unsigned long flags); #define pci_phys_to_bus(dev, addr, flags) \ pci_hose_phys_to_bus(pci_bus_to_hose(PCI_BUS(dev)), (addr), (flags)) #define pci_bus_to_phys(dev, addr, flags) \ pci_hose_bus_to_phys(pci_bus_to_hose(PCI_BUS(dev)), (addr), (flags)) #define pci_virt_to_bus(dev, addr, flags) \ pci_hose_phys_to_bus(pci_bus_to_hose(PCI_BUS(dev)), \ (virt_to_phys(addr)), (flags)) #define pci_bus_to_virt(dev, addr, flags, len, map_flags) \ map_physmem(pci_hose_bus_to_phys(pci_bus_to_hose(PCI_BUS(dev)), \ (addr), (flags)), \ (len), (map_flags)) #define pci_phys_to_mem(dev, addr) \ pci_phys_to_bus((dev), (addr), PCI_REGION_MEM) #define pci_mem_to_phys(dev, addr) \ pci_bus_to_phys((dev), (addr), PCI_REGION_MEM) #define pci_phys_to_io(dev, addr) pci_phys_to_bus((dev), (addr), PCI_REGION_IO) #define pci_io_to_phys(dev, addr) pci_bus_to_phys((dev), (addr), PCI_REGION_IO) #define pci_virt_to_mem(dev, addr) \ pci_virt_to_bus((dev), (addr), PCI_REGION_MEM) #define pci_mem_to_virt(dev, addr, len, map_flags) \ pci_bus_to_virt((dev), (addr), PCI_REGION_MEM, (len), (map_flags)) #define pci_virt_to_io(dev, addr) \ pci_virt_to_bus((dev), (addr), PCI_REGION_IO) #define pci_io_to_virt(dev, addr, len, map_flags) \ pci_bus_to_virt((dev), (addr), PCI_REGION_IO, (len), (map_flags)) /* For driver model these are defined in macros in pci_compat.c */ extern int pci_hose_read_config_byte(struct pci_controller *hose, pci_dev_t dev, int where, u8 *val); extern int pci_hose_read_config_word(struct pci_controller *hose, pci_dev_t dev, int where, u16 *val); extern int pci_hose_read_config_dword(struct pci_controller *hose, pci_dev_t dev, int where, u32 *val); extern int pci_hose_write_config_byte(struct pci_controller *hose, pci_dev_t dev, int where, u8 val); extern int pci_hose_write_config_word(struct pci_controller *hose, pci_dev_t dev, int where, u16 val); extern int pci_hose_write_config_dword(struct pci_controller *hose, pci_dev_t dev, int where, u32 val); #endif #ifndef CONFIG_DM_PCI extern int pci_read_config_byte(pci_dev_t dev, int where, u8 *val); extern int pci_read_config_word(pci_dev_t dev, int where, u16 *val); extern int pci_read_config_dword(pci_dev_t dev, int where, u32 *val); extern int pci_write_config_byte(pci_dev_t dev, int where, u8 val); extern int pci_write_config_word(pci_dev_t dev, int where, u16 val); extern int pci_write_config_dword(pci_dev_t dev, int where, u32 val); #endif void pciauto_region_init(struct pci_region *res); void pciauto_region_align(struct pci_region *res, pci_size_t size); void pciauto_config_init(struct pci_controller *hose); /** * pciauto_region_allocate() - Allocate resources from a PCI resource region * * Allocates @size bytes from the PCI resource @res. If @supports_64bit is * false, the result will be guaranteed to fit in 32 bits. * * @res: PCI region to allocate from * @size: Amount of bytes to allocate * @bar: Returns the PCI bus address of the allocated resource * @supports_64bit: Whether to allow allocations above the 32-bit boundary * @return 0 if successful, -1 on failure */ int pciauto_region_allocate(struct pci_region *res, pci_size_t size, pci_addr_t *bar, bool supports_64bit); #if !defined(CONFIG_DM_PCI) || defined(CONFIG_DM_PCI_COMPAT) extern int pci_hose_read_config_byte_via_dword(struct pci_controller *hose, pci_dev_t dev, int where, u8 *val); extern int pci_hose_read_config_word_via_dword(struct pci_controller *hose, pci_dev_t dev, int where, u16 *val); extern int pci_hose_write_config_byte_via_dword(struct pci_controller *hose, pci_dev_t dev, int where, u8 val); extern int pci_hose_write_config_word_via_dword(struct pci_controller *hose, pci_dev_t dev, int where, u16 val); extern void *pci_map_bar(pci_dev_t pdev, int bar, int flags); extern void pci_register_hose(struct pci_controller* hose); extern struct pci_controller* pci_bus_to_hose(int bus); extern struct pci_controller *find_hose_by_cfg_addr(void *cfg_addr); extern struct pci_controller *pci_get_hose_head(void); extern int pci_skip_dev(struct pci_controller *hose, pci_dev_t dev); extern int pci_hose_scan(struct pci_controller *hose); extern int pci_hose_scan_bus(struct pci_controller *hose, int bus); extern void pciauto_setup_device(struct pci_controller *hose, pci_dev_t dev, int bars_num, struct pci_region *mem, struct pci_region *prefetch, struct pci_region *io); extern void pciauto_prescan_setup_bridge(struct pci_controller *hose, pci_dev_t dev, int sub_bus); extern void pciauto_postscan_setup_bridge(struct pci_controller *hose, pci_dev_t dev, int sub_bus); extern int pciauto_config_device(struct pci_controller *hose, pci_dev_t dev); extern pci_dev_t pci_find_device (unsigned int vendor, unsigned int device, int index); extern pci_dev_t pci_find_devices (struct pci_device_id *ids, int index); pci_dev_t pci_find_class(unsigned int find_class, int index); extern int pci_hose_config_device(struct pci_controller *hose, pci_dev_t dev, unsigned long io, pci_addr_t mem, unsigned long command); extern int pci_hose_find_capability(struct pci_controller *hose, pci_dev_t dev, int cap); extern int pci_hose_find_cap_start(struct pci_controller *hose, pci_dev_t dev, u8 hdr_type); extern int pci_find_cap(struct pci_controller *hose, pci_dev_t dev, int pos, int cap); int pci_find_next_ext_capability(struct pci_controller *hose, pci_dev_t dev, int start, int cap); int pci_hose_find_ext_capability(struct pci_controller *hose, pci_dev_t dev, int cap); #ifdef CONFIG_PCI_FIXUP_DEV extern void board_pci_fixup_dev(struct pci_controller *hose, pci_dev_t dev, unsigned short vendor, unsigned short device, unsigned short class); #endif #endif /* !defined(CONFIG_DM_PCI) || defined(CONFIG_DM_PCI_COMPAT) */ const char * pci_class_str(u8 class); int pci_last_busno(void); #ifdef CONFIG_MPC85xx extern void pci_mpc85xx_init (struct pci_controller *hose); #endif #ifdef CONFIG_PCIE_IMX extern void imx_pcie_remove(void); #endif #if !defined(CONFIG_DM_PCI) || defined(CONFIG_DM_PCI_COMPAT) /** * pci_write_bar32() - Write the address of a BAR including control bits * * This writes a raw address (with control bits) to a bar. This can be used * with devices which require hard-coded addresses, not part of the normal * PCI enumeration process. * * @hose: PCI hose to use * @dev: PCI device to update * @barnum: BAR number (0-5) * @addr: BAR address with control bits */ void pci_write_bar32(struct pci_controller *hose, pci_dev_t dev, int barnum, u32 addr); /** * pci_read_bar32() - read the address of a bar * * @hose: PCI hose to use * @dev: PCI device to inspect * @barnum: BAR number (0-5) * @return address of the bar, masking out any control bits * */ u32 pci_read_bar32(struct pci_controller *hose, pci_dev_t dev, int barnum); /** * pci_hose_find_devices() - Find devices by vendor/device ID * * @hose: PCI hose to search * @busnum: Bus number to search * @ids: PCI vendor/device IDs to look for, terminated by 0, 0 record * @indexp: Pointer to device index to find. To find the first matching * device, pass 0; to find the second, pass 1, etc. This * parameter is decremented for each non-matching device so * can be called repeatedly. */ pci_dev_t pci_hose_find_devices(struct pci_controller *hose, int busnum, struct pci_device_id *ids, int *indexp); #endif /* !CONFIG_DM_PCI || CONFIG_DM_PCI_COMPAT */ /* Access sizes for PCI reads and writes */ enum pci_size_t { PCI_SIZE_8, PCI_SIZE_16, PCI_SIZE_32, }; struct udevice; #ifdef CONFIG_DM_PCI /** * struct pci_child_platdata - information stored about each PCI device * * Every device on a PCI bus has this per-child data. * * It can be accessed using dev_get_parent_priv(dev) if dev->parent is a * PCI bus (i.e. UCLASS_PCI) * * @devfn: Encoded device and function index - see PCI_DEVFN() * @vendor: PCI vendor ID (see pci_ids.h) * @device: PCI device ID (see pci_ids.h) * @class: PCI class, 3 bytes: (base, sub, prog-if) */ struct pci_child_platdata { int devfn; unsigned short vendor; unsigned short device; unsigned int class; }; /* PCI bus operations */ struct dm_pci_ops { /** * read_config() - Read a PCI configuration value * * PCI buses must support reading and writing configuration values * so that the bus can be scanned and its devices configured. * * Normally PCI_BUS(@bdf) is the same as @bus->seq, but not always. * If bridges exist it is possible to use the top-level bus to * access a sub-bus. In that case @bus will be the top-level bus * and PCI_BUS(bdf) will be a different (higher) value * * @bus: Bus to read from * @bdf: Bus, device and function to read * @offset: Byte offset within the device's configuration space * @valuep: Place to put the returned value * @size: Access size * @return 0 if OK, -ve on error */ int (*read_config)(struct udevice *bus, pci_dev_t bdf, uint offset, ulong *valuep, enum pci_size_t size); /** * write_config() - Write a PCI configuration value * * @bus: Bus to write to * @bdf: Bus, device and function to write * @offset: Byte offset within the device's configuration space * @value: Value to write * @size: Access size * @return 0 if OK, -ve on error */ int (*write_config)(struct udevice *bus, pci_dev_t bdf, uint offset, ulong value, enum pci_size_t size); }; /* Get access to a PCI bus' operations */ #define pci_get_ops(dev) ((struct dm_pci_ops *)(dev)->driver->ops) /** * dm_pci_get_bdf() - Get the BDF value for a device * * @dev: Device to check * @return bus/device/function value (see PCI_BDF()) */ pci_dev_t dm_pci_get_bdf(struct udevice *dev); /** * pci_bind_bus_devices() - scan a PCI bus and bind devices * * Scan a PCI bus looking for devices. Bind each one that is found. If * devices are already bound that match the scanned devices, just update the * child data so that the device can be used correctly (this happens when * the device tree describes devices we expect to see on the bus). * * Devices that are bound in this way will use a generic PCI driver which * does nothing. The device can still be accessed but will not provide any * driver interface. * * @bus: Bus containing devices to bind * @return 0 if OK, -ve on error */ int pci_bind_bus_devices(struct udevice *bus); /** * pci_auto_config_devices() - configure bus devices ready for use * * This works through all devices on a bus by scanning the driver model * data structures (normally these have been set up by pci_bind_bus_devices() * earlier). * * Space is allocated for each PCI base address register (BAR) so that the * devices are mapped into memory and I/O space ready for use. * * @bus: Bus containing devices to bind * @return 0 if OK, -ve on error */ int pci_auto_config_devices(struct udevice *bus); /** * dm_pci_bus_find_bdf() - Find a device given its PCI bus address * * @bdf: PCI device address: bus, device and function -see PCI_BDF() * @devp: Returns the device for this address, if found * @return 0 if OK, -ENODEV if not found */ int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp); /** * pci_bus_find_devfn() - Find a device on a bus * * @find_devfn: PCI device address (device and function only) * @devp: Returns the device for this address, if found * @return 0 if OK, -ENODEV if not found */ int pci_bus_find_devfn(struct udevice *bus, pci_dev_t find_devfn, struct udevice **devp); /** * pci_find_first_device() - return the first available PCI device * * This function and pci_find_first_device() allow iteration through all * available PCI devices on all buses. Assuming there are any, this will * return the first one. * * @devp: Set to the first available device, or NULL if no more are left * or we got an error * @return 0 if all is OK, -ve on error (e.g. a bus/bridge failed to probe) */ int pci_find_first_device(struct udevice **devp); /** * pci_find_next_device() - return the next available PCI device * * Finds the next available PCI device after the one supplied, or sets @devp * to NULL if there are no more. * * @devp: On entry, the last device returned. Set to the next available * device, or NULL if no more are left or we got an error * @return 0 if all is OK, -ve on error (e.g. a bus/bridge failed to probe) */ int pci_find_next_device(struct udevice **devp); /** * pci_get_ff() - Returns a mask for the given access size * * @size: Access size * @return 0xff for PCI_SIZE_8, 0xffff for PCI_SIZE_16, 0xffffffff for * PCI_SIZE_32 */ int pci_get_ff(enum pci_size_t size); /** * pci_bus_find_devices () - Find devices on a bus * * @bus: Bus to search * @ids: PCI vendor/device IDs to look for, terminated by 0, 0 record * @indexp: Pointer to device index to find. To find the first matching * device, pass 0; to find the second, pass 1, etc. This * parameter is decremented for each non-matching device so * can be called repeatedly. * @devp: Returns matching device if found * @return 0 if found, -ENODEV if not */ int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids, int *indexp, struct udevice **devp); /** * pci_find_device_id() - Find a device on any bus * * @ids: PCI vendor/device IDs to look for, terminated by 0, 0 record * @index: Index number of device to find, 0 for the first match, 1 for * the second, etc. * @devp: Returns matching device if found * @return 0 if found, -ENODEV if not */ int pci_find_device_id(struct pci_device_id *ids, int index, struct udevice **devp); /** * dm_pci_hose_probe_bus() - probe a subordinate bus, scanning it for devices * * This probes the given bus which causes it to be scanned for devices. The * devices will be bound but not probed. * * @hose specifies the PCI hose that will be used for the scan. This is * always a top-level bus with uclass UCLASS_PCI. The bus to scan is * in @bdf, and is a subordinate bus reachable from @hose. * * @hose: PCI hose to scan * @bdf: PCI bus address to scan (PCI_BUS(bdf) is the bus number) * @return 0 if OK, -ve on error */ int dm_pci_hose_probe_bus(struct udevice *bus); /** * pci_bus_read_config() - Read a configuration value from a device * * TODO(sjg@chromium.org): We should be able to pass just a device and have * it do the right thing. It would be good to have that function also. * * @bus: Bus to read from * @bdf: PCI device address: bus, device and function -see PCI_BDF() * @offset: Register offset to read * @valuep: Place to put the returned value * @size: Access size * @return 0 if OK, -ve on error */ int pci_bus_read_config(struct udevice *bus, pci_dev_t bdf, int offset, unsigned long *valuep, enum pci_size_t size); /** * pci_bus_write_config() - Write a configuration value to a device * * @bus: Bus to write from * @bdf: PCI device address: bus, device and function -see PCI_BDF() * @offset: Register offset to write * @value: Value to write * @size: Access size * @return 0 if OK, -ve on error */ int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset, unsigned long value, enum pci_size_t size); /** * pci_bus_clrset_config32() - Update a configuration value for a device * * The register at @offset is updated to (oldvalue & ~clr) | set. * * @bus: Bus to access * @bdf: PCI device address: bus, device and function -see PCI_BDF() * @offset: Register offset to update * @clr: Bits to clear * @set: Bits to set * @return 0 if OK, -ve on error */ int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset, u32 clr, u32 set); /** * Driver model PCI config access functions. Use these in preference to others * when you have a valid device */ int dm_pci_read_config(struct udevice *dev, int offset, unsigned long *valuep, enum pci_size_t size); int dm_pci_read_config8(struct udevice *dev, int offset, u8 *valuep); int dm_pci_read_config16(struct udevice *dev, int offset, u16 *valuep); int dm_pci_read_config32(struct udevice *dev, int offset, u32 *valuep); int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value, enum pci_size_t size); int dm_pci_write_config8(struct udevice *dev, int offset, u8 value); int dm_pci_write_config16(struct udevice *dev, int offset, u16 value); int dm_pci_write_config32(struct udevice *dev, int offset, u32 value); /** * These permit convenient read/modify/write on PCI configuration. The * register is updated to (oldvalue & ~clr) | set. */ int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set); int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set); int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set); /* * The following functions provide access to the above without needing the * size parameter. We are trying to encourage the use of the 8/16/32-style * functions, rather than byte/word/dword. But both are supported. */ int pci_write_config32(pci_dev_t pcidev, int offset, u32 value); int pci_write_config16(pci_dev_t pcidev, int offset, u16 value); int pci_write_config8(pci_dev_t pcidev, int offset, u8 value); int pci_read_config32(pci_dev_t pcidev, int offset, u32 *valuep); int pci_read_config16(pci_dev_t pcidev, int offset, u16 *valuep); int pci_read_config8(pci_dev_t pcidev, int offset, u8 *valuep); /** * pci_generic_mmap_write_config() - Generic helper for writing to * memory-mapped PCI configuration space. * @bus: Pointer to the PCI bus * @addr_f: Callback for calculating the config space address * @bdf: Identifies the PCI device to access * @offset: The offset into the device's configuration space * @value: The value to write * @size: Indicates the size of access to perform * * Write the value @value of size @size from offset @offset within the * configuration space of the device identified by the bus, device & function * numbers in @bdf on the PCI bus @bus. The callback function @addr_f is * responsible for calculating the CPU address of the respective configuration * space offset. * * Return: 0 on success, else -EINVAL */ int pci_generic_mmap_write_config( struct udevice *bus, int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp), pci_dev_t bdf, uint offset, ulong value, enum pci_size_t size); /** * pci_generic_mmap_read_config() - Generic helper for reading from * memory-mapped PCI configuration space. * @bus: Pointer to the PCI bus * @addr_f: Callback for calculating the config space address * @bdf: Identifies the PCI device to access * @offset: The offset into the device's configuration space * @valuep: A pointer at which to store the read value * @size: Indicates the size of access to perform * * Read a value of size @size from offset @offset within the configuration * space of the device identified by the bus, device & function numbers in @bdf * on the PCI bus @bus. The callback function @addr_f is responsible for * calculating the CPU address of the respective configuration space offset. * * Return: 0 on success, else -EINVAL */ int pci_generic_mmap_read_config( struct udevice *bus, int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp), pci_dev_t bdf, uint offset, ulong *valuep, enum pci_size_t size); #ifdef CONFIG_DM_PCI_COMPAT /* Compatibility with old naming */ static inline int pci_write_config_dword(pci_dev_t pcidev, int offset, u32 value) { return pci_write_config32(pcidev, offset, value); } /* Compatibility with old naming */ static inline int pci_write_config_word(pci_dev_t pcidev, int offset, u16 value) { return pci_write_config16(pcidev, offset, value); } /* Compatibility with old naming */ static inline int pci_write_config_byte(pci_dev_t pcidev, int offset, u8 value) { return pci_write_config8(pcidev, offset, value); } /* Compatibility with old naming */ static inline int pci_read_config_dword(pci_dev_t pcidev, int offset, u32 *valuep) { return pci_read_config32(pcidev, offset, valuep); } /* Compatibility with old naming */ static inline int pci_read_config_word(pci_dev_t pcidev, int offset, u16 *valuep) { return pci_read_config16(pcidev, offset, valuep); } /* Compatibility with old naming */ static inline int pci_read_config_byte(pci_dev_t pcidev, int offset, u8 *valuep) { return pci_read_config8(pcidev, offset, valuep); } #endif /* CONFIG_DM_PCI_COMPAT */ /** * dm_pciauto_config_device() - configure a device ready for use * * Space is allocated for each PCI base address register (BAR) so that the * devices are mapped into memory and I/O space ready for use. * * @dev: Device to configure * @return 0 if OK, -ve on error */ int dm_pciauto_config_device(struct udevice *dev); /** * pci_conv_32_to_size() - convert a 32-bit read value to the given size * * Some PCI buses must always perform 32-bit reads. The data must then be * shifted and masked to reflect the required access size and offset. This * function performs this transformation. * * @value: Value to transform (32-bit value read from @offset & ~3) * @offset: Register offset that was read * @size: Required size of the result * @return the value that would have been obtained if the read had been * performed at the given offset with the correct size */ ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size); /** * pci_conv_size_to_32() - update a 32-bit value to prepare for a write * * Some PCI buses must always perform 32-bit writes. To emulate a smaller * write the old 32-bit data must be read, updated with the required new data * and written back as a 32-bit value. This function performs the * transformation from the old value to the new value. * * @value: Value to transform (32-bit value read from @offset & ~3) * @offset: Register offset that should be written * @size: Required size of the write * @return the value that should be written as a 32-bit access to @offset & ~3. */ ulong pci_conv_size_to_32(ulong old, ulong value, uint offset, enum pci_size_t size); /** * pci_get_controller() - obtain the controller to use for a bus * * @dev: Device to check * @return pointer to the controller device for this bus */ struct udevice *pci_get_controller(struct udevice *dev); /** * pci_get_regions() - obtain pointers to all the region types * * @dev: Device to check * @iop: Returns a pointer to the I/O region, or NULL if none * @memp: Returns a pointer to the memory region, or NULL if none * @prefp: Returns a pointer to the pre-fetch region, or NULL if none * @return the number of non-NULL regions returned, normally 3 */ int pci_get_regions(struct udevice *dev, struct pci_region **iop, struct pci_region **memp, struct pci_region **prefp); /** * dm_pci_write_bar32() - Write the address of a BAR * * This writes a raw address to a bar * * @dev: PCI device to update * @barnum: BAR number (0-5) * @addr: BAR address */ void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr); /** * dm_pci_read_bar32() - read a base address register from a device * * @dev: Device to check * @barnum: Bar number to read (numbered from 0) * @return: value of BAR */ u32 dm_pci_read_bar32(struct udevice *dev, int barnum); /** * dm_pci_bus_to_phys() - convert a PCI bus address to a physical address * * @dev: Device containing the PCI address * @addr: PCI address to convert * @flags: Flags for the region type (PCI_REGION_...) * @return physical address corresponding to that PCI bus address */ phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t addr, unsigned long flags); /** * dm_pci_phys_to_bus() - convert a physical address to a PCI bus address * * @dev: Device containing the bus address * @addr: Physical address to convert * @flags: Flags for the region type (PCI_REGION_...) * @return PCI bus address corresponding to that physical address */ pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t addr, unsigned long flags); /** * dm_pci_map_bar() - get a virtual address associated with a BAR region * * Looks up a base address register and finds the physical memory address * that corresponds to it * * @dev: Device to check * @bar: Bar number to read (numbered from 0) * @flags: Flags for the region type (PCI_REGION_...) * @return: pointer to the virtual address to use */ void *dm_pci_map_bar(struct udevice *dev, int bar, int flags); #define dm_pci_virt_to_bus(dev, addr, flags) \ dm_pci_phys_to_bus(dev, (virt_to_phys(addr)), (flags)) #define dm_pci_bus_to_virt(dev, addr, flags, len, map_flags) \ map_physmem(dm_pci_bus_to_phys(dev, (addr), (flags)), \ (len), (map_flags)) #define dm_pci_phys_to_mem(dev, addr) \ dm_pci_phys_to_bus((dev), (addr), PCI_REGION_MEM) #define dm_pci_mem_to_phys(dev, addr) \ dm_pci_bus_to_phys((dev), (addr), PCI_REGION_MEM) #define dm_pci_phys_to_io(dev, addr) \ dm_pci_phys_to_bus((dev), (addr), PCI_REGION_IO) #define dm_pci_io_to_phys(dev, addr) \ dm_pci_bus_to_phys((dev), (addr), PCI_REGION_IO) #define dm_pci_virt_to_mem(dev, addr) \ dm_pci_virt_to_bus((dev), (addr), PCI_REGION_MEM) #define dm_pci_mem_to_virt(dev, addr, len, map_flags) \ dm_pci_bus_to_virt((dev), (addr), PCI_REGION_MEM, (len), (map_flags)) #define dm_pci_virt_to_io(dev, addr) \ dm_pci_virt_to_bus((dev), (addr), PCI_REGION_IO) #define dm_pci_io_to_virt(dev, addr, len, map_flags) \ dm_pci_bus_to_virt((dev), (addr), PCI_REGION_IO, (len), (map_flags)) /** * dm_pci_find_device() - find a device by vendor/device ID * * @vendor: Vendor ID * @device: Device ID * @index: 0 to find the first match, 1 for second, etc. * @devp: Returns pointer to the device, if found * @return 0 if found, -ve on error */ int dm_pci_find_device(unsigned int vendor, unsigned int device, int index, struct udevice **devp); /** * dm_pci_find_class() - find a device by class * * @find_class: 3-byte (24-bit) class value to find * @index: 0 to find the first match, 1 for second, etc. * @devp: Returns pointer to the device, if found * @return 0 if found, -ve on error */ int dm_pci_find_class(uint find_class, int index, struct udevice **devp); /** * struct dm_pci_emul_ops - PCI device emulator operations */ struct dm_pci_emul_ops { /** * get_devfn(): Check which device and function this emulators * * @dev: device to check * @return the device and function this emulates, or -ve on error */ int (*get_devfn)(struct udevice *dev); /** * read_config() - Read a PCI configuration value * * @dev: Emulated device to read from * @offset: Byte offset within the device's configuration space * @valuep: Place to put the returned value * @size: Access size * @return 0 if OK, -ve on error */ int (*read_config)(struct udevice *dev, uint offset, ulong *valuep, enum pci_size_t size); /** * write_config() - Write a PCI configuration value * * @dev: Emulated device to write to * @offset: Byte offset within the device's configuration space * @value: Value to write * @size: Access size * @return 0 if OK, -ve on error */ int (*write_config)(struct udevice *dev, uint offset, ulong value, enum pci_size_t size); /** * read_io() - Read a PCI I/O value * * @dev: Emulated device to read from * @addr: I/O address to read * @valuep: Place to put the returned value * @size: Access size * @return 0 if OK, -ENOENT if @addr is not mapped by this device, * other -ve value on error */ int (*read_io)(struct udevice *dev, unsigned int addr, ulong *valuep, enum pci_size_t size); /** * write_io() - Write a PCI I/O value * * @dev: Emulated device to write from * @addr: I/O address to write * @value: Value to write * @size: Access size * @return 0 if OK, -ENOENT if @addr is not mapped by this device, * other -ve value on error */ int (*write_io)(struct udevice *dev, unsigned int addr, ulong value, enum pci_size_t size); /** * map_physmem() - Map a device into sandbox memory * * @dev: Emulated device to map * @addr: Memory address, normally corresponding to a PCI BAR. * The device should have been configured to have a BAR * at this address. * @lenp: On entry, the size of the area to map, On exit it is * updated to the size actually mapped, which may be less * if the device has less space * @ptrp: Returns a pointer to the mapped address. The device's * space can be accessed as @lenp bytes starting here * @return 0 if OK, -ENOENT if @addr is not mapped by this device, * other -ve value on error */ int (*map_physmem)(struct udevice *dev, phys_addr_t addr, unsigned long *lenp, void **ptrp); /** * unmap_physmem() - undo a memory mapping * * This must be called after map_physmem() to undo the mapping. * Some devices can use this to check what has been written into * their mapped memory and perform an operations they require on it. * In this way, map/unmap can be used as a sort of handshake between * the emulated device and its users. * * @dev: Emuated device to unmap * @vaddr: Mapped memory address, as passed to map_physmem() * @len: Size of area mapped, as returned by map_physmem() * @return 0 if OK, -ve on error */ int (*unmap_physmem)(struct udevice *dev, const void *vaddr, unsigned long len); }; /* Get access to a PCI device emulator's operations */ #define pci_get_emul_ops(dev) ((struct dm_pci_emul_ops *)(dev)->driver->ops) /** * sandbox_pci_get_emul() - Get the emulation device for a PCI device * * Searches for a suitable emulator for the given PCI bus device * * @bus: PCI bus to search * @find_devfn: PCI device and function address (PCI_DEVFN()) * @containerp: Returns container device if found * @emulp: Returns emulated device if found * @return 0 if found, -ENODEV if not found */ int sandbox_pci_get_emul(struct udevice *bus, pci_dev_t find_devfn, struct udevice **containerp, struct udevice **emulp); #endif /* CONFIG_DM_PCI */ /** * PCI_DEVICE - macro used to describe a specific pci device * @vend: the 16 bit PCI Vendor ID * @dev: the 16 bit PCI Device ID * * This macro is used to create a struct pci_device_id that matches a * specific device. The subvendor and subdevice fields will be set to * PCI_ANY_ID. */ #define PCI_DEVICE(vend, dev) \ .vendor = (vend), .device = (dev), \ .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID /** * PCI_DEVICE_SUB - macro used to describe a specific pci device with subsystem * @vend: the 16 bit PCI Vendor ID * @dev: the 16 bit PCI Device ID * @subvend: the 16 bit PCI Subvendor ID * @subdev: the 16 bit PCI Subdevice ID * * This macro is used to create a struct pci_device_id that matches a * specific device with subsystem information. */ #define PCI_DEVICE_SUB(vend, dev, subvend, subdev) \ .vendor = (vend), .device = (dev), \ .subvendor = (subvend), .subdevice = (subdev) /** * PCI_DEVICE_CLASS - macro used to describe a specific pci device class * @dev_class: the class, subclass, prog-if triple for this device * @dev_class_mask: the class mask for this device * * This macro is used to create a struct pci_device_id that matches a * specific PCI class. The vendor, device, subvendor, and subdevice * fields will be set to PCI_ANY_ID. */ #define PCI_DEVICE_CLASS(dev_class, dev_class_mask) \ .class = (dev_class), .class_mask = (dev_class_mask), \ .vendor = PCI_ANY_ID, .device = PCI_ANY_ID, \ .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID /** * PCI_VDEVICE - macro used to describe a specific pci device in short form * @vend: the vendor name * @dev: the 16 bit PCI Device ID * * This macro is used to create a struct pci_device_id that matches a * specific PCI device. The subvendor, and subdevice fields will be set * to PCI_ANY_ID. The macro allows the next field to follow as the device * private data. */ #define PCI_VDEVICE(vend, dev) \ .vendor = PCI_VENDOR_ID_##vend, .device = (dev), \ .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 0, 0 /** * struct pci_driver_entry - Matches a driver to its pci_device_id list * @driver: Driver to use * @match: List of match records for this driver, terminated by {} */ struct pci_driver_entry { struct driver *driver; const struct pci_device_id *match; }; #define U_BOOT_PCI_DEVICE(__name, __match) \ ll_entry_declare(struct pci_driver_entry, __name, pci_driver_entry) = {\ .driver = llsym(struct driver, __name, driver), \ .match = __match, \ } #endif /* __ASSEMBLY__ */ #endif /* _PCI_H */