// SPDX-License-Identifier: GPL-2.0 /* * Driver for Amlogic A1 SPI flash controller (SPIFC) * * Copyright (c) 2023, SberDevices. All Rights Reserved. * * Author: Martin Kurbanov * * Ported to u-boot: * Author: Igor Prusov */ #include #include #include #include #include #include #include #include #include #define SPIFC_A1_AHB_CTRL_REG 0x0 #define SPIFC_A1_AHB_BUS_EN BIT(31) #define SPIFC_A1_USER_CTRL0_REG 0x200 #define SPIFC_A1_USER_REQUEST_ENABLE BIT(31) #define SPIFC_A1_USER_REQUEST_FINISH BIT(30) #define SPIFC_A1_USER_DATA_UPDATED BIT(0) #define SPIFC_A1_USER_CTRL1_REG 0x204 #define SPIFC_A1_USER_CMD_ENABLE BIT(30) #define SPIFC_A1_USER_CMD_MODE GENMASK(29, 28) #define SPIFC_A1_USER_CMD_CODE GENMASK(27, 20) #define SPIFC_A1_USER_ADDR_ENABLE BIT(19) #define SPIFC_A1_USER_ADDR_MODE GENMASK(18, 17) #define SPIFC_A1_USER_ADDR_BYTES GENMASK(16, 15) #define SPIFC_A1_USER_DOUT_ENABLE BIT(14) #define SPIFC_A1_USER_DOUT_MODE GENMASK(11, 10) #define SPIFC_A1_USER_DOUT_BYTES GENMASK(9, 0) #define SPIFC_A1_USER_CTRL2_REG 0x208 #define SPIFC_A1_USER_DUMMY_ENABLE BIT(31) #define SPIFC_A1_USER_DUMMY_MODE GENMASK(30, 29) #define SPIFC_A1_USER_DUMMY_CLK_SYCLES GENMASK(28, 23) #define SPIFC_A1_USER_CTRL3_REG 0x20c #define SPIFC_A1_USER_DIN_ENABLE BIT(31) #define SPIFC_A1_USER_DIN_MODE GENMASK(28, 27) #define SPIFC_A1_USER_DIN_BYTES GENMASK(25, 16) #define SPIFC_A1_USER_ADDR_REG 0x210 #define SPIFC_A1_AHB_REQ_CTRL_REG 0x214 #define SPIFC_A1_AHB_REQ_ENABLE BIT(31) #define SPIFC_A1_ACTIMING0_REG (0x0088 << 2) #define SPIFC_A1_TSLCH GENMASK(31, 30) #define SPIFC_A1_TCLSH GENMASK(29, 28) #define SPIFC_A1_TSHWL GENMASK(20, 16) #define SPIFC_A1_TSHSL2 GENMASK(15, 12) #define SPIFC_A1_TSHSL1 GENMASK(11, 8) #define SPIFC_A1_TWHSL GENMASK(7, 0) #define SPIFC_A1_DBUF_CTRL_REG 0x240 #define SPIFC_A1_DBUF_DIR BIT(31) #define SPIFC_A1_DBUF_AUTO_UPDATE_ADDR BIT(30) #define SPIFC_A1_DBUF_ADDR GENMASK(7, 0) #define SPIFC_A1_DBUF_DATA_REG 0x244 #define SPIFC_A1_USER_DBUF_ADDR_REG 0x248 #define SPIFC_A1_BUFFER_SIZE 512U #define SPIFC_A1_MAX_HZ 200000000 #define SPIFC_A1_MIN_HZ 1000000 #define SPIFC_A1_USER_CMD(op) ( \ SPIFC_A1_USER_CMD_ENABLE | \ FIELD_PREP(SPIFC_A1_USER_CMD_CODE, (op)->cmd.opcode) | \ FIELD_PREP(SPIFC_A1_USER_CMD_MODE, ilog2((op)->cmd.buswidth))) #define SPIFC_A1_USER_ADDR(op) ( \ SPIFC_A1_USER_ADDR_ENABLE | \ FIELD_PREP(SPIFC_A1_USER_ADDR_MODE, ilog2((op)->addr.buswidth)) | \ FIELD_PREP(SPIFC_A1_USER_ADDR_BYTES, (op)->addr.nbytes - 1)) #define SPIFC_A1_USER_DUMMY(op) ( \ SPIFC_A1_USER_DUMMY_ENABLE | \ FIELD_PREP(SPIFC_A1_USER_DUMMY_MODE, ilog2((op)->dummy.buswidth)) | \ FIELD_PREP(SPIFC_A1_USER_DUMMY_CLK_SYCLES, (op)->dummy.nbytes << 3)) #define SPIFC_A1_TSLCH_VAL FIELD_PREP(SPIFC_A1_TSLCH, 1) #define SPIFC_A1_TCLSH_VAL FIELD_PREP(SPIFC_A1_TCLSH, 1) #define SPIFC_A1_TSHWL_VAL FIELD_PREP(SPIFC_A1_TSHWL, 7) #define SPIFC_A1_TSHSL2_VAL FIELD_PREP(SPIFC_A1_TSHSL2, 7) #define SPIFC_A1_TSHSL1_VAL FIELD_PREP(SPIFC_A1_TSHSL1, 7) #define SPIFC_A1_TWHSL_VAL FIELD_PREP(SPIFC_A1_TWHSL, 2) #define SPIFC_A1_ACTIMING0_VAL (SPIFC_A1_TSLCH_VAL | SPIFC_A1_TCLSH_VAL | \ SPIFC_A1_TSHWL_VAL | SPIFC_A1_TSHSL2_VAL | \ SPIFC_A1_TSHSL1_VAL | SPIFC_A1_TWHSL_VAL) struct amlogic_spifc_a1 { struct clk clk; void __iomem *base; u32 curr_speed_hz; }; static int amlogic_spifc_a1_request(struct amlogic_spifc_a1 *spifc, bool read) { u32 mask = SPIFC_A1_USER_REQUEST_FINISH | (read ? SPIFC_A1_USER_DATA_UPDATED : 0); u32 val; writel(SPIFC_A1_USER_REQUEST_ENABLE, spifc->base + SPIFC_A1_USER_CTRL0_REG); return readl_poll_timeout(spifc->base + SPIFC_A1_USER_CTRL0_REG, val, (val & mask) == mask, 200 * USEC_PER_MSEC); } static void amlogic_spifc_a1_drain_buffer(struct amlogic_spifc_a1 *spifc, char *buf, u32 len) { u32 data; const u32 count = len / sizeof(data); const u32 pad = len % sizeof(data); writel(SPIFC_A1_DBUF_AUTO_UPDATE_ADDR, spifc->base + SPIFC_A1_DBUF_CTRL_REG); ioread32_rep(spifc->base + SPIFC_A1_DBUF_DATA_REG, buf, count); if (pad) { data = readl(spifc->base + SPIFC_A1_DBUF_DATA_REG); memcpy(buf + len - pad, &data, pad); } } static void amlogic_spifc_a1_fill_buffer(struct amlogic_spifc_a1 *spifc, const char *buf, u32 len) { u32 data; const u32 count = len / sizeof(data); const u32 pad = len % sizeof(data); writel(SPIFC_A1_DBUF_DIR | SPIFC_A1_DBUF_AUTO_UPDATE_ADDR, spifc->base + SPIFC_A1_DBUF_CTRL_REG); iowrite32_rep(spifc->base + SPIFC_A1_DBUF_DATA_REG, buf, count); if (pad) { memcpy(&data, buf + len - pad, pad); writel(data, spifc->base + SPIFC_A1_DBUF_DATA_REG); } } static void amlogic_spifc_a1_user_init(struct amlogic_spifc_a1 *spifc) { writel(0, spifc->base + SPIFC_A1_USER_CTRL0_REG); writel(0, spifc->base + SPIFC_A1_USER_CTRL1_REG); writel(0, spifc->base + SPIFC_A1_USER_CTRL2_REG); writel(0, spifc->base + SPIFC_A1_USER_CTRL3_REG); } static void amlogic_spifc_a1_set_cmd(struct amlogic_spifc_a1 *spifc, u32 cmd_cfg) { u32 val; val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG); val &= ~(SPIFC_A1_USER_CMD_MODE | SPIFC_A1_USER_CMD_CODE); val |= cmd_cfg; writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG); } static void amlogic_spifc_a1_set_addr(struct amlogic_spifc_a1 *spifc, u32 addr, u32 addr_cfg) { u32 val; writel(addr, spifc->base + SPIFC_A1_USER_ADDR_REG); val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG); val &= ~(SPIFC_A1_USER_ADDR_MODE | SPIFC_A1_USER_ADDR_BYTES); val |= addr_cfg; writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG); } static void amlogic_spifc_a1_set_dummy(struct amlogic_spifc_a1 *spifc, u32 dummy_cfg) { u32 val = readl(spifc->base + SPIFC_A1_USER_CTRL2_REG); val &= ~(SPIFC_A1_USER_DUMMY_MODE | SPIFC_A1_USER_DUMMY_CLK_SYCLES); val |= dummy_cfg; writel(val, spifc->base + SPIFC_A1_USER_CTRL2_REG); } static int amlogic_spifc_a1_read(struct amlogic_spifc_a1 *spifc, void *buf, u32 size, u32 mode) { u32 val = readl(spifc->base + SPIFC_A1_USER_CTRL3_REG); int ret; val &= ~(SPIFC_A1_USER_DIN_MODE | SPIFC_A1_USER_DIN_BYTES); val |= SPIFC_A1_USER_DIN_ENABLE; val |= FIELD_PREP(SPIFC_A1_USER_DIN_MODE, mode); val |= FIELD_PREP(SPIFC_A1_USER_DIN_BYTES, size); writel(val, spifc->base + SPIFC_A1_USER_CTRL3_REG); ret = amlogic_spifc_a1_request(spifc, true); if (!ret) amlogic_spifc_a1_drain_buffer(spifc, buf, size); return ret; } static int amlogic_spifc_a1_write(struct amlogic_spifc_a1 *spifc, const void *buf, u32 size, u32 mode) { u32 val; amlogic_spifc_a1_fill_buffer(spifc, buf, size); val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG); val &= ~(SPIFC_A1_USER_DOUT_MODE | SPIFC_A1_USER_DOUT_BYTES); val |= FIELD_PREP(SPIFC_A1_USER_DOUT_MODE, mode); val |= FIELD_PREP(SPIFC_A1_USER_DOUT_BYTES, size); val |= SPIFC_A1_USER_DOUT_ENABLE; writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG); return amlogic_spifc_a1_request(spifc, false); } static int amlogic_spifc_a1_set_freq(struct amlogic_spifc_a1 *spifc, u32 freq) { int ret; if (freq == spifc->curr_speed_hz) return 0; ret = clk_set_rate(&spifc->clk, freq); if (ret) return ret; spifc->curr_speed_hz = freq; return 0; } static int amlogic_spifc_a1_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct amlogic_spifc_a1 *spifc = dev_get_priv(slave->dev->parent); size_t data_size = op->data.nbytes; int ret; ret = amlogic_spifc_a1_set_freq(spifc, slave->max_hz); if (ret) return ret; amlogic_spifc_a1_user_init(spifc); amlogic_spifc_a1_set_cmd(spifc, SPIFC_A1_USER_CMD(op)); if (op->addr.nbytes) amlogic_spifc_a1_set_addr(spifc, op->addr.val, SPIFC_A1_USER_ADDR(op)); if (op->dummy.nbytes) amlogic_spifc_a1_set_dummy(spifc, SPIFC_A1_USER_DUMMY(op)); if (data_size) { u32 mode = ilog2(op->data.buswidth); writel(0, spifc->base + SPIFC_A1_USER_DBUF_ADDR_REG); if (op->data.dir == SPI_MEM_DATA_IN) ret = amlogic_spifc_a1_read(spifc, op->data.buf.in, data_size, mode); else ret = amlogic_spifc_a1_write(spifc, op->data.buf.out, data_size, mode); } else { ret = amlogic_spifc_a1_request(spifc, false); } return ret; } static int amlogic_spifc_a1_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) { op->data.nbytes = min(op->data.nbytes, SPIFC_A1_BUFFER_SIZE); return 0; } static void amlogic_spifc_a1_hw_init(struct amlogic_spifc_a1 *spifc) { u32 regv; regv = readl(spifc->base + SPIFC_A1_AHB_REQ_CTRL_REG); regv &= ~(SPIFC_A1_AHB_REQ_ENABLE); writel(regv, spifc->base + SPIFC_A1_AHB_REQ_CTRL_REG); regv = readl(spifc->base + SPIFC_A1_AHB_CTRL_REG); regv &= ~(SPIFC_A1_AHB_BUS_EN); writel(regv, spifc->base + SPIFC_A1_AHB_CTRL_REG); writel(SPIFC_A1_ACTIMING0_VAL, spifc->base + SPIFC_A1_ACTIMING0_REG); writel(0, spifc->base + SPIFC_A1_USER_DBUF_ADDR_REG); } static const struct spi_controller_mem_ops amlogic_spifc_a1_mem_ops = { .exec_op = amlogic_spifc_a1_exec_op, .adjust_op_size = amlogic_spifc_a1_adjust_op_size, }; static int amlogic_spifc_a1_probe(struct udevice *dev) { struct amlogic_spifc_a1 *spifc = dev_get_priv(dev); int ret; struct udevice *bus = dev; spifc->base = dev_read_addr_ptr(dev); if (!spifc->base) return -EINVAL; ret = clk_get_by_index(bus, 0, &spifc->clk); if (ret) { pr_err("can't get clk spifc_gate!\n"); return ret; } ret = clk_enable(&spifc->clk); if (ret) { pr_err("enable clk fail\n"); return ret; } amlogic_spifc_a1_hw_init(spifc); return 0; } static const struct udevice_id meson_spifc_ids[] = { { .compatible = "amlogic,a1-spifc", }, { } }; int amlogic_spifc_a1_set_speed(struct udevice *bus, uint hz) { return 0; } int amlogic_spifc_a1_set_mode(struct udevice *bus, uint mode) { return 0; } static const struct dm_spi_ops amlogic_spifc_a1_ops = { .mem_ops = &amlogic_spifc_a1_mem_ops, .set_speed = amlogic_spifc_a1_set_speed, .set_mode = amlogic_spifc_a1_set_mode, }; U_BOOT_DRIVER(meson_spifc_a1) = { .name = "meson_spifc_a1", .id = UCLASS_SPI, .of_match = meson_spifc_ids, .ops = &amlogic_spifc_a1_ops, .probe = amlogic_spifc_a1_probe, .priv_auto = sizeof(struct amlogic_spifc_a1), };