// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2016, NVIDIA CORPORATION. * * Portions based on U-Boot's rtl8169.c. */ /* * This driver supports the Synopsys Designware Ethernet QOS (Quality Of * Service) IP block. The IP supports multiple options for bus type, clocking/ * reset structure, and feature list. * * The driver is written such that generic core logic is kept separate from * configuration-specific logic. Code that interacts with configuration- * specific resources is split out into separate functions to avoid polluting * common code. If/when this driver is enhanced to support multiple * configurations, the core code should be adapted to call all configuration- * specific functions through function pointers, with the definition of those * function pointers being supplied by struct udevice_id eqos_ids[]'s .data * field. * * The following configurations are currently supported: * tegra186: * NVIDIA's Tegra186 chip. This configuration uses an AXI master/DMA bus, an * AHB slave/register bus, contains the DMA, MTL, and MAC sub-blocks, and * supports a single RGMII PHY. This configuration also has SW control over * all clock and reset signals to the HW block. */ #define LOG_CATEGORY UCLASS_ETH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ARCH_IMX8M #include #include #endif #include #include #include "dwc_eth_qos.h" /* * TX and RX descriptors are 16 bytes. This causes problems with the cache * maintenance on CPUs where the cache-line size exceeds the size of these * descriptors. What will happen is that when the driver receives a packet * it will be immediately requeued for the hardware to reuse. The CPU will * therefore need to flush the cache-line containing the descriptor, which * will cause all other descriptors in the same cache-line to be flushed * along with it. If one of those descriptors had been written to by the * device those changes (and the associated packet) will be lost. * * To work around this, we make use of non-cached memory if available. If * descriptors are mapped uncached there's no need to manually flush them * or invalidate them. * * Note that this only applies to descriptors. The packet data buffers do * not have the same constraints since they are 1536 bytes large, so they * are unlikely to share cache-lines. */ static void *eqos_alloc_descs(struct eqos_priv *eqos, unsigned int num) { return memalign(ARCH_DMA_MINALIGN, num * eqos->desc_size); } static void eqos_free_descs(void *descs) { free(descs); } static struct eqos_desc *eqos_get_desc(struct eqos_priv *eqos, unsigned int num, bool rx) { return (rx ? eqos->rx_descs : eqos->tx_descs) + (num * eqos->desc_size); } void eqos_inval_desc_generic(void *desc) { unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN(start + sizeof(struct eqos_desc), ARCH_DMA_MINALIGN); invalidate_dcache_range(start, end); } void eqos_flush_desc_generic(void *desc) { unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN(start + sizeof(struct eqos_desc), ARCH_DMA_MINALIGN); flush_dcache_range(start, end); } static void eqos_inval_buffer_tegra186(void *buf, size_t size) { unsigned long start = (unsigned long)buf & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN(start + size, ARCH_DMA_MINALIGN); invalidate_dcache_range(start, end); } void eqos_inval_buffer_generic(void *buf, size_t size) { unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN); unsigned long end = roundup((unsigned long)buf + size, ARCH_DMA_MINALIGN); invalidate_dcache_range(start, end); } static void eqos_flush_buffer_tegra186(void *buf, size_t size) { flush_cache((unsigned long)buf, size); } void eqos_flush_buffer_generic(void *buf, size_t size) { unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN); unsigned long end = roundup((unsigned long)buf + size, ARCH_DMA_MINALIGN); flush_dcache_range(start, end); } static int eqos_mdio_wait_idle(struct eqos_priv *eqos) { return wait_for_bit_le32(&eqos->mac_regs->mdio_address, EQOS_MAC_MDIO_ADDRESS_GB, false, 1000000, true); } static int eqos_mdio_read(struct mii_dev *bus, int mdio_addr, int mdio_devad, int mdio_reg) { struct eqos_priv *eqos = bus->priv; u32 val; int ret; debug("%s(dev=%p, addr=%x, reg=%d):\n", __func__, eqos->dev, mdio_addr, mdio_reg); ret = eqos_mdio_wait_idle(eqos); if (ret) { pr_err("MDIO not idle at entry\n"); return ret; } val = readl(&eqos->mac_regs->mdio_address); val &= EQOS_MAC_MDIO_ADDRESS_SKAP | EQOS_MAC_MDIO_ADDRESS_C45E; val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) | (mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) | (eqos->config->config_mac_mdio << EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) | (EQOS_MAC_MDIO_ADDRESS_GOC_READ << EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) | EQOS_MAC_MDIO_ADDRESS_GB; writel(val, &eqos->mac_regs->mdio_address); udelay(eqos->config->mdio_wait); ret = eqos_mdio_wait_idle(eqos); if (ret) { pr_err("MDIO read didn't complete\n"); return ret; } val = readl(&eqos->mac_regs->mdio_data); val &= EQOS_MAC_MDIO_DATA_GD_MASK; debug("%s: val=%x\n", __func__, val); return val; } static int eqos_mdio_write(struct mii_dev *bus, int mdio_addr, int mdio_devad, int mdio_reg, u16 mdio_val) { struct eqos_priv *eqos = bus->priv; u32 val; int ret; debug("%s(dev=%p, addr=%x, reg=%d, val=%x):\n", __func__, eqos->dev, mdio_addr, mdio_reg, mdio_val); ret = eqos_mdio_wait_idle(eqos); if (ret) { pr_err("MDIO not idle at entry\n"); return ret; } writel(mdio_val, &eqos->mac_regs->mdio_data); val = readl(&eqos->mac_regs->mdio_address); val &= EQOS_MAC_MDIO_ADDRESS_SKAP | EQOS_MAC_MDIO_ADDRESS_C45E; val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) | (mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) | (eqos->config->config_mac_mdio << EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) | (EQOS_MAC_MDIO_ADDRESS_GOC_WRITE << EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) | EQOS_MAC_MDIO_ADDRESS_GB; writel(val, &eqos->mac_regs->mdio_address); udelay(eqos->config->mdio_wait); ret = eqos_mdio_wait_idle(eqos); if (ret) { pr_err("MDIO read didn't complete\n"); return ret; } return 0; } static int eqos_start_clks_tegra186(struct udevice *dev) { #ifdef CONFIG_CLK struct eqos_priv *eqos = dev_get_priv(dev); int ret; debug("%s(dev=%p):\n", __func__, dev); ret = clk_enable(&eqos->clk_slave_bus); if (ret < 0) { pr_err("clk_enable(clk_slave_bus) failed: %d\n", ret); goto err; } ret = clk_enable(&eqos->clk_master_bus); if (ret < 0) { pr_err("clk_enable(clk_master_bus) failed: %d\n", ret); goto err_disable_clk_slave_bus; } ret = clk_enable(&eqos->clk_rx); if (ret < 0) { pr_err("clk_enable(clk_rx) failed: %d\n", ret); goto err_disable_clk_master_bus; } ret = clk_enable(&eqos->clk_ptp_ref); if (ret < 0) { pr_err("clk_enable(clk_ptp_ref) failed: %d\n", ret); goto err_disable_clk_rx; } ret = clk_set_rate(&eqos->clk_ptp_ref, 125 * 1000 * 1000); if (ret < 0) { pr_err("clk_set_rate(clk_ptp_ref) failed: %d\n", ret); goto err_disable_clk_ptp_ref; } ret = clk_enable(&eqos->clk_tx); if (ret < 0) { pr_err("clk_enable(clk_tx) failed: %d\n", ret); goto err_disable_clk_ptp_ref; } #endif debug("%s: OK\n", __func__); return 0; #ifdef CONFIG_CLK err_disable_clk_ptp_ref: clk_disable(&eqos->clk_ptp_ref); err_disable_clk_rx: clk_disable(&eqos->clk_rx); err_disable_clk_master_bus: clk_disable(&eqos->clk_master_bus); err_disable_clk_slave_bus: clk_disable(&eqos->clk_slave_bus); err: debug("%s: FAILED: %d\n", __func__, ret); return ret; #endif } static int eqos_stop_clks_tegra186(struct udevice *dev) { #ifdef CONFIG_CLK struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); clk_disable(&eqos->clk_tx); clk_disable(&eqos->clk_ptp_ref); clk_disable(&eqos->clk_rx); clk_disable(&eqos->clk_master_bus); clk_disable(&eqos->clk_slave_bus); #endif debug("%s: OK\n", __func__); return 0; } static int eqos_start_resets_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret; debug("%s(dev=%p):\n", __func__, dev); ret = dm_gpio_set_value(&eqos->phy_reset_gpio, 1); if (ret < 0) { pr_err("dm_gpio_set_value(phy_reset, assert) failed: %d\n", ret); return ret; } udelay(2); ret = dm_gpio_set_value(&eqos->phy_reset_gpio, 0); if (ret < 0) { pr_err("dm_gpio_set_value(phy_reset, deassert) failed: %d\n", ret); return ret; } ret = reset_assert(&eqos->reset_ctl); if (ret < 0) { pr_err("reset_assert() failed: %d\n", ret); return ret; } udelay(2); ret = reset_deassert(&eqos->reset_ctl); if (ret < 0) { pr_err("reset_deassert() failed: %d\n", ret); return ret; } debug("%s: OK\n", __func__); return 0; } static int eqos_stop_resets_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); reset_assert(&eqos->reset_ctl); dm_gpio_set_value(&eqos->phy_reset_gpio, 1); return 0; } static int eqos_calibrate_pads_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret; debug("%s(dev=%p):\n", __func__, dev); setbits_le32(&eqos->tegra186_regs->sdmemcomppadctrl, EQOS_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD); udelay(1); setbits_le32(&eqos->tegra186_regs->auto_cal_config, EQOS_AUTO_CAL_CONFIG_START | EQOS_AUTO_CAL_CONFIG_ENABLE); ret = wait_for_bit_le32(&eqos->tegra186_regs->auto_cal_status, EQOS_AUTO_CAL_STATUS_ACTIVE, true, 10, false); if (ret) { pr_err("calibrate didn't start\n"); goto failed; } ret = wait_for_bit_le32(&eqos->tegra186_regs->auto_cal_status, EQOS_AUTO_CAL_STATUS_ACTIVE, false, 10, false); if (ret) { pr_err("calibrate didn't finish\n"); goto failed; } ret = 0; failed: clrbits_le32(&eqos->tegra186_regs->sdmemcomppadctrl, EQOS_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD); debug("%s: returns %d\n", __func__, ret); return ret; } static int eqos_disable_calibration_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); clrbits_le32(&eqos->tegra186_regs->auto_cal_config, EQOS_AUTO_CAL_CONFIG_ENABLE); return 0; } static ulong eqos_get_tick_clk_rate_tegra186(struct udevice *dev) { #ifdef CONFIG_CLK struct eqos_priv *eqos = dev_get_priv(dev); return clk_get_rate(&eqos->clk_slave_bus); #else return 0; #endif } static int eqos_set_full_duplex(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); setbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM); return 0; } static int eqos_set_half_duplex(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); clrbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM); /* WAR: Flush TX queue when switching to half-duplex */ setbits_le32(&eqos->mtl_regs->txq0_operation_mode, EQOS_MTL_TXQ0_OPERATION_MODE_FTQ); return 0; } static int eqos_set_gmii_speed(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); clrbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES); return 0; } static int eqos_set_mii_speed_100(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); setbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES); return 0; } static int eqos_set_mii_speed_10(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); clrsetbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_FES, EQOS_MAC_CONFIGURATION_PS); return 0; } static int eqos_set_tx_clk_speed_tegra186(struct udevice *dev) { #ifdef CONFIG_CLK struct eqos_priv *eqos = dev_get_priv(dev); ulong rate; int ret; debug("%s(dev=%p):\n", __func__, dev); switch (eqos->phy->speed) { case SPEED_1000: rate = 125 * 1000 * 1000; break; case SPEED_100: rate = 25 * 1000 * 1000; break; case SPEED_10: rate = 2.5 * 1000 * 1000; break; default: pr_err("invalid speed %d\n", eqos->phy->speed); return -EINVAL; } ret = clk_set_rate(&eqos->clk_tx, rate); if (ret < 0) { pr_err("clk_set_rate(tx_clk, %lu) failed: %d\n", rate, ret); return ret; } #endif return 0; } static int eqos_adjust_link(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret; bool en_calibration; debug("%s(dev=%p):\n", __func__, dev); if (eqos->phy->duplex) ret = eqos_set_full_duplex(dev); else ret = eqos_set_half_duplex(dev); if (ret < 0) { pr_err("eqos_set_*_duplex() failed: %d\n", ret); return ret; } switch (eqos->phy->speed) { case SPEED_1000: en_calibration = true; ret = eqos_set_gmii_speed(dev); break; case SPEED_100: en_calibration = true; ret = eqos_set_mii_speed_100(dev); break; case SPEED_10: en_calibration = false; ret = eqos_set_mii_speed_10(dev); break; default: pr_err("invalid speed %d\n", eqos->phy->speed); return -EINVAL; } if (ret < 0) { pr_err("eqos_set_*mii_speed*() failed: %d\n", ret); return ret; } if (en_calibration) { ret = eqos->config->ops->eqos_calibrate_pads(dev); if (ret < 0) { pr_err("eqos_calibrate_pads() failed: %d\n", ret); return ret; } } else { ret = eqos->config->ops->eqos_disable_calibration(dev); if (ret < 0) { pr_err("eqos_disable_calibration() failed: %d\n", ret); return ret; } } ret = eqos->config->ops->eqos_set_tx_clk_speed(dev); if (ret < 0) { pr_err("eqos_set_tx_clk_speed() failed: %d\n", ret); return ret; } return 0; } static int eqos_write_hwaddr(struct udevice *dev) { struct eth_pdata *plat = dev_get_plat(dev); struct eqos_priv *eqos = dev_get_priv(dev); uint32_t val; /* * This function may be called before start() or after stop(). At that * time, on at least some configurations of the EQoS HW, all clocks to * the EQoS HW block will be stopped, and a reset signal applied. If * any register access is attempted in this state, bus timeouts or CPU * hangs may occur. This check prevents that. * * A simple solution to this problem would be to not implement * write_hwaddr(), since start() always writes the MAC address into HW * anyway. However, it is desirable to implement write_hwaddr() to * support the case of SW that runs subsequent to U-Boot which expects * the MAC address to already be programmed into the EQoS registers, * which must happen irrespective of whether the U-Boot user (or * scripts) actually made use of the EQoS device, and hence * irrespective of whether start() was ever called. * * Note that this requirement by subsequent SW is not valid for * Tegra186, and is likely not valid for any non-PCI instantiation of * the EQoS HW block. This function is implemented solely as * future-proofing with the expectation the driver will eventually be * ported to some system where the expectation above is true. */ if (!eqos->config->reg_access_always_ok && !eqos->reg_access_ok) return 0; /* Update the MAC address */ val = (plat->enetaddr[5] << 8) | (plat->enetaddr[4]); writel(val, &eqos->mac_regs->address0_high); val = (plat->enetaddr[3] << 24) | (plat->enetaddr[2] << 16) | (plat->enetaddr[1] << 8) | (plat->enetaddr[0]); writel(val, &eqos->mac_regs->address0_low); return 0; } static int eqos_read_rom_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_plat(dev); struct eqos_priv *eqos = dev_get_priv(dev); int ret; ret = eqos->config->ops->eqos_get_enetaddr(dev); if (ret < 0) return ret; return !is_valid_ethaddr(pdata->enetaddr); } static int eqos_get_phy_addr(struct eqos_priv *priv, struct udevice *dev) { struct ofnode_phandle_args phandle_args; int reg; if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0, &phandle_args)) { debug("Failed to find phy-handle"); return -ENODEV; } priv->phy_of_node = phandle_args.node; reg = ofnode_read_u32_default(phandle_args.node, "reg", 0); return reg; } static int eqos_start(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret, i; ulong rate; u32 val, tx_fifo_sz, rx_fifo_sz, tqs, rqs, pbl; ulong last_rx_desc; ulong desc_pad; ulong addr64; debug("%s(dev=%p):\n", __func__, dev); eqos->tx_desc_idx = 0; eqos->rx_desc_idx = 0; ret = eqos->config->ops->eqos_start_resets(dev); if (ret < 0) { pr_err("eqos_start_resets() failed: %d\n", ret); goto err; } udelay(10); eqos->reg_access_ok = true; /* * Assert the SWR first, the actually reset the MAC and to latch in * e.g. i.MX8M Plus GPR[1] content, which selects interface mode. */ setbits_le32(&eqos->dma_regs->mode, EQOS_DMA_MODE_SWR); ret = wait_for_bit_le32(&eqos->dma_regs->mode, EQOS_DMA_MODE_SWR, false, eqos->config->swr_wait, false); if (ret) { pr_err("EQOS_DMA_MODE_SWR stuck\n"); goto err_stop_resets; } ret = eqos->config->ops->eqos_calibrate_pads(dev); if (ret < 0) { pr_err("eqos_calibrate_pads() failed: %d\n", ret); goto err_stop_resets; } if (eqos->config->ops->eqos_get_tick_clk_rate) { rate = eqos->config->ops->eqos_get_tick_clk_rate(dev); val = (rate / 1000000) - 1; writel(val, &eqos->mac_regs->us_tic_counter); } /* * if PHY was already connected and configured, * don't need to reconnect/reconfigure again */ if (!eqos->phy) { int addr = -1; ofnode fixed_node; if (IS_ENABLED(CONFIG_PHY_FIXED)) { fixed_node = ofnode_find_subnode(dev_ofnode(dev), "fixed-link"); if (ofnode_valid(fixed_node)) eqos->phy = fixed_phy_create(dev_ofnode(dev)); } if (!eqos->phy) { addr = eqos_get_phy_addr(eqos, dev); eqos->phy = phy_connect(eqos->mii, addr, dev, eqos->config->interface(dev)); } if (!eqos->phy) { pr_err("phy_connect() failed\n"); ret = -ENODEV; goto err_stop_resets; } if (eqos->max_speed) { ret = phy_set_supported(eqos->phy, eqos->max_speed); if (ret) { pr_err("phy_set_supported() failed: %d\n", ret); goto err_shutdown_phy; } } eqos->phy->node = eqos->phy_of_node; ret = phy_config(eqos->phy); if (ret < 0) { pr_err("phy_config() failed: %d\n", ret); goto err_shutdown_phy; } } ret = phy_startup(eqos->phy); if (ret < 0) { pr_err("phy_startup() failed: %d\n", ret); goto err_shutdown_phy; } if (!eqos->phy->link) { pr_err("No link\n"); ret = -EAGAIN; goto err_shutdown_phy; } ret = eqos_adjust_link(dev); if (ret < 0) { pr_err("eqos_adjust_link() failed: %d\n", ret); goto err_shutdown_phy; } /* Configure MTL */ /* Enable Store and Forward mode for TX */ /* Program Tx operating mode */ setbits_le32(&eqos->mtl_regs->txq0_operation_mode, EQOS_MTL_TXQ0_OPERATION_MODE_TSF | (EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_ENABLED << EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_SHIFT)); /* Transmit Queue weight */ writel(0x10, &eqos->mtl_regs->txq0_quantum_weight); /* Enable Store and Forward mode for RX, since no jumbo frame */ setbits_le32(&eqos->mtl_regs->rxq0_operation_mode, EQOS_MTL_RXQ0_OPERATION_MODE_RSF); /* Transmit/Receive queue fifo size; use all RAM for 1 queue */ val = readl(&eqos->mac_regs->hw_feature1); tx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_SHIFT) & EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_MASK; rx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_SHIFT) & EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_MASK; /* r/tx_fifo_sz is encoded as log2(n / 128). Undo that by shifting */ tx_fifo_sz = 128 << tx_fifo_sz; rx_fifo_sz = 128 << rx_fifo_sz; /* Allow platform to override TX/RX fifo size */ if (eqos->tx_fifo_sz) tx_fifo_sz = eqos->tx_fifo_sz; if (eqos->rx_fifo_sz) rx_fifo_sz = eqos->rx_fifo_sz; /* r/tqs is encoded as (n / 256) - 1 */ tqs = tx_fifo_sz / 256 - 1; rqs = rx_fifo_sz / 256 - 1; clrsetbits_le32(&eqos->mtl_regs->txq0_operation_mode, EQOS_MTL_TXQ0_OPERATION_MODE_TQS_MASK << EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT, tqs << EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT); clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode, EQOS_MTL_RXQ0_OPERATION_MODE_RQS_MASK << EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT, rqs << EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT); /* Flow control used only if each channel gets 4KB or more FIFO */ if (rqs >= ((4096 / 256) - 1)) { u32 rfd, rfa; setbits_le32(&eqos->mtl_regs->rxq0_operation_mode, EQOS_MTL_RXQ0_OPERATION_MODE_EHFC); /* * Set Threshold for Activating Flow Contol space for min 2 * frames ie, (1500 * 1) = 1500 bytes. * * Set Threshold for Deactivating Flow Contol for space of * min 1 frame (frame size 1500bytes) in receive fifo */ if (rqs == ((4096 / 256) - 1)) { /* * This violates the above formula because of FIFO size * limit therefore overflow may occur inspite of this. */ rfd = 0x3; /* Full-3K */ rfa = 0x1; /* Full-1.5K */ } else if (rqs == ((8192 / 256) - 1)) { rfd = 0x6; /* Full-4K */ rfa = 0xa; /* Full-6K */ } else if (rqs == ((16384 / 256) - 1)) { rfd = 0x6; /* Full-4K */ rfa = 0x12; /* Full-10K */ } else { rfd = 0x6; /* Full-4K */ rfa = 0x1E; /* Full-16K */ } clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode, (EQOS_MTL_RXQ0_OPERATION_MODE_RFD_MASK << EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) | (EQOS_MTL_RXQ0_OPERATION_MODE_RFA_MASK << EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT), (rfd << EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) | (rfa << EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT)); } /* Configure MAC */ clrsetbits_le32(&eqos->mac_regs->rxq_ctrl0, EQOS_MAC_RXQ_CTRL0_RXQ0EN_MASK << EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT, eqos->config->config_mac << EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT); /* Multicast and Broadcast Queue Enable */ setbits_le32(&eqos->mac_regs->unused_0a4, 0x00100000); /* enable promise mode */ setbits_le32(&eqos->mac_regs->unused_004[1], 0x1); /* Set TX flow control parameters */ /* Set Pause Time */ setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl, 0xffff << EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT); /* Assign priority for TX flow control */ clrbits_le32(&eqos->mac_regs->txq_prty_map0, EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK << EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_SHIFT); /* Assign priority for RX flow control */ clrbits_le32(&eqos->mac_regs->rxq_ctrl2, EQOS_MAC_RXQ_CTRL2_PSRQ0_MASK << EQOS_MAC_RXQ_CTRL2_PSRQ0_SHIFT); /* Enable flow control */ setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl, EQOS_MAC_Q0_TX_FLOW_CTRL_TFE); setbits_le32(&eqos->mac_regs->rx_flow_ctrl, EQOS_MAC_RX_FLOW_CTRL_RFE); clrsetbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_GPSLCE | EQOS_MAC_CONFIGURATION_WD | EQOS_MAC_CONFIGURATION_JD | EQOS_MAC_CONFIGURATION_JE, EQOS_MAC_CONFIGURATION_CST | EQOS_MAC_CONFIGURATION_ACS); eqos_write_hwaddr(dev); /* Configure DMA */ /* Enable OSP mode */ setbits_le32(&eqos->dma_regs->ch0_tx_control, EQOS_DMA_CH0_TX_CONTROL_OSP); /* RX buffer size. Must be a multiple of bus width */ clrsetbits_le32(&eqos->dma_regs->ch0_rx_control, EQOS_DMA_CH0_RX_CONTROL_RBSZ_MASK << EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT, EQOS_MAX_PACKET_SIZE << EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT); desc_pad = (eqos->desc_size - sizeof(struct eqos_desc)) / eqos->config->axi_bus_width; setbits_le32(&eqos->dma_regs->ch0_control, EQOS_DMA_CH0_CONTROL_PBLX8 | (desc_pad << EQOS_DMA_CH0_CONTROL_DSL_SHIFT)); /* * Burst length must be < 1/2 FIFO size. * FIFO size in tqs is encoded as (n / 256) - 1. * Each burst is n * 8 (PBLX8) * 16 (AXI width) == 128 bytes. * Half of n * 256 is n * 128, so pbl == tqs, modulo the -1. */ pbl = tqs + 1; if (pbl > 32) pbl = 32; clrsetbits_le32(&eqos->dma_regs->ch0_tx_control, EQOS_DMA_CH0_TX_CONTROL_TXPBL_MASK << EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT, pbl << EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT); clrsetbits_le32(&eqos->dma_regs->ch0_rx_control, EQOS_DMA_CH0_RX_CONTROL_RXPBL_MASK << EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT, 8 << EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT); /* DMA performance configuration */ val = (2 << EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT) | EQOS_DMA_SYSBUS_MODE_EAME | EQOS_DMA_SYSBUS_MODE_BLEN16 | EQOS_DMA_SYSBUS_MODE_BLEN8 | EQOS_DMA_SYSBUS_MODE_BLEN4; writel(val, &eqos->dma_regs->sysbus_mode); /* Set up descriptors */ memset(eqos->tx_descs, 0, eqos->desc_size * EQOS_DESCRIPTORS_TX); memset(eqos->rx_descs, 0, eqos->desc_size * EQOS_DESCRIPTORS_RX); for (i = 0; i < EQOS_DESCRIPTORS_TX; i++) { struct eqos_desc *tx_desc = eqos_get_desc(eqos, i, false); eqos->config->ops->eqos_flush_desc(tx_desc); } for (i = 0; i < EQOS_DESCRIPTORS_RX; i++) { struct eqos_desc *rx_desc = eqos_get_desc(eqos, i, true); addr64 = (ulong)(eqos->rx_dma_buf + (i * EQOS_MAX_PACKET_SIZE)); rx_desc->des0 = lower_32_bits(addr64); rx_desc->des1 = upper_32_bits(addr64); rx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_BUF1V; mb(); eqos->config->ops->eqos_flush_desc(rx_desc); eqos->config->ops->eqos_inval_buffer((void *)addr64, EQOS_MAX_PACKET_SIZE); } addr64 = (ulong)eqos_get_desc(eqos, 0, false); writel(upper_32_bits(addr64), &eqos->dma_regs->ch0_txdesc_list_haddress); writel(lower_32_bits(addr64), &eqos->dma_regs->ch0_txdesc_list_address); writel(EQOS_DESCRIPTORS_TX - 1, &eqos->dma_regs->ch0_txdesc_ring_length); addr64 = (ulong)eqos_get_desc(eqos, 0, true); writel(upper_32_bits(addr64), &eqos->dma_regs->ch0_rxdesc_list_haddress); writel(lower_32_bits(addr64), &eqos->dma_regs->ch0_rxdesc_list_address); writel(EQOS_DESCRIPTORS_RX - 1, &eqos->dma_regs->ch0_rxdesc_ring_length); /* Enable everything */ setbits_le32(&eqos->dma_regs->ch0_tx_control, EQOS_DMA_CH0_TX_CONTROL_ST); setbits_le32(&eqos->dma_regs->ch0_rx_control, EQOS_DMA_CH0_RX_CONTROL_SR); setbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE); /* TX tail pointer not written until we need to TX a packet */ /* * Point RX tail pointer at last descriptor. Ideally, we'd point at the * first descriptor, implying all descriptors were available. However, * that's not distinguishable from none of the descriptors being * available. */ last_rx_desc = (ulong)eqos_get_desc(eqos, EQOS_DESCRIPTORS_RX - 1, true); writel(last_rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer); eqos->started = true; debug("%s: OK\n", __func__); return 0; err_shutdown_phy: phy_shutdown(eqos->phy); err_stop_resets: eqos->config->ops->eqos_stop_resets(dev); err: pr_err("FAILED: %d\n", ret); return ret; } static void eqos_stop(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int i; debug("%s(dev=%p):\n", __func__, dev); if (!eqos->started) return; eqos->started = false; eqos->reg_access_ok = false; /* Disable TX DMA */ clrbits_le32(&eqos->dma_regs->ch0_tx_control, EQOS_DMA_CH0_TX_CONTROL_ST); /* Wait for TX all packets to drain out of MTL */ for (i = 0; i < 1000000; i++) { u32 val = readl(&eqos->mtl_regs->txq0_debug); u32 trcsts = (val >> EQOS_MTL_TXQ0_DEBUG_TRCSTS_SHIFT) & EQOS_MTL_TXQ0_DEBUG_TRCSTS_MASK; u32 txqsts = val & EQOS_MTL_TXQ0_DEBUG_TXQSTS; if ((trcsts != 1) && (!txqsts)) break; } /* Turn off MAC TX and RX */ clrbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE); /* Wait for all RX packets to drain out of MTL */ for (i = 0; i < 1000000; i++) { u32 val = readl(&eqos->mtl_regs->rxq0_debug); u32 prxq = (val >> EQOS_MTL_RXQ0_DEBUG_PRXQ_SHIFT) & EQOS_MTL_RXQ0_DEBUG_PRXQ_MASK; u32 rxqsts = (val >> EQOS_MTL_RXQ0_DEBUG_RXQSTS_SHIFT) & EQOS_MTL_RXQ0_DEBUG_RXQSTS_MASK; if ((!prxq) && (!rxqsts)) break; } /* Turn off RX DMA */ clrbits_le32(&eqos->dma_regs->ch0_rx_control, EQOS_DMA_CH0_RX_CONTROL_SR); if (eqos->phy) { phy_shutdown(eqos->phy); } eqos->config->ops->eqos_stop_resets(dev); debug("%s: OK\n", __func__); } static int eqos_send(struct udevice *dev, void *packet, int length) { struct eqos_priv *eqos = dev_get_priv(dev); struct eqos_desc *tx_desc; int i; debug("%s(dev=%p, packet=%p, length=%d):\n", __func__, dev, packet, length); memcpy(eqos->tx_dma_buf, packet, length); eqos->config->ops->eqos_flush_buffer(eqos->tx_dma_buf, length); tx_desc = eqos_get_desc(eqos, eqos->tx_desc_idx, false); eqos->tx_desc_idx++; eqos->tx_desc_idx %= EQOS_DESCRIPTORS_TX; tx_desc->des0 = lower_32_bits((ulong)eqos->tx_dma_buf); tx_desc->des1 = upper_32_bits((ulong)eqos->tx_dma_buf); tx_desc->des2 = length; /* * Make sure that if HW sees the _OWN write below, it will see all the * writes to the rest of the descriptor too. */ mb(); tx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_FD | EQOS_DESC3_LD | length; eqos->config->ops->eqos_flush_desc(tx_desc); writel((ulong)eqos_get_desc(eqos, eqos->tx_desc_idx, false), &eqos->dma_regs->ch0_txdesc_tail_pointer); for (i = 0; i < 1000000; i++) { eqos->config->ops->eqos_inval_desc(tx_desc); if (!(readl(&tx_desc->des3) & EQOS_DESC3_OWN)) return 0; udelay(1); } debug("%s: TX timeout\n", __func__); return -ETIMEDOUT; } static int eqos_recv(struct udevice *dev, int flags, uchar **packetp) { struct eqos_priv *eqos = dev_get_priv(dev); struct eqos_desc *rx_desc; int length; rx_desc = eqos_get_desc(eqos, eqos->rx_desc_idx, true); eqos->config->ops->eqos_inval_desc(rx_desc); if (rx_desc->des3 & EQOS_DESC3_OWN) return -EAGAIN; debug("%s(dev=%p, flags=%x):\n", __func__, dev, flags); *packetp = eqos->rx_dma_buf + (eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE); length = rx_desc->des3 & 0x7fff; debug("%s: *packetp=%p, length=%d\n", __func__, *packetp, length); eqos->config->ops->eqos_inval_buffer(*packetp, length); return length; } static int eqos_free_pkt(struct udevice *dev, uchar *packet, int length) { struct eqos_priv *eqos = dev_get_priv(dev); u32 idx, idx_mask = eqos->desc_per_cacheline - 1; uchar *packet_expected; struct eqos_desc *rx_desc = NULL; debug("%s(packet=%p, length=%d)\n", __func__, packet, length); packet_expected = eqos->rx_dma_buf + (eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE); if (packet != packet_expected) { debug("%s: Unexpected packet (expected %p)\n", __func__, packet_expected); return -EINVAL; } eqos->config->ops->eqos_inval_buffer(packet, length); if ((eqos->rx_desc_idx & idx_mask) == idx_mask) { for (idx = eqos->rx_desc_idx - idx_mask; idx <= eqos->rx_desc_idx; idx++) { ulong addr64; rx_desc = eqos_get_desc(eqos, idx, true); rx_desc->des0 = 0; rx_desc->des1 = 0; mb(); eqos->config->ops->eqos_flush_desc(rx_desc); eqos->config->ops->eqos_inval_buffer(packet, length); addr64 = (ulong)(eqos->rx_dma_buf + (idx * EQOS_MAX_PACKET_SIZE)); rx_desc->des0 = lower_32_bits(addr64); rx_desc->des1 = upper_32_bits(addr64); rx_desc->des2 = 0; /* * Make sure that if HW sees the _OWN write below, * it will see all the writes to the rest of the * descriptor too. */ mb(); rx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_BUF1V; eqos->config->ops->eqos_flush_desc(rx_desc); } writel((ulong)rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer); } eqos->rx_desc_idx++; eqos->rx_desc_idx %= EQOS_DESCRIPTORS_RX; return 0; } static int eqos_probe_resources_core(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); unsigned int desc_step; int ret; debug("%s(dev=%p):\n", __func__, dev); /* Maximum distance between neighboring descriptors, in Bytes. */ desc_step = sizeof(struct eqos_desc) + EQOS_DMA_CH0_CONTROL_DSL_MASK * eqos->config->axi_bus_width; if (desc_step < ARCH_DMA_MINALIGN) { /* * The EQoS hardware implementation cannot place one descriptor * per cacheline, it is necessary to place multiple descriptors * per cacheline in memory and do cache management carefully. */ eqos->desc_size = BIT(fls(desc_step) - 1); } else { eqos->desc_size = ALIGN(sizeof(struct eqos_desc), (unsigned int)ARCH_DMA_MINALIGN); } eqos->desc_per_cacheline = ARCH_DMA_MINALIGN / eqos->desc_size; eqos->tx_descs = eqos_alloc_descs(eqos, EQOS_DESCRIPTORS_TX); if (!eqos->tx_descs) { debug("%s: eqos_alloc_descs(tx) failed\n", __func__); ret = -ENOMEM; goto err; } eqos->rx_descs = eqos_alloc_descs(eqos, EQOS_DESCRIPTORS_RX); if (!eqos->rx_descs) { debug("%s: eqos_alloc_descs(rx) failed\n", __func__); ret = -ENOMEM; goto err_free_tx_descs; } eqos->tx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_MAX_PACKET_SIZE); if (!eqos->tx_dma_buf) { debug("%s: memalign(tx_dma_buf) failed\n", __func__); ret = -ENOMEM; goto err_free_descs; } debug("%s: tx_dma_buf=%p\n", __func__, eqos->tx_dma_buf); eqos->rx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_RX_BUFFER_SIZE); if (!eqos->rx_dma_buf) { debug("%s: memalign(rx_dma_buf) failed\n", __func__); ret = -ENOMEM; goto err_free_tx_dma_buf; } debug("%s: rx_dma_buf=%p\n", __func__, eqos->rx_dma_buf); eqos->config->ops->eqos_inval_buffer(eqos->rx_dma_buf, EQOS_MAX_PACKET_SIZE * EQOS_DESCRIPTORS_RX); debug("%s: OK\n", __func__); return 0; err_free_tx_dma_buf: free(eqos->tx_dma_buf); err_free_descs: eqos_free_descs(eqos->rx_descs); err_free_tx_descs: eqos_free_descs(eqos->tx_descs); err: debug("%s: returns %d\n", __func__, ret); return ret; } static int eqos_remove_resources_core(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); free(eqos->rx_dma_buf); free(eqos->tx_dma_buf); eqos_free_descs(eqos->rx_descs); eqos_free_descs(eqos->tx_descs); debug("%s: OK\n", __func__); return 0; } static int eqos_probe_resources_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret; debug("%s(dev=%p):\n", __func__, dev); ret = reset_get_by_name(dev, "eqos", &eqos->reset_ctl); if (ret) { pr_err("reset_get_by_name(rst) failed: %d\n", ret); return ret; } ret = gpio_request_by_name(dev, "phy-reset-gpios", 0, &eqos->phy_reset_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); if (ret) { pr_err("gpio_request_by_name(phy reset) failed: %d\n", ret); goto err_free_reset_eqos; } ret = clk_get_by_name(dev, "slave_bus", &eqos->clk_slave_bus); if (ret) { pr_err("clk_get_by_name(slave_bus) failed: %d\n", ret); goto err_free_gpio_phy_reset; } ret = clk_get_by_name(dev, "master_bus", &eqos->clk_master_bus); if (ret) { pr_err("clk_get_by_name(master_bus) failed: %d\n", ret); goto err_free_gpio_phy_reset; } ret = clk_get_by_name(dev, "rx", &eqos->clk_rx); if (ret) { pr_err("clk_get_by_name(rx) failed: %d\n", ret); goto err_free_gpio_phy_reset; } ret = clk_get_by_name(dev, "ptp_ref", &eqos->clk_ptp_ref); if (ret) { pr_err("clk_get_by_name(ptp_ref) failed: %d\n", ret); goto err_free_gpio_phy_reset; } ret = clk_get_by_name(dev, "tx", &eqos->clk_tx); if (ret) { pr_err("clk_get_by_name(tx) failed: %d\n", ret); goto err_free_gpio_phy_reset; } debug("%s: OK\n", __func__); return 0; err_free_gpio_phy_reset: dm_gpio_free(dev, &eqos->phy_reset_gpio); err_free_reset_eqos: reset_free(&eqos->reset_ctl); debug("%s: returns %d\n", __func__, ret); return ret; } static phy_interface_t eqos_get_interface_tegra186(const struct udevice *dev) { return PHY_INTERFACE_MODE_MII; } static int eqos_remove_resources_tegra186(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); dm_gpio_free(dev, &eqos->phy_reset_gpio); reset_free(&eqos->reset_ctl); debug("%s: OK\n", __func__); return 0; } static int eqos_probe(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); int ret; debug("%s(dev=%p):\n", __func__, dev); eqos->dev = dev; eqos->config = (void *)dev_get_driver_data(dev); eqos->regs = dev_read_addr(dev); if (eqos->regs == FDT_ADDR_T_NONE) { pr_err("dev_read_addr() failed\n"); return -ENODEV; } eqos->mac_regs = (void *)(eqos->regs + EQOS_MAC_REGS_BASE); eqos->mtl_regs = (void *)(eqos->regs + EQOS_MTL_REGS_BASE); eqos->dma_regs = (void *)(eqos->regs + EQOS_DMA_REGS_BASE); eqos->tegra186_regs = (void *)(eqos->regs + EQOS_TEGRA186_REGS_BASE); eqos->max_speed = dev_read_u32_default(dev, "max-speed", 0); ret = eqos_probe_resources_core(dev); if (ret < 0) { pr_err("eqos_probe_resources_core() failed: %d\n", ret); return ret; } ret = eqos->config->ops->eqos_probe_resources(dev); if (ret < 0) { pr_err("eqos_probe_resources() failed: %d\n", ret); goto err_remove_resources_core; } ret = eqos->config->ops->eqos_start_clks(dev); if (ret < 0) { pr_err("eqos_start_clks() failed: %d\n", ret); goto err_remove_resources_tegra; } #ifdef CONFIG_DM_ETH_PHY eqos->mii = eth_phy_get_mdio_bus(dev); #endif if (!eqos->mii) { eqos->mii = mdio_alloc(); if (!eqos->mii) { pr_err("mdio_alloc() failed\n"); ret = -ENOMEM; goto err_stop_clks; } eqos->mii->read = eqos_mdio_read; eqos->mii->write = eqos_mdio_write; eqos->mii->priv = eqos; strcpy(eqos->mii->name, dev->name); ret = mdio_register(eqos->mii); if (ret < 0) { pr_err("mdio_register() failed: %d\n", ret); goto err_free_mdio; } } #ifdef CONFIG_DM_ETH_PHY eth_phy_set_mdio_bus(dev, eqos->mii); #endif debug("%s: OK\n", __func__); return 0; err_free_mdio: mdio_free(eqos->mii); err_stop_clks: eqos->config->ops->eqos_stop_clks(dev); err_remove_resources_tegra: eqos->config->ops->eqos_remove_resources(dev); err_remove_resources_core: eqos_remove_resources_core(dev); debug("%s: returns %d\n", __func__, ret); return ret; } static int eqos_remove(struct udevice *dev) { struct eqos_priv *eqos = dev_get_priv(dev); debug("%s(dev=%p):\n", __func__, dev); mdio_unregister(eqos->mii); mdio_free(eqos->mii); eqos->config->ops->eqos_stop_clks(dev); eqos->config->ops->eqos_remove_resources(dev); eqos_remove_resources_core(dev); debug("%s: OK\n", __func__); return 0; } int eqos_null_ops(struct udevice *dev) { return 0; } static const struct eth_ops eqos_ops = { .start = eqos_start, .stop = eqos_stop, .send = eqos_send, .recv = eqos_recv, .free_pkt = eqos_free_pkt, .write_hwaddr = eqos_write_hwaddr, .read_rom_hwaddr = eqos_read_rom_hwaddr, }; static struct eqos_ops eqos_tegra186_ops = { .eqos_inval_desc = eqos_inval_desc_generic, .eqos_flush_desc = eqos_flush_desc_generic, .eqos_inval_buffer = eqos_inval_buffer_tegra186, .eqos_flush_buffer = eqos_flush_buffer_tegra186, .eqos_probe_resources = eqos_probe_resources_tegra186, .eqos_remove_resources = eqos_remove_resources_tegra186, .eqos_stop_resets = eqos_stop_resets_tegra186, .eqos_start_resets = eqos_start_resets_tegra186, .eqos_stop_clks = eqos_stop_clks_tegra186, .eqos_start_clks = eqos_start_clks_tegra186, .eqos_calibrate_pads = eqos_calibrate_pads_tegra186, .eqos_disable_calibration = eqos_disable_calibration_tegra186, .eqos_set_tx_clk_speed = eqos_set_tx_clk_speed_tegra186, .eqos_get_enetaddr = eqos_null_ops, .eqos_get_tick_clk_rate = eqos_get_tick_clk_rate_tegra186 }; static const struct eqos_config __maybe_unused eqos_tegra186_config = { .reg_access_always_ok = false, .mdio_wait = 10, .swr_wait = 10, .config_mac = EQOS_MAC_RXQ_CTRL0_RXQ0EN_ENABLED_DCB, .config_mac_mdio = EQOS_MAC_MDIO_ADDRESS_CR_20_35, .axi_bus_width = EQOS_AXI_WIDTH_128, .interface = eqos_get_interface_tegra186, .ops = &eqos_tegra186_ops }; static const struct udevice_id eqos_ids[] = { #if IS_ENABLED(CONFIG_DWC_ETH_QOS_TEGRA186) { .compatible = "nvidia,tegra186-eqos", .data = (ulong)&eqos_tegra186_config }, #endif #if IS_ENABLED(CONFIG_DWC_ETH_QOS_STM32) { .compatible = "st,stm32mp13-dwmac", .data = (ulong)&eqos_stm32mp13_config }, { .compatible = "st,stm32mp1-dwmac", .data = (ulong)&eqos_stm32mp15_config }, #endif #if IS_ENABLED(CONFIG_DWC_ETH_QOS_IMX) { .compatible = "nxp,imx8mp-dwmac-eqos", .data = (ulong)&eqos_imx_config }, { .compatible = "nxp,imx93-dwmac-eqos", .data = (ulong)&eqos_imx_config }, #endif #if IS_ENABLED(CONFIG_DWC_ETH_QOS_ROCKCHIP) { .compatible = "rockchip,rk3568-gmac", .data = (ulong)&eqos_rockchip_config }, { .compatible = "rockchip,rk3588-gmac", .data = (ulong)&eqos_rockchip_config }, #endif #if IS_ENABLED(CONFIG_DWC_ETH_QOS_QCOM) { .compatible = "qcom,qcs404-ethqos", .data = (ulong)&eqos_qcom_config }, #endif #if IS_ENABLED(CONFIG_DWC_ETH_QOS_STARFIVE) { .compatible = "starfive,jh7110-dwmac", .data = (ulong)&eqos_jh7110_config }, #endif { } }; U_BOOT_DRIVER(eth_eqos) = { .name = "eth_eqos", .id = UCLASS_ETH, .of_match = of_match_ptr(eqos_ids), .probe = eqos_probe, .remove = eqos_remove, .ops = &eqos_ops, .priv_auto = sizeof(struct eqos_priv), .plat_auto = sizeof(struct eth_pdata), };