// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2010 Samsung Electronics * Minkyu Kang */ #include #include #include #include #include #include #include #include #define PLL_DIV_1024 1024 #define PLL_DIV_65535 65535 #define PLL_DIV_65536 65536 /* * * This structure is to store the src bit, div bit and prediv bit * positions of the peripheral clocks of the src and div registers */ struct clk_bit_info { enum periph_id id; int32_t src_mask; int32_t div_mask; int32_t prediv_mask; int8_t src_bit; int8_t div_bit; int8_t prediv_bit; }; static struct clk_bit_info exynos5_bit_info[] = { /* periph id s_mask d_mask p_mask s_bit d_bit p_bit */ {PERIPH_ID_UART0, 0xf, 0xf, -1, 0, 0, -1}, {PERIPH_ID_UART1, 0xf, 0xf, -1, 4, 4, -1}, {PERIPH_ID_UART2, 0xf, 0xf, -1, 8, 8, -1}, {PERIPH_ID_UART3, 0xf, 0xf, -1, 12, 12, -1}, {PERIPH_ID_I2C0, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C1, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C2, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C3, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C4, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C5, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C6, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_I2C7, -1, 0x7, 0x7, -1, 24, 0}, {PERIPH_ID_SPI0, 0xf, 0xf, 0xff, 16, 0, 8}, {PERIPH_ID_SPI1, 0xf, 0xf, 0xff, 20, 16, 24}, {PERIPH_ID_SPI2, 0xf, 0xf, 0xff, 24, 0, 8}, {PERIPH_ID_SDMMC0, 0xf, 0xf, 0xff, 0, 0, 8}, {PERIPH_ID_SDMMC1, 0xf, 0xf, 0xff, 4, 16, 24}, {PERIPH_ID_SDMMC2, 0xf, 0xf, 0xff, 8, 0, 8}, {PERIPH_ID_SDMMC3, 0xf, 0xf, 0xff, 12, 16, 24}, {PERIPH_ID_I2S0, 0xf, 0xf, 0xff, 0, 0, 4}, {PERIPH_ID_I2S1, 0xf, 0xf, 0xff, 4, 12, 16}, {PERIPH_ID_SPI3, 0xf, 0xf, 0xff, 0, 0, 4}, {PERIPH_ID_SPI4, 0xf, 0xf, 0xff, 4, 12, 16}, {PERIPH_ID_SDMMC4, 0xf, 0xf, 0xff, 16, 0, 8}, {PERIPH_ID_PWM0, 0xf, 0xf, -1, 24, 0, -1}, {PERIPH_ID_PWM1, 0xf, 0xf, -1, 24, 0, -1}, {PERIPH_ID_PWM2, 0xf, 0xf, -1, 24, 0, -1}, {PERIPH_ID_PWM3, 0xf, 0xf, -1, 24, 0, -1}, {PERIPH_ID_PWM4, 0xf, 0xf, -1, 24, 0, -1}, {PERIPH_ID_NONE, -1, -1, -1, -1, -1, -1}, }; static struct clk_bit_info exynos542x_bit_info[] = { /* periph id s_mask d_mask p_mask s_bit d_bit p_bit */ {PERIPH_ID_UART0, 0xf, 0xf, -1, 4, 8, -1}, {PERIPH_ID_UART1, 0xf, 0xf, -1, 8, 12, -1}, {PERIPH_ID_UART2, 0xf, 0xf, -1, 12, 16, -1}, {PERIPH_ID_UART3, 0xf, 0xf, -1, 16, 20, -1}, {PERIPH_ID_I2C0, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C1, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C2, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C3, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C4, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C5, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C6, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C7, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_SPI0, 0xf, 0xf, 0xff, 20, 20, 8}, {PERIPH_ID_SPI1, 0xf, 0xf, 0xff, 24, 24, 16}, {PERIPH_ID_SPI2, 0xf, 0xf, 0xff, 28, 28, 24}, {PERIPH_ID_SDMMC0, 0x7, 0x3ff, -1, 8, 0, -1}, {PERIPH_ID_SDMMC1, 0x7, 0x3ff, -1, 12, 10, -1}, {PERIPH_ID_SDMMC2, 0x7, 0x3ff, -1, 16, 20, -1}, {PERIPH_ID_I2C8, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2C9, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_I2S0, 0xf, 0xf, 0xff, 0, 0, 4}, {PERIPH_ID_I2S1, 0xf, 0xf, 0xff, 4, 12, 16}, {PERIPH_ID_SPI3, 0xf, 0xf, 0xff, 12, 16, 0}, {PERIPH_ID_SPI4, 0xf, 0xf, 0xff, 16, 20, 8}, {PERIPH_ID_PWM0, 0xf, 0xf, -1, 24, 28, -1}, {PERIPH_ID_PWM1, 0xf, 0xf, -1, 24, 28, -1}, {PERIPH_ID_PWM2, 0xf, 0xf, -1, 24, 28, -1}, {PERIPH_ID_PWM3, 0xf, 0xf, -1, 24, 28, -1}, {PERIPH_ID_PWM4, 0xf, 0xf, -1, 24, 28, -1}, {PERIPH_ID_I2C10, -1, 0x3f, -1, -1, 8, -1}, {PERIPH_ID_NONE, -1, -1, -1, -1, -1, -1}, }; /* Epll Clock division values to achive different frequency output */ static struct set_epll_con_val exynos5_epll_div[] = { { 192000000, 0, 48, 3, 1, 0 }, { 180000000, 0, 45, 3, 1, 0 }, { 73728000, 1, 73, 3, 3, 47710 }, { 67737600, 1, 90, 4, 3, 20762 }, { 49152000, 0, 49, 3, 3, 9961 }, { 45158400, 0, 45, 3, 3, 10381 }, { 180633600, 0, 45, 3, 1, 10381 } }; /* exynos: return pll clock frequency */ static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k) { unsigned long m, p, s = 0, mask, fout; unsigned int div; unsigned int freq; /* * APLL_CON: MIDV [25:16] * MPLL_CON: MIDV [25:16] * EPLL_CON: MIDV [24:16] * VPLL_CON: MIDV [24:16] * BPLL_CON: MIDV [25:16]: Exynos5 */ if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL || pllreg == SPLL) mask = 0x3ff; else mask = 0x1ff; m = (r >> 16) & mask; /* PDIV [13:8] */ p = (r >> 8) & 0x3f; /* SDIV [2:0] */ s = r & 0x7; freq = get_board_sys_clk(); if (pllreg == EPLL || pllreg == RPLL) { k = k & 0xffff; /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */ fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s))); } else if (pllreg == VPLL) { k = k & 0xfff; /* * Exynos4210 * FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) * * Exynos4412 * FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV) * * Exynos5250 * FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */ if (proid_is_exynos4210()) div = PLL_DIV_1024; else if (proid_is_exynos4412()) div = PLL_DIV_65535; else if (proid_is_exynos5250() || proid_is_exynos5420() || proid_is_exynos5422()) div = PLL_DIV_65536; else return 0; fout = (m + k / div) * (freq / (p * (1 << s))); } else { /* * Exynos4412 / Exynos5250 * FOUT = MDIV * FIN / (PDIV * 2^SDIV) * * Exynos4210 * FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1)) */ if (proid_is_exynos4210()) fout = m * (freq / (p * (1 << (s - 1)))); else fout = m * (freq / (p * (1 << s))); } return fout; } /* exynos4: return pll clock frequency */ static unsigned long exynos4_get_pll_clk(int pllreg) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } /* exynos4x12: return pll clock frequency */ static unsigned long exynos4x12_get_pll_clk(int pllreg) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } /* exynos5: return pll clock frequency */ static unsigned long exynos5_get_pll_clk(int pllreg) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long r, k = 0, fout; unsigned int pll_div2_sel, fout_sel; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; case BPLL: r = readl(&clk->bpll_con0); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } fout = exynos_get_pll_clk(pllreg, r, k); /* According to the user manual, in EVT1 MPLL and BPLL always gives * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/ if (pllreg == MPLL || pllreg == BPLL) { pll_div2_sel = readl(&clk->pll_div2_sel); switch (pllreg) { case MPLL: fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT) & MPLL_FOUT_SEL_MASK; break; case BPLL: fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT) & BPLL_FOUT_SEL_MASK; break; default: fout_sel = -1; break; } if (fout_sel == 0) fout /= 2; } return fout; } /* exynos542x: return pll clock frequency */ static unsigned long exynos542x_get_pll_clk(int pllreg) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; case BPLL: r = readl(&clk->bpll_con0); break; case RPLL: r = readl(&clk->rpll_con0); k = readl(&clk->rpll_con1); break; case SPLL: r = readl(&clk->spll_con0); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } static struct clk_bit_info *get_clk_bit_info(int peripheral) { int i; struct clk_bit_info *info; if (proid_is_exynos542x()) info = exynos542x_bit_info; else info = exynos5_bit_info; for (i = 0; info[i].id != PERIPH_ID_NONE; i++) { if (info[i].id == peripheral) break; } if (info[i].id == PERIPH_ID_NONE) debug("ERROR: Peripheral ID %d not found\n", peripheral); return &info[i]; } static unsigned long exynos5_get_periph_rate(int peripheral) { struct clk_bit_info *bit_info = get_clk_bit_info(peripheral); unsigned long sclk = 0; unsigned int src = 0, div = 0, sub_div = 0; struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); switch (peripheral) { case PERIPH_ID_UART0: case PERIPH_ID_UART1: case PERIPH_ID_UART2: case PERIPH_ID_UART3: src = readl(&clk->src_peric0); div = readl(&clk->div_peric0); break; case PERIPH_ID_PWM0: case PERIPH_ID_PWM1: case PERIPH_ID_PWM2: case PERIPH_ID_PWM3: case PERIPH_ID_PWM4: src = readl(&clk->src_peric0); div = readl(&clk->div_peric3); break; case PERIPH_ID_I2S0: src = readl(&clk->src_mau); div = sub_div = readl(&clk->div_mau); case PERIPH_ID_SPI0: case PERIPH_ID_SPI1: src = readl(&clk->src_peric1); div = sub_div = readl(&clk->div_peric1); break; case PERIPH_ID_SPI2: src = readl(&clk->src_peric1); div = sub_div = readl(&clk->div_peric2); break; case PERIPH_ID_SPI3: case PERIPH_ID_SPI4: src = readl(&clk->sclk_src_isp); div = sub_div = readl(&clk->sclk_div_isp); break; case PERIPH_ID_SDMMC0: case PERIPH_ID_SDMMC1: src = readl(&clk->src_fsys); div = sub_div = readl(&clk->div_fsys1); break; case PERIPH_ID_SDMMC2: case PERIPH_ID_SDMMC3: src = readl(&clk->src_fsys); div = sub_div = readl(&clk->div_fsys2); break; case PERIPH_ID_I2C0: case PERIPH_ID_I2C1: case PERIPH_ID_I2C2: case PERIPH_ID_I2C3: case PERIPH_ID_I2C4: case PERIPH_ID_I2C5: case PERIPH_ID_I2C6: case PERIPH_ID_I2C7: src = EXYNOS_SRC_MPLL; div = readl(&clk->div_top1); sub_div = readl(&clk->div_top0); break; default: debug("%s: invalid peripheral %d", __func__, peripheral); return -1; }; if (bit_info->src_bit >= 0) src = (src >> bit_info->src_bit) & bit_info->src_mask; switch (src) { case EXYNOS_SRC_MPLL: sclk = exynos5_get_pll_clk(MPLL); break; case EXYNOS_SRC_EPLL: sclk = exynos5_get_pll_clk(EPLL); break; case EXYNOS_SRC_VPLL: sclk = exynos5_get_pll_clk(VPLL); break; default: debug("%s: EXYNOS_SRC %d not supported\n", __func__, src); return 0; } /* Clock divider ratio for this peripheral */ if (bit_info->div_bit >= 0) div = (div >> bit_info->div_bit) & bit_info->div_mask; /* Clock pre-divider ratio for this peripheral */ if (bit_info->prediv_bit >= 0) sub_div = (sub_div >> bit_info->prediv_bit) & bit_info->prediv_mask; /* Calculate and return required clock rate */ return (sclk / (div + 1)) / (sub_div + 1); } static unsigned long exynos542x_get_periph_rate(int peripheral) { struct clk_bit_info *bit_info = get_clk_bit_info(peripheral); unsigned long sclk = 0; unsigned int src = 0, div = 0, sub_div = 0; struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); switch (peripheral) { case PERIPH_ID_UART0: case PERIPH_ID_UART1: case PERIPH_ID_UART2: case PERIPH_ID_UART3: case PERIPH_ID_PWM0: case PERIPH_ID_PWM1: case PERIPH_ID_PWM2: case PERIPH_ID_PWM3: case PERIPH_ID_PWM4: src = readl(&clk->src_peric0); div = readl(&clk->div_peric0); break; case PERIPH_ID_SPI0: case PERIPH_ID_SPI1: case PERIPH_ID_SPI2: src = readl(&clk->src_peric1); div = readl(&clk->div_peric1); sub_div = readl(&clk->div_peric4); break; case PERIPH_ID_SPI3: case PERIPH_ID_SPI4: src = readl(&clk->src_isp); div = readl(&clk->div_isp1); sub_div = readl(&clk->div_isp1); break; case PERIPH_ID_SDMMC0: case PERIPH_ID_SDMMC1: case PERIPH_ID_SDMMC2: case PERIPH_ID_SDMMC3: src = readl(&clk->src_fsys); div = readl(&clk->div_fsys1); break; case PERIPH_ID_I2C0: case PERIPH_ID_I2C1: case PERIPH_ID_I2C2: case PERIPH_ID_I2C3: case PERIPH_ID_I2C4: case PERIPH_ID_I2C5: case PERIPH_ID_I2C6: case PERIPH_ID_I2C7: case PERIPH_ID_I2C8: case PERIPH_ID_I2C9: case PERIPH_ID_I2C10: src = EXYNOS542X_SRC_MPLL; div = readl(&clk->div_top1); break; default: debug("%s: invalid peripheral %d", __func__, peripheral); return -1; }; if (bit_info->src_bit >= 0) src = (src >> bit_info->src_bit) & bit_info->src_mask; switch (src) { case EXYNOS542X_SRC_MPLL: sclk = exynos542x_get_pll_clk(MPLL); break; case EXYNOS542X_SRC_SPLL: sclk = exynos542x_get_pll_clk(SPLL); break; case EXYNOS542X_SRC_EPLL: sclk = exynos542x_get_pll_clk(EPLL); break; case EXYNOS542X_SRC_RPLL: sclk = exynos542x_get_pll_clk(RPLL); break; default: debug("%s: EXYNOS542X_SRC %d not supported", __func__, src); return 0; } /* Clock divider ratio for this peripheral */ if (bit_info->div_bit >= 0) div = (div >> bit_info->div_bit) & bit_info->div_mask; /* Clock pre-divider ratio for this peripheral */ if (bit_info->prediv_bit >= 0) sub_div = (sub_div >> bit_info->prediv_bit) & bit_info->prediv_mask; /* Calculate and return required clock rate */ return (sclk / (div + 1)) / (sub_div + 1); } unsigned long clock_get_periph_rate(int peripheral) { if (cpu_is_exynos5()) { if (proid_is_exynos542x()) return exynos542x_get_periph_rate(peripheral); return exynos5_get_periph_rate(peripheral); } else { return 0; } } /* exynos4: return ARM clock frequency */ static unsigned long exynos4_get_arm_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int core_ratio; unsigned int core2_ratio; div = readl(&clk->div_cpu0); /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */ core_ratio = (div >> 0) & 0x7; core2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (core_ratio + 1); armclk /= (core2_ratio + 1); return armclk; } /* exynos4x12: return ARM clock frequency */ static unsigned long exynos4x12_get_arm_clk(void) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int core_ratio; unsigned int core2_ratio; div = readl(&clk->div_cpu0); /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */ core_ratio = (div >> 0) & 0x7; core2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (core_ratio + 1); armclk /= (core2_ratio + 1); return armclk; } /* exynos5: return ARM clock frequency */ static unsigned long exynos5_get_arm_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int arm_ratio; unsigned int arm2_ratio; div = readl(&clk->div_cpu0); /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */ arm_ratio = (div >> 0) & 0x7; arm2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (arm_ratio + 1); armclk /= (arm2_ratio + 1); return armclk; } /* exynos4: return pwm clock frequency */ static unsigned long exynos4_get_pwm_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; if (s5p_get_cpu_rev() == 0) { /* * CLK_SRC_PERIL0 * PWM_SEL [27:24] */ sel = readl(&clk->src_peril0); sel = (sel >> 24) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL3 * PWM_RATIO [3:0] */ ratio = readl(&clk->div_peril3); ratio = ratio & 0xf; } else if (s5p_get_cpu_rev() == 1) { sclk = get_pll_clk(MPLL); ratio = 8; } else return 0; pclk = sclk / (ratio + 1); return pclk; } /* exynos4x12: return pwm clock frequency */ static unsigned long exynos4x12_get_pwm_clk(void) { unsigned long pclk, sclk; unsigned int ratio; sclk = get_pll_clk(MPLL); ratio = 8; pclk = sclk / (ratio + 1); return pclk; } /* exynos4: return uart clock frequency */ static unsigned long exynos4_get_uart_clk(int dev_index) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIL0 * UART0_SEL [3:0] * UART1_SEL [7:4] * UART2_SEL [8:11] * UART3_SEL [12:15] * UART4_SEL [16:19] * UART5_SEL [23:20] */ sel = readl(&clk->src_peril0); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL0 * UART0_RATIO [3:0] * UART1_RATIO [7:4] * UART2_RATIO [8:11] * UART3_RATIO [12:15] * UART4_RATIO [16:19] * UART5_RATIO [23:20] */ ratio = readl(&clk->div_peril0); ratio = (ratio >> (dev_index << 2)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } /* exynos4x12: return uart clock frequency */ static unsigned long exynos4x12_get_uart_clk(int dev_index) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIL0 * UART0_SEL [3:0] * UART1_SEL [7:4] * UART2_SEL [8:11] * UART3_SEL [12:15] * UART4_SEL [16:19] */ sel = readl(&clk->src_peril0); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL0 * UART0_RATIO [3:0] * UART1_RATIO [7:4] * UART2_RATIO [8:11] * UART3_RATIO [12:15] * UART4_RATIO [16:19] */ ratio = readl(&clk->div_peril0); ratio = (ratio >> (dev_index << 2)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } static unsigned long exynos4_get_mmc_clk(int dev_index) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel, ratio, pre_ratio; int shift = 0; sel = readl(&clk->src_fsys); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; switch (dev_index) { case 0: case 1: ratio = readl(&clk->div_fsys1); pre_ratio = readl(&clk->div_fsys1); break; case 2: case 3: ratio = readl(&clk->div_fsys2); pre_ratio = readl(&clk->div_fsys2); break; case 4: ratio = readl(&clk->div_fsys3); pre_ratio = readl(&clk->div_fsys3); break; default: return 0; } if (dev_index == 1 || dev_index == 3) shift = 16; ratio = (ratio >> shift) & 0xf; pre_ratio = (pre_ratio >> (shift + 8)) & 0xff; uclk = (sclk / (ratio + 1)) / (pre_ratio + 1); return uclk; } /* exynos4: set the mmc clock */ static void exynos4_set_mmc_clk(int dev_index, unsigned int div) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned int addr, clear_bit, set_bit; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24] * CLK_DIV_FSYS3 * MMC4_RATIO [3:0] */ if (dev_index < 2) { addr = (unsigned int)&clk->div_fsys1; clear_bit = MASK_PRE_RATIO(dev_index); set_bit = SET_PRE_RATIO(dev_index, div); } else if (dev_index == 4) { addr = (unsigned int)&clk->div_fsys3; dev_index -= 4; /* MMC4 is controlled with the MMC4_RATIO value */ clear_bit = MASK_RATIO(dev_index); set_bit = SET_RATIO(dev_index, div); } else { addr = (unsigned int)&clk->div_fsys2; dev_index -= 2; clear_bit = MASK_PRE_RATIO(dev_index); set_bit = SET_PRE_RATIO(dev_index, div); } clrsetbits_le32(addr, clear_bit, set_bit); } /* exynos5: set the mmc clock */ static void exynos5_set_mmc_clk(int dev_index, unsigned int div) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int addr; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24] */ if (dev_index < 2) { addr = (unsigned int)&clk->div_fsys1; } else { addr = (unsigned int)&clk->div_fsys2; dev_index -= 2; } clrsetbits_le32(addr, 0xff << ((dev_index << 4) + 8), (div & 0xff) << ((dev_index << 4) + 8)); } /* exynos5: set the mmc clock */ static void exynos5420_set_mmc_clk(int dev_index, unsigned int div) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned int addr; unsigned int shift; /* * CLK_DIV_FSYS1 * MMC0_RATIO [9:0] * MMC1_RATIO [19:10] * MMC2_RATIO [29:20] */ addr = (unsigned int)&clk->div_fsys1; shift = dev_index * 10; clrsetbits_le32(addr, 0x3ff << shift, (div & 0x3ff) << shift); } /* get_lcd_clk: return lcd clock frequency */ static unsigned long exynos4_get_lcd_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] */ sel = readl(&clk->src_lcd0); sel = sel & 0xf; /* * 0x6: SCLK_MPLL * 0x7: SCLK_EPLL * 0x8: SCLK_VPLL */ if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] */ ratio = readl(&clk->div_lcd0); ratio = ratio & 0xf; pclk = sclk / (ratio + 1); return pclk; } /* get_lcd_clk: return lcd clock frequency */ static unsigned long exynos5_get_lcd_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] */ sel = readl(&clk->src_disp1_0); sel = sel & 0xf; /* * 0x6: SCLK_MPLL * 0x7: SCLK_EPLL * 0x8: SCLK_VPLL */ if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] */ ratio = readl(&clk->div_disp1_0); ratio = ratio & 0xf; pclk = sclk / (ratio + 1); return pclk; } static unsigned long exynos5420_get_lcd_clk(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_DISP10 * FIMD1_SEL [4] * 0: SCLK_RPLL * 1: SCLK_SPLL */ sel = readl(&clk->src_disp10); sel &= (1 << 4); if (sel) sclk = get_pll_clk(SPLL); else sclk = get_pll_clk(RPLL); /* * CLK_DIV_DISP10 * FIMD1_RATIO [3:0] */ ratio = readl(&clk->div_disp10); ratio = ratio & 0xf; pclk = sclk / (ratio + 1); return pclk; } static unsigned long exynos5800_get_lcd_clk(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_DISP10 * CLKMUX_FIMD1 [6:4] */ sel = (readl(&clk->src_disp10) >> 4) & 0x7; if (sel) { /* * Mapping of CLK_SRC_DISP10 CLKMUX_FIMD1 [6:4] values into * PLLs. The first element is a placeholder to bypass the * default settig. */ const int reg_map[] = {0, CPLL, DPLL, MPLL, SPLL, IPLL, EPLL, RPLL}; sclk = get_pll_clk(reg_map[sel]); } else sclk = get_board_sys_clk(); /* * CLK_DIV_DISP10 * FIMD1_RATIO [3:0] */ ratio = readl(&clk->div_disp10) & 0xf; return sclk / (ratio + 1); } void exynos4_set_lcd_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); /* * CLK_GATE_BLOCK * CLK_CAM [0] * CLK_TV [1] * CLK_MFC [2] * CLK_G3D [3] * CLK_LCD0 [4] * CLK_LCD1 [5] * CLK_GPS [7] */ setbits_le32(&clk->gate_block, 1 << 4); /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set lcd0 src clock 0x6: SCLK_MPLL */ clrsetbits_le32(&clk->src_lcd0, 0xf, 0x6); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for FIMD0 */ setbits_le32(&clk->gate_ip_lcd0, 1 << 0); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set fimd ratio */ clrsetbits_le32(&clk->div_lcd0, 0xf, 0x1); } void exynos5_set_lcd_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); /* * CLK_GATE_BLOCK * CLK_CAM [0] * CLK_TV [1] * CLK_MFC [2] * CLK_G3D [3] * CLK_LCD0 [4] * CLK_LCD1 [5] * CLK_GPS [7] */ setbits_le32(&clk->gate_block, 1 << 4); /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set lcd0 src clock 0x6: SCLK_MPLL */ clrsetbits_le32(&clk->src_disp1_0, 0xf, 0x6); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for FIMD0 */ setbits_le32(&clk->gate_ip_disp1, 1 << 0); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set fimd ratio */ clrsetbits_le32(&clk->div_disp1_0, 0xf, 0x0); } void exynos5420_set_lcd_clk(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned int cfg; /* * CLK_SRC_DISP10 * FIMD1_SEL [4] * 0: SCLK_RPLL * 1: SCLK_SPLL */ cfg = readl(&clk->src_disp10); cfg &= ~(0x1 << 4); cfg |= (0 << 4); writel(cfg, &clk->src_disp10); /* * CLK_DIV_DISP10 * FIMD1_RATIO [3:0] */ cfg = readl(&clk->div_disp10); cfg &= ~(0xf << 0); cfg |= (0 << 0); writel(cfg, &clk->div_disp10); } void exynos5800_set_lcd_clk(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned int cfg; /* * Use RPLL for pixel clock * CLK_SRC_DISP10 CLKMUX_FIMD1 [6:4] * ================== * 111: SCLK_RPLL */ cfg = readl(&clk->src_disp10) | (0x7 << 4); writel(cfg, &clk->src_disp10); /* * CLK_DIV_DISP10 * FIMD1_RATIO [3:0] */ clrsetbits_le32(&clk->div_disp10, 0xf << 0, 0x0 << 0); } void exynos4_set_mipi_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set mipi0 src clock 0x6: SCLK_MPLL */ clrsetbits_le32(&clk->src_lcd0, 0xf << 12, 0x6 << 12); /* * CLK_SRC_MASK_LCD0 * FIMD0_MASK [0] * MDNIE0_MASK [4] * MDNIE_PWM0_MASK [8] * MIPI0_MASK [12] * set src mask mipi0 0x1: Unmask */ setbits_le32(&clk->src_mask_lcd0, 0x1 << 12); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for MIPI0 */ setbits_le32(&clk->gate_ip_lcd0, 1 << 3); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set mipi ratio */ clrsetbits_le32(&clk->div_lcd0, 0xf << 16, 0x1 << 16); } int exynos5_set_epll_clk(unsigned long rate) { unsigned int epll_con, epll_con_k; unsigned int i; unsigned int lockcnt; unsigned int start; struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); epll_con = readl(&clk->epll_con0); epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK << EPLL_CON0_LOCK_DET_EN_SHIFT) | EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT | EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT | EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT); for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) { if (exynos5_epll_div[i].freq_out == rate) break; } if (i == ARRAY_SIZE(exynos5_epll_div)) return -1; epll_con_k = exynos5_epll_div[i].k_dsm << 0; epll_con |= exynos5_epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT; epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT; epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT; epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT; /* * Required period ( in cycles) to genarate a stable clock output. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs * frequency input (as per spec) */ lockcnt = 3000 * exynos5_epll_div[i].p_div; writel(lockcnt, &clk->epll_lock); writel(epll_con, &clk->epll_con0); writel(epll_con_k, &clk->epll_con1); start = get_timer(0); while (!(readl(&clk->epll_con0) & (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) { if (get_timer(start) > TIMEOUT_EPLL_LOCK) { debug("%s: Timeout waiting for EPLL lock\n", __func__); return -1; } } return 0; } static int exynos5420_set_i2s_clk_source(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); setbits_le32(&clk->src_top6, EXYNOS5420_CLK_SRC_MOUT_EPLL); clrsetbits_le32(&clk->src_mau, EXYNOS5420_AUDIO0_SEL_MASK, (EXYNOS5420_CLK_SRC_SCLK_EPLL)); setbits_le32(EXYNOS5_AUDIOSS_BASE, 1 << 0); return 0; } int exynos5_set_i2s_clk_source(unsigned int i2s_id) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int *audio_ass = (unsigned int *)samsung_get_base_audio_ass(); if (i2s_id == 0) { setbits_le32(&clk->src_top2, CLK_SRC_MOUT_EPLL); clrsetbits_le32(&clk->src_mau, AUDIO0_SEL_MASK, (CLK_SRC_SCLK_EPLL)); setbits_le32(audio_ass, AUDIO_CLKMUX_ASS); } else if (i2s_id == 1) { clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK, (CLK_SRC_SCLK_EPLL)); } else { return -1; } return 0; } int exynos5_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq, unsigned int i2s_id) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int div; if ((dst_frq == 0) || (src_frq == 0)) { debug("%s: Invalid requency input for prescaler\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } div = (src_frq / dst_frq); if (i2s_id == 0) { if (div > AUDIO_0_RATIO_MASK) { debug("%s: Frequency ratio is out of range\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } clrsetbits_le32(&clk->div_mau, AUDIO_0_RATIO_MASK, (div & AUDIO_0_RATIO_MASK)); } else if (i2s_id == 1) { if (div > AUDIO_1_RATIO_MASK) { debug("%s: Frequency ratio is out of range\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK, (div & AUDIO_1_RATIO_MASK)); } else { return -1; } return 0; } /** * Linearly searches for the most accurate main and fine stage clock scalars * (divisors) for a specified target frequency and scalar bit sizes by checking * all multiples of main_scalar_bits values. Will always return scalars up to or * slower than target. * * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32 * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32 * @param input_freq Clock frequency to be scaled in Hz * @param target_freq Desired clock frequency in Hz * @param best_fine_scalar Pointer to store the fine stage divisor * * Return: best_main_scalar Main scalar for desired frequency or -1 if none * found */ static int clock_calc_best_scalar(unsigned int main_scaler_bits, unsigned int fine_scalar_bits, unsigned int input_rate, unsigned int target_rate, unsigned int *best_fine_scalar) { int i; int best_main_scalar = -1; unsigned int best_error = target_rate; const unsigned int cap = (1 << fine_scalar_bits) - 1; const unsigned int loops = 1 << main_scaler_bits; debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate, target_rate, cap); assert(best_fine_scalar != NULL); assert(main_scaler_bits <= fine_scalar_bits); *best_fine_scalar = 1; if (input_rate == 0 || target_rate == 0) return -1; if (target_rate >= input_rate) return 1; for (i = 1; i <= loops; i++) { const unsigned int effective_div = max(min(input_rate / i / target_rate, cap), 1U); const unsigned int effective_rate = input_rate / i / effective_div; const int error = target_rate - effective_rate; debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div, effective_rate, error); if (error >= 0 && error <= best_error) { best_error = error; best_main_scalar = i; *best_fine_scalar = effective_div; } } return best_main_scalar; } static int exynos5_set_spi_clk(enum periph_id periph_id, unsigned int rate) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); int main; unsigned int fine; unsigned shift, pre_shift; unsigned mask = 0xff; u32 *reg; main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine); if (main < 0) { debug("%s: Cannot set clock rate for periph %d", __func__, periph_id); return -1; } main = main - 1; fine = fine - 1; switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->div_peric1; shift = 0; pre_shift = 8; break; case PERIPH_ID_SPI1: reg = &clk->div_peric1; shift = 16; pre_shift = 24; break; case PERIPH_ID_SPI2: reg = &clk->div_peric2; shift = 0; pre_shift = 8; break; case PERIPH_ID_SPI3: reg = &clk->sclk_div_isp; shift = 0; pre_shift = 4; break; case PERIPH_ID_SPI4: reg = &clk->sclk_div_isp; shift = 12; pre_shift = 16; break; default: debug("%s: Unsupported peripheral ID %d\n", __func__, periph_id); return -1; } clrsetbits_le32(reg, mask << shift, (main & mask) << shift); clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift); return 0; } static int exynos5420_set_spi_clk(enum periph_id periph_id, unsigned int rate) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); int main; unsigned int fine; unsigned shift, pre_shift; unsigned div_mask = 0xf, pre_div_mask = 0xff; u32 *reg; u32 *pre_reg; main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine); if (main < 0) { debug("%s: Cannot set clock rate for periph %d", __func__, periph_id); return -1; } main = main - 1; fine = fine - 1; switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->div_peric1; shift = 20; pre_reg = &clk->div_peric4; pre_shift = 8; break; case PERIPH_ID_SPI1: reg = &clk->div_peric1; shift = 24; pre_reg = &clk->div_peric4; pre_shift = 16; break; case PERIPH_ID_SPI2: reg = &clk->div_peric1; shift = 28; pre_reg = &clk->div_peric4; pre_shift = 24; break; case PERIPH_ID_SPI3: reg = &clk->div_isp1; shift = 16; pre_reg = &clk->div_isp1; pre_shift = 0; break; case PERIPH_ID_SPI4: reg = &clk->div_isp1; shift = 20; pre_reg = &clk->div_isp1; pre_shift = 8; break; default: debug("%s: Unsupported peripheral ID %d\n", __func__, periph_id); return -1; } clrsetbits_le32(reg, div_mask << shift, (main & div_mask) << shift); clrsetbits_le32(pre_reg, pre_div_mask << pre_shift, (fine & pre_div_mask) << pre_shift); return 0; } static unsigned long exynos4_get_i2c_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long sclk, aclk_100; unsigned int ratio; sclk = get_pll_clk(APLL); ratio = (readl(&clk->div_top)) >> 4; ratio &= 0xf; aclk_100 = sclk / (ratio + 1); return aclk_100; } unsigned long get_pll_clk(int pllreg) { if (cpu_is_exynos5()) { if (proid_is_exynos542x()) return exynos542x_get_pll_clk(pllreg); return exynos5_get_pll_clk(pllreg); } else if (cpu_is_exynos4()) { if (proid_is_exynos4412()) return exynos4x12_get_pll_clk(pllreg); return exynos4_get_pll_clk(pllreg); } return 0; } unsigned long get_arm_clk(void) { if (cpu_is_exynos5()) { return exynos5_get_arm_clk(); } else if (cpu_is_exynos4()) { if (proid_is_exynos4412()) return exynos4x12_get_arm_clk(); return exynos4_get_arm_clk(); } return 0; } unsigned long get_i2c_clk(void) { if (cpu_is_exynos5()) return clock_get_periph_rate(PERIPH_ID_I2C0); else if (cpu_is_exynos4()) return exynos4_get_i2c_clk(); return 0; } unsigned long get_pwm_clk(void) { if (cpu_is_exynos5()) { return clock_get_periph_rate(PERIPH_ID_PWM0); } else if (cpu_is_exynos4()) { if (proid_is_exynos4412()) return exynos4x12_get_pwm_clk(); return exynos4_get_pwm_clk(); } return 0; } unsigned long get_uart_clk(int dev_index) { enum periph_id id; switch (dev_index) { case 0: id = PERIPH_ID_UART0; break; case 1: id = PERIPH_ID_UART1; break; case 2: id = PERIPH_ID_UART2; break; case 3: id = PERIPH_ID_UART3; break; default: debug("%s: invalid UART index %d", __func__, dev_index); return -1; } if (cpu_is_exynos5()) { return clock_get_periph_rate(id); } else if (cpu_is_exynos4()) { if (proid_is_exynos4412()) return exynos4x12_get_uart_clk(dev_index); return exynos4_get_uart_clk(dev_index); } return 0; } unsigned long get_mmc_clk(int dev_index) { enum periph_id id; if (cpu_is_exynos4()) return exynos4_get_mmc_clk(dev_index); switch (dev_index) { case 0: id = PERIPH_ID_SDMMC0; break; case 1: id = PERIPH_ID_SDMMC1; break; case 2: id = PERIPH_ID_SDMMC2; break; case 3: id = PERIPH_ID_SDMMC3; break; default: debug("%s: invalid MMC index %d", __func__, dev_index); return -1; } return clock_get_periph_rate(id); } void set_mmc_clk(int dev_index, unsigned int div) { /* If want to set correct value, it needs to substract one from div.*/ if (div > 0) div -= 1; if (cpu_is_exynos5()) { if (proid_is_exynos542x()) exynos5420_set_mmc_clk(dev_index, div); else exynos5_set_mmc_clk(dev_index, div); } else if (cpu_is_exynos4()) { exynos4_set_mmc_clk(dev_index, div); } } unsigned long get_lcd_clk(void) { if (cpu_is_exynos4()) { return exynos4_get_lcd_clk(); } else if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_get_lcd_clk(); else if (proid_is_exynos5422()) return exynos5800_get_lcd_clk(); else return exynos5_get_lcd_clk(); } return 0; } void set_lcd_clk(void) { if (cpu_is_exynos4()) { exynos4_set_lcd_clk(); } else if (cpu_is_exynos5()) { if (proid_is_exynos5250()) exynos5_set_lcd_clk(); else if (proid_is_exynos5420()) exynos5420_set_lcd_clk(); else exynos5800_set_lcd_clk(); } } void set_mipi_clk(void) { if (cpu_is_exynos4()) exynos4_set_mipi_clk(); } int set_spi_clk(int periph_id, unsigned int rate) { if (cpu_is_exynos5()) { if (proid_is_exynos542x()) return exynos5420_set_spi_clk(periph_id, rate); return exynos5_set_spi_clk(periph_id, rate); } return 0; } int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq, unsigned int i2s_id) { if (cpu_is_exynos5()) return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq, i2s_id); return 0; } int set_i2s_clk_source(unsigned int i2s_id) { if (cpu_is_exynos5()) { if (proid_is_exynos542x()) return exynos5420_set_i2s_clk_source(); else return exynos5_set_i2s_clk_source(i2s_id); } return 0; } int set_epll_clk(unsigned long rate) { if (cpu_is_exynos5()) return exynos5_set_epll_clk(rate); return 0; }