diff options
-rw-r--r-- | include/linux/log2.h | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/include/linux/log2.h b/include/linux/log2.h new file mode 100644 index 0000000000..aa1de63090 --- /dev/null +++ b/include/linux/log2.h @@ -0,0 +1,205 @@ +/* Integer base 2 logarithm calculation + * + * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. + * Written by David Howells (dhowells@redhat.com) + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#ifndef _LINUX_LOG2_H +#define _LINUX_LOG2_H + +#include <linux/types.h> +#include <linux/bitops.h> + +/* + * deal with unrepresentable constant logarithms + */ +extern __attribute__((const, noreturn)) +int ____ilog2_NaN(void); + +/* + * non-constant log of base 2 calculators + * - the arch may override these in asm/bitops.h if they can be implemented + * more efficiently than using fls() and fls64() + * - the arch is not required to handle n==0 if implementing the fallback + */ +#ifndef CONFIG_ARCH_HAS_ILOG2_U32 +static inline __attribute__((const)) +int __ilog2_u32(u32 n) +{ + return fls(n) - 1; +} +#endif + +#ifndef CONFIG_ARCH_HAS_ILOG2_U64 +static inline __attribute__((const)) +int __ilog2_u64(u64 n) +{ + return fls64(n) - 1; +} +#endif + +/* + * Determine whether some value is a power of two, where zero is + * *not* considered a power of two. + */ + +static inline __attribute__((const)) +bool is_power_of_2(unsigned long n) +{ + return (n != 0 && ((n & (n - 1)) == 0)); +} + +/* + * round up to nearest power of two + */ +static inline __attribute__((const)) +unsigned long __roundup_pow_of_two(unsigned long n) +{ + return 1UL << fls_long(n - 1); +} + +/* + * round down to nearest power of two + */ +static inline __attribute__((const)) +unsigned long __rounddown_pow_of_two(unsigned long n) +{ + return 1UL << (fls_long(n) - 1); +} + +/** + * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value + * @n - parameter + * + * constant-capable log of base 2 calculation + * - this can be used to initialise global variables from constant data, hence + * the massive ternary operator construction + * + * selects the appropriately-sized optimised version depending on sizeof(n) + */ +#define ilog2(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (n) < 1 ? ____ilog2_NaN() : \ + (n) & (1ULL << 63) ? 63 : \ + (n) & (1ULL << 62) ? 62 : \ + (n) & (1ULL << 61) ? 61 : \ + (n) & (1ULL << 60) ? 60 : \ + (n) & (1ULL << 59) ? 59 : \ + (n) & (1ULL << 58) ? 58 : \ + (n) & (1ULL << 57) ? 57 : \ + (n) & (1ULL << 56) ? 56 : \ + (n) & (1ULL << 55) ? 55 : \ + (n) & (1ULL << 54) ? 54 : \ + (n) & (1ULL << 53) ? 53 : \ + (n) & (1ULL << 52) ? 52 : \ + (n) & (1ULL << 51) ? 51 : \ + (n) & (1ULL << 50) ? 50 : \ + (n) & (1ULL << 49) ? 49 : \ + (n) & (1ULL << 48) ? 48 : \ + (n) & (1ULL << 47) ? 47 : \ + (n) & (1ULL << 46) ? 46 : \ + (n) & (1ULL << 45) ? 45 : \ + (n) & (1ULL << 44) ? 44 : \ + (n) & (1ULL << 43) ? 43 : \ + (n) & (1ULL << 42) ? 42 : \ + (n) & (1ULL << 41) ? 41 : \ + (n) & (1ULL << 40) ? 40 : \ + (n) & (1ULL << 39) ? 39 : \ + (n) & (1ULL << 38) ? 38 : \ + (n) & (1ULL << 37) ? 37 : \ + (n) & (1ULL << 36) ? 36 : \ + (n) & (1ULL << 35) ? 35 : \ + (n) & (1ULL << 34) ? 34 : \ + (n) & (1ULL << 33) ? 33 : \ + (n) & (1ULL << 32) ? 32 : \ + (n) & (1ULL << 31) ? 31 : \ + (n) & (1ULL << 30) ? 30 : \ + (n) & (1ULL << 29) ? 29 : \ + (n) & (1ULL << 28) ? 28 : \ + (n) & (1ULL << 27) ? 27 : \ + (n) & (1ULL << 26) ? 26 : \ + (n) & (1ULL << 25) ? 25 : \ + (n) & (1ULL << 24) ? 24 : \ + (n) & (1ULL << 23) ? 23 : \ + (n) & (1ULL << 22) ? 22 : \ + (n) & (1ULL << 21) ? 21 : \ + (n) & (1ULL << 20) ? 20 : \ + (n) & (1ULL << 19) ? 19 : \ + (n) & (1ULL << 18) ? 18 : \ + (n) & (1ULL << 17) ? 17 : \ + (n) & (1ULL << 16) ? 16 : \ + (n) & (1ULL << 15) ? 15 : \ + (n) & (1ULL << 14) ? 14 : \ + (n) & (1ULL << 13) ? 13 : \ + (n) & (1ULL << 12) ? 12 : \ + (n) & (1ULL << 11) ? 11 : \ + (n) & (1ULL << 10) ? 10 : \ + (n) & (1ULL << 9) ? 9 : \ + (n) & (1ULL << 8) ? 8 : \ + (n) & (1ULL << 7) ? 7 : \ + (n) & (1ULL << 6) ? 6 : \ + (n) & (1ULL << 5) ? 5 : \ + (n) & (1ULL << 4) ? 4 : \ + (n) & (1ULL << 3) ? 3 : \ + (n) & (1ULL << 2) ? 2 : \ + (n) & (1ULL << 1) ? 1 : \ + (n) & (1ULL << 0) ? 0 : \ + ____ilog2_NaN() \ + ) : \ + (sizeof(n) <= 4) ? \ + __ilog2_u32(n) : \ + __ilog2_u64(n) \ + ) + +/** + * roundup_pow_of_two - round the given value up to nearest power of two + * @n - parameter + * + * round the given value up to the nearest power of two + * - the result is undefined when n == 0 + * - this can be used to initialise global variables from constant data + */ +#define roundup_pow_of_two(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (n == 1) ? 1 : \ + (1UL << (ilog2((n) - 1) + 1)) \ + ) : \ + __roundup_pow_of_two(n) \ + ) + +/** + * rounddown_pow_of_two - round the given value down to nearest power of two + * @n - parameter + * + * round the given value down to the nearest power of two + * - the result is undefined when n == 0 + * - this can be used to initialise global variables from constant data + */ +#define rounddown_pow_of_two(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (1UL << ilog2(n))) : \ + __rounddown_pow_of_two(n) \ + ) + +/** + * order_base_2 - calculate the (rounded up) base 2 order of the argument + * @n: parameter + * + * The first few values calculated by this routine: + * ob2(0) = 0 + * ob2(1) = 0 + * ob2(2) = 1 + * ob2(3) = 2 + * ob2(4) = 2 + * ob2(5) = 3 + * ... and so on. + */ + +#define order_base_2(n) ilog2(roundup_pow_of_two(n)) + +#endif /* _LINUX_LOG2_H */ |