// SPDX-License-Identifier: GPL-2.0 /* * drivers/base/devres.c - device resource management * * Copyright (c) 2006 SUSE Linux Products GmbH * Copyright (c) 2006 Tejun Heo */ #include #include #include #include #include #include "base.h" #include "trace.h" struct devres_node { struct list_head entry; dr_release_t release; const char *name; size_t size; }; struct devres { struct devres_node node; /* * Some archs want to perform DMA into kmalloc caches * and need a guaranteed alignment larger than * the alignment of a 64-bit integer. * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same * alignment for struct devres when allocated by kmalloc(). */ u8 __aligned(ARCH_DMA_MINALIGN) data[]; }; struct devres_group { struct devres_node node[2]; void *id; int color; /* -- 8 pointers */ }; static void set_node_dbginfo(struct devres_node *node, const char *name, size_t size) { node->name = name; node->size = size; } #ifdef CONFIG_DEBUG_DEVRES static int log_devres = 0; module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR); static void devres_dbg(struct device *dev, struct devres_node *node, const char *op) { if (unlikely(log_devres)) dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n", op, node, node->name, node->size); } #else /* CONFIG_DEBUG_DEVRES */ #define devres_dbg(dev, node, op) do {} while (0) #endif /* CONFIG_DEBUG_DEVRES */ static void devres_log(struct device *dev, struct devres_node *node, const char *op) { trace_devres_log(dev, op, node, node->name, node->size); devres_dbg(dev, node, op); } /* * Release functions for devres group. These callbacks are used only * for identification. */ static void group_open_release(struct device *dev, void *res) { /* noop */ } static void group_close_release(struct device *dev, void *res) { /* noop */ } static struct devres_group * node_to_group(struct devres_node *node) { if (node->release == &group_open_release) return container_of(node, struct devres_group, node[0]); if (node->release == &group_close_release) return container_of(node, struct devres_group, node[1]); return NULL; } static bool check_dr_size(size_t size, size_t *tot_size) { /* We must catch any near-SIZE_MAX cases that could overflow. */ if (unlikely(check_add_overflow(sizeof(struct devres), size, tot_size))) return false; /* Actually allocate the full kmalloc bucket size. */ *tot_size = kmalloc_size_roundup(*tot_size); return true; } static __always_inline struct devres * alloc_dr(dr_release_t release, size_t size, gfp_t gfp, int nid) { size_t tot_size; struct devres *dr; if (!check_dr_size(size, &tot_size)) return NULL; dr = kmalloc_node_track_caller(tot_size, gfp, nid); if (unlikely(!dr)) return NULL; /* No need to clear memory twice */ if (!(gfp & __GFP_ZERO)) memset(dr, 0, offsetof(struct devres, data)); INIT_LIST_HEAD(&dr->node.entry); dr->node.release = release; return dr; } static void add_dr(struct device *dev, struct devres_node *node) { devres_log(dev, node, "ADD"); BUG_ON(!list_empty(&node->entry)); list_add_tail(&node->entry, &dev->devres_head); } static void replace_dr(struct device *dev, struct devres_node *old, struct devres_node *new) { devres_log(dev, old, "REPLACE"); BUG_ON(!list_empty(&new->entry)); list_replace(&old->entry, &new->entry); } /** * __devres_alloc_node - Allocate device resource data * @release: Release function devres will be associated with * @size: Allocation size * @gfp: Allocation flags * @nid: NUMA node * @name: Name of the resource * * Allocate devres of @size bytes. The allocated area is zeroed, then * associated with @release. The returned pointer can be passed to * other devres_*() functions. * * RETURNS: * Pointer to allocated devres on success, NULL on failure. */ void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) { struct devres *dr; dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid); if (unlikely(!dr)) return NULL; set_node_dbginfo(&dr->node, name, size); return dr->data; } EXPORT_SYMBOL_GPL(__devres_alloc_node); /** * devres_for_each_res - Resource iterator * @dev: Device to iterate resource from * @release: Look for resources associated with this release function * @match: Match function (optional) * @match_data: Data for the match function * @fn: Function to be called for each matched resource. * @data: Data for @fn, the 3rd parameter of @fn * * Call @fn for each devres of @dev which is associated with @release * and for which @match returns 1. * * RETURNS: * void */ void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data) { struct devres_node *node; struct devres_node *tmp; unsigned long flags; if (!fn) return; spin_lock_irqsave(&dev->devres_lock, flags); list_for_each_entry_safe_reverse(node, tmp, &dev->devres_head, entry) { struct devres *dr = container_of(node, struct devres, node); if (node->release != release) continue; if (match && !match(dev, dr->data, match_data)) continue; fn(dev, dr->data, data); } spin_unlock_irqrestore(&dev->devres_lock, flags); } EXPORT_SYMBOL_GPL(devres_for_each_res); /** * devres_free - Free device resource data * @res: Pointer to devres data to free * * Free devres created with devres_alloc(). */ void devres_free(void *res) { if (res) { struct devres *dr = container_of(res, struct devres, data); BUG_ON(!list_empty(&dr->node.entry)); kfree(dr); } } EXPORT_SYMBOL_GPL(devres_free); /** * devres_add - Register device resource * @dev: Device to add resource to * @res: Resource to register * * Register devres @res to @dev. @res should have been allocated * using devres_alloc(). On driver detach, the associated release * function will be invoked and devres will be freed automatically. */ void devres_add(struct device *dev, void *res) { struct devres *dr = container_of(res, struct devres, data); unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); add_dr(dev, &dr->node); spin_unlock_irqrestore(&dev->devres_lock, flags); } EXPORT_SYMBOL_GPL(devres_add); static struct devres *find_dr(struct device *dev, dr_release_t release, dr_match_t match, void *match_data) { struct devres_node *node; list_for_each_entry_reverse(node, &dev->devres_head, entry) { struct devres *dr = container_of(node, struct devres, node); if (node->release != release) continue; if (match && !match(dev, dr->data, match_data)) continue; return dr; } return NULL; } /** * devres_find - Find device resource * @dev: Device to lookup resource from * @release: Look for resources associated with this release function * @match: Match function (optional) * @match_data: Data for the match function * * Find the latest devres of @dev which is associated with @release * and for which @match returns 1. If @match is NULL, it's considered * to match all. * * RETURNS: * Pointer to found devres, NULL if not found. */ void * devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data) { struct devres *dr; unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); dr = find_dr(dev, release, match, match_data); spin_unlock_irqrestore(&dev->devres_lock, flags); if (dr) return dr->data; return NULL; } EXPORT_SYMBOL_GPL(devres_find); /** * devres_get - Find devres, if non-existent, add one atomically * @dev: Device to lookup or add devres for * @new_res: Pointer to new initialized devres to add if not found * @match: Match function (optional) * @match_data: Data for the match function * * Find the latest devres of @dev which has the same release function * as @new_res and for which @match return 1. If found, @new_res is * freed; otherwise, @new_res is added atomically. * * RETURNS: * Pointer to found or added devres. */ void * devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data) { struct devres *new_dr = container_of(new_res, struct devres, data); struct devres *dr; unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); dr = find_dr(dev, new_dr->node.release, match, match_data); if (!dr) { add_dr(dev, &new_dr->node); dr = new_dr; new_res = NULL; } spin_unlock_irqrestore(&dev->devres_lock, flags); devres_free(new_res); return dr->data; } EXPORT_SYMBOL_GPL(devres_get); /** * devres_remove - Find a device resource and remove it * @dev: Device to find resource from * @release: Look for resources associated with this release function * @match: Match function (optional) * @match_data: Data for the match function * * Find the latest devres of @dev associated with @release and for * which @match returns 1. If @match is NULL, it's considered to * match all. If found, the resource is removed atomically and * returned. * * RETURNS: * Pointer to removed devres on success, NULL if not found. */ void * devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data) { struct devres *dr; unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); dr = find_dr(dev, release, match, match_data); if (dr) { list_del_init(&dr->node.entry); devres_log(dev, &dr->node, "REM"); } spin_unlock_irqrestore(&dev->devres_lock, flags); if (dr) return dr->data; return NULL; } EXPORT_SYMBOL_GPL(devres_remove); /** * devres_destroy - Find a device resource and destroy it * @dev: Device to find resource from * @release: Look for resources associated with this release function * @match: Match function (optional) * @match_data: Data for the match function * * Find the latest devres of @dev associated with @release and for * which @match returns 1. If @match is NULL, it's considered to * match all. If found, the resource is removed atomically and freed. * * Note that the release function for the resource will not be called, * only the devres-allocated data will be freed. The caller becomes * responsible for freeing any other data. * * RETURNS: * 0 if devres is found and freed, -ENOENT if not found. */ int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data) { void *res; res = devres_remove(dev, release, match, match_data); if (unlikely(!res)) return -ENOENT; devres_free(res); return 0; } EXPORT_SYMBOL_GPL(devres_destroy); /** * devres_release - Find a device resource and destroy it, calling release * @dev: Device to find resource from * @release: Look for resources associated with this release function * @match: Match function (optional) * @match_data: Data for the match function * * Find the latest devres of @dev associated with @release and for * which @match returns 1. If @match is NULL, it's considered to * match all. If found, the resource is removed atomically, the * release function called and the resource freed. * * RETURNS: * 0 if devres is found and freed, -ENOENT if not found. */ int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data) { void *res; res = devres_remove(dev, release, match, match_data); if (unlikely(!res)) return -ENOENT; (*release)(dev, res); devres_free(res); return 0; } EXPORT_SYMBOL_GPL(devres_release); static int remove_nodes(struct device *dev, struct list_head *first, struct list_head *end, struct list_head *todo) { struct devres_node *node, *n; int cnt = 0, nr_groups = 0; /* First pass - move normal devres entries to @todo and clear * devres_group colors. */ node = list_entry(first, struct devres_node, entry); list_for_each_entry_safe_from(node, n, end, entry) { struct devres_group *grp; grp = node_to_group(node); if (grp) { /* clear color of group markers in the first pass */ grp->color = 0; nr_groups++; } else { /* regular devres entry */ if (&node->entry == first) first = first->next; list_move_tail(&node->entry, todo); cnt++; } } if (!nr_groups) return cnt; /* Second pass - Scan groups and color them. A group gets * color value of two iff the group is wholly contained in * [current node, end). That is, for a closed group, both opening * and closing markers should be in the range, while just the * opening marker is enough for an open group. */ node = list_entry(first, struct devres_node, entry); list_for_each_entry_safe_from(node, n, end, entry) { struct devres_group *grp; grp = node_to_group(node); BUG_ON(!grp || list_empty(&grp->node[0].entry)); grp->color++; if (list_empty(&grp->node[1].entry)) grp->color++; BUG_ON(grp->color <= 0 || grp->color > 2); if (grp->color == 2) { /* No need to update current node or end. The removed * nodes are always before both. */ list_move_tail(&grp->node[0].entry, todo); list_del_init(&grp->node[1].entry); } } return cnt; } static void release_nodes(struct device *dev, struct list_head *todo) { struct devres *dr, *tmp; /* Release. Note that both devres and devres_group are * handled as devres in the following loop. This is safe. */ list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) { devres_log(dev, &dr->node, "REL"); dr->node.release(dev, dr->data); kfree(dr); } } /** * devres_release_all - Release all managed resources * @dev: Device to release resources for * * Release all resources associated with @dev. This function is * called on driver detach. */ int devres_release_all(struct device *dev) { unsigned long flags; LIST_HEAD(todo); int cnt; /* Looks like an uninitialized device structure */ if (WARN_ON(dev->devres_head.next == NULL)) return -ENODEV; /* Nothing to release if list is empty */ if (list_empty(&dev->devres_head)) return 0; spin_lock_irqsave(&dev->devres_lock, flags); cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo); spin_unlock_irqrestore(&dev->devres_lock, flags); release_nodes(dev, &todo); return cnt; } /** * devres_open_group - Open a new devres group * @dev: Device to open devres group for * @id: Separator ID * @gfp: Allocation flags * * Open a new devres group for @dev with @id. For @id, using a * pointer to an object which won't be used for another group is * recommended. If @id is NULL, address-wise unique ID is created. * * RETURNS: * ID of the new group, NULL on failure. */ void * devres_open_group(struct device *dev, void *id, gfp_t gfp) { struct devres_group *grp; unsigned long flags; grp = kmalloc(sizeof(*grp), gfp); if (unlikely(!grp)) return NULL; grp->node[0].release = &group_open_release; grp->node[1].release = &group_close_release; INIT_LIST_HEAD(&grp->node[0].entry); INIT_LIST_HEAD(&grp->node[1].entry); set_node_dbginfo(&grp->node[0], "grp<", 0); set_node_dbginfo(&grp->node[1], "grp>", 0); grp->id = grp; if (id) grp->id = id; grp->color = 0; spin_lock_irqsave(&dev->devres_lock, flags); add_dr(dev, &grp->node[0]); spin_unlock_irqrestore(&dev->devres_lock, flags); return grp->id; } EXPORT_SYMBOL_GPL(devres_open_group); /* Find devres group with ID @id. If @id is NULL, look for the latest. */ static struct devres_group * find_group(struct device *dev, void *id) { struct devres_node *node; list_for_each_entry_reverse(node, &dev->devres_head, entry) { struct devres_group *grp; if (node->release != &group_open_release) continue; grp = container_of(node, struct devres_group, node[0]); if (id) { if (grp->id == id) return grp; } else if (list_empty(&grp->node[1].entry)) return grp; } return NULL; } /** * devres_close_group - Close a devres group * @dev: Device to close devres group for * @id: ID of target group, can be NULL * * Close the group identified by @id. If @id is NULL, the latest open * group is selected. */ void devres_close_group(struct device *dev, void *id) { struct devres_group *grp; unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); grp = find_group(dev, id); if (grp) add_dr(dev, &grp->node[1]); else WARN_ON(1); spin_unlock_irqrestore(&dev->devres_lock, flags); } EXPORT_SYMBOL_GPL(devres_close_group); /** * devres_remove_group - Remove a devres group * @dev: Device to remove group for * @id: ID of target group, can be NULL * * Remove the group identified by @id. If @id is NULL, the latest * open group is selected. Note that removing a group doesn't affect * any other resources. */ void devres_remove_group(struct device *dev, void *id) { struct devres_group *grp; unsigned long flags; spin_lock_irqsave(&dev->devres_lock, flags); grp = find_group(dev, id); if (grp) { list_del_init(&grp->node[0].entry); list_del_init(&grp->node[1].entry); devres_log(dev, &grp->node[0], "REM"); } else WARN_ON(1); spin_unlock_irqrestore(&dev->devres_lock, flags); kfree(grp); } EXPORT_SYMBOL_GPL(devres_remove_group); /** * devres_release_group - Release resources in a devres group * @dev: Device to release group for * @id: ID of target group, can be NULL * * Release all resources in the group identified by @id. If @id is * NULL, the latest open group is selected. The selected group and * groups properly nested inside the selected group are removed. * * RETURNS: * The number of released non-group resources. */ int devres_release_group(struct device *dev, void *id) { struct devres_group *grp; unsigned long flags; LIST_HEAD(todo); int cnt = 0; spin_lock_irqsave(&dev->devres_lock, flags); grp = find_group(dev, id); if (grp) { struct list_head *first = &grp->node[0].entry; struct list_head *end = &dev->devres_head; if (!list_empty(&grp->node[1].entry)) end = grp->node[1].entry.next; cnt = remove_nodes(dev, first, end, &todo); spin_unlock_irqrestore(&dev->devres_lock, flags); release_nodes(dev, &todo); } else { WARN_ON(1); spin_unlock_irqrestore(&dev->devres_lock, flags); } return cnt; } EXPORT_SYMBOL_GPL(devres_release_group); /* * Custom devres actions allow inserting a simple function call * into the teardown sequence. */ struct action_devres { void *data; void (*action)(void *); }; static int devm_action_match(struct device *dev, void *res, void *p) { struct action_devres *devres = res; struct action_devres *target = p; return devres->action == target->action && devres->data == target->data; } static void devm_action_release(struct device *dev, void *res) { struct action_devres *devres = res; devres->action(devres->data); } /** * __devm_add_action() - add a custom action to list of managed resources * @dev: Device that owns the action * @action: Function that should be called * @data: Pointer to data passed to @action implementation * @name: Name of the resource (for debugging purposes) * * This adds a custom action to the list of managed resources so that * it gets executed as part of standard resource unwinding. */ int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name) { struct action_devres *devres; devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres), GFP_KERNEL, NUMA_NO_NODE, name); if (!devres) return -ENOMEM; devres->data = data; devres->action = action; devres_add(dev, devres); return 0; } EXPORT_SYMBOL_GPL(__devm_add_action); /** * devm_remove_action() - removes previously added custom action * @dev: Device that owns the action * @action: Function implementing the action * @data: Pointer to data passed to @action implementation * * Removes instance of @action previously added by devm_add_action(). * Both action and data should match one of the existing entries. */ void devm_remove_action(struct device *dev, void (*action)(void *), void *data) { struct action_devres devres = { .data = data, .action = action, }; WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match, &devres)); } EXPORT_SYMBOL_GPL(devm_remove_action); /** * devm_release_action() - release previously added custom action * @dev: Device that owns the action * @action: Function implementing the action * @data: Pointer to data passed to @action implementation * * Releases and removes instance of @action previously added by * devm_add_action(). Both action and data should match one of the * existing entries. */ void devm_release_action(struct device *dev, void (*action)(void *), void *data) { struct action_devres devres = { .data = data, .action = action, }; WARN_ON(devres_release(dev, devm_action_release, devm_action_match, &devres)); } EXPORT_SYMBOL_GPL(devm_release_action); /* * Managed kmalloc/kfree */ static void devm_kmalloc_release(struct device *dev, void *res) { /* noop */ } static int devm_kmalloc_match(struct device *dev, void *res, void *data) { return res == data; } /** * devm_kmalloc - Resource-managed kmalloc * @dev: Device to allocate memory for * @size: Allocation size * @gfp: Allocation gfp flags * * Managed kmalloc. Memory allocated with this function is * automatically freed on driver detach. Like all other devres * resources, guaranteed alignment is unsigned long long. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) { struct devres *dr; if (unlikely(!size)) return ZERO_SIZE_PTR; /* use raw alloc_dr for kmalloc caller tracing */ dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev)); if (unlikely(!dr)) return NULL; /* * This is named devm_kzalloc_release for historical reasons * The initial implementation did not support kmalloc, only kzalloc */ set_node_dbginfo(&dr->node, "devm_kzalloc_release", size); devres_add(dev, dr->data); return dr->data; } EXPORT_SYMBOL_GPL(devm_kmalloc); /** * devm_krealloc - Resource-managed krealloc() * @dev: Device to re-allocate memory for * @ptr: Pointer to the memory chunk to re-allocate * @new_size: New allocation size * @gfp: Allocation gfp flags * * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc(). * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR, * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't * change the order in which the release callback for the re-alloc'ed devres * will be called (except when falling back to devm_kmalloc() or when freeing * resources when new_size is zero). The contents of the memory are preserved * up to the lesser of new and old sizes. */ void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp) { size_t total_new_size, total_old_size; struct devres *old_dr, *new_dr; unsigned long flags; if (unlikely(!new_size)) { devm_kfree(dev, ptr); return ZERO_SIZE_PTR; } if (unlikely(ZERO_OR_NULL_PTR(ptr))) return devm_kmalloc(dev, new_size, gfp); if (WARN_ON(is_kernel_rodata((unsigned long)ptr))) /* * We cannot reliably realloc a const string returned by * devm_kstrdup_const(). */ return NULL; if (!check_dr_size(new_size, &total_new_size)) return NULL; total_old_size = ksize(container_of(ptr, struct devres, data)); if (total_old_size == 0) { WARN(1, "Pointer doesn't point to dynamically allocated memory."); return NULL; } /* * If new size is smaller or equal to the actual number of bytes * allocated previously - just return the same pointer. */ if (total_new_size <= total_old_size) return ptr; /* * Otherwise: allocate new, larger chunk. We need to allocate before * taking the lock as most probably the caller uses GFP_KERNEL. * alloc_dr() will call check_dr_size() to reserve extra memory * for struct devres automatically, so size @new_size user request * is delivered to it directly as devm_kmalloc() does. */ new_dr = alloc_dr(devm_kmalloc_release, new_size, gfp, dev_to_node(dev)); if (!new_dr) return NULL; /* * The spinlock protects the linked list against concurrent * modifications but not the resource itself. */ spin_lock_irqsave(&dev->devres_lock, flags); old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr); if (!old_dr) { spin_unlock_irqrestore(&dev->devres_lock, flags); kfree(new_dr); WARN(1, "Memory chunk not managed or managed by a different device."); return NULL; } replace_dr(dev, &old_dr->node, &new_dr->node); spin_unlock_irqrestore(&dev->devres_lock, flags); /* * We can copy the memory contents after releasing the lock as we're * no longer modifying the list links. */ memcpy(new_dr->data, old_dr->data, total_old_size - offsetof(struct devres, data)); /* * Same for releasing the old devres - it's now been removed from the * list. This is also the reason why we must not use devm_kfree() - the * links are no longer valid. */ kfree(old_dr); return new_dr->data; } EXPORT_SYMBOL_GPL(devm_krealloc); /** * devm_kstrdup - Allocate resource managed space and * copy an existing string into that. * @dev: Device to allocate memory for * @s: the string to duplicate * @gfp: the GFP mask used in the devm_kmalloc() call when * allocating memory * RETURNS: * Pointer to allocated string on success, NULL on failure. */ char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) { size_t size; char *buf; if (!s) return NULL; size = strlen(s) + 1; buf = devm_kmalloc(dev, size, gfp); if (buf) memcpy(buf, s, size); return buf; } EXPORT_SYMBOL_GPL(devm_kstrdup); /** * devm_kstrdup_const - resource managed conditional string duplication * @dev: device for which to duplicate the string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Strings allocated by devm_kstrdup_const will be automatically freed when * the associated device is detached. * * RETURNS: * Source string if it is in .rodata section otherwise it falls back to * devm_kstrdup. */ const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp) { if (is_kernel_rodata((unsigned long)s)) return s; return devm_kstrdup(dev, s, gfp); } EXPORT_SYMBOL_GPL(devm_kstrdup_const); /** * devm_kvasprintf - Allocate resource managed space and format a string * into that. * @dev: Device to allocate memory for * @gfp: the GFP mask used in the devm_kmalloc() call when * allocating memory * @fmt: The printf()-style format string * @ap: Arguments for the format string * RETURNS: * Pointer to allocated string on success, NULL on failure. */ char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) { unsigned int len; char *p; va_list aq; va_copy(aq, ap); len = vsnprintf(NULL, 0, fmt, aq); va_end(aq); p = devm_kmalloc(dev, len+1, gfp); if (!p) return NULL; vsnprintf(p, len+1, fmt, ap); return p; } EXPORT_SYMBOL(devm_kvasprintf); /** * devm_kasprintf - Allocate resource managed space and format a string * into that. * @dev: Device to allocate memory for * @gfp: the GFP mask used in the devm_kmalloc() call when * allocating memory * @fmt: The printf()-style format string * @...: Arguments for the format string * RETURNS: * Pointer to allocated string on success, NULL on failure. */ char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) { va_list ap; char *p; va_start(ap, fmt); p = devm_kvasprintf(dev, gfp, fmt, ap); va_end(ap); return p; } EXPORT_SYMBOL_GPL(devm_kasprintf); /** * devm_kfree - Resource-managed kfree * @dev: Device this memory belongs to * @p: Memory to free * * Free memory allocated with devm_kmalloc(). */ void devm_kfree(struct device *dev, const void *p) { int rc; /* * Special cases: pointer to a string in .rodata returned by * devm_kstrdup_const() or NULL/ZERO ptr. */ if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p))) return; rc = devres_destroy(dev, devm_kmalloc_release, devm_kmalloc_match, (void *)p); WARN_ON(rc); } EXPORT_SYMBOL_GPL(devm_kfree); /** * devm_kmemdup - Resource-managed kmemdup * @dev: Device this memory belongs to * @src: Memory region to duplicate * @len: Memory region length * @gfp: GFP mask to use * * Duplicate region of a memory using resource managed kmalloc */ void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp) { void *p; p = devm_kmalloc(dev, len, gfp); if (p) memcpy(p, src, len); return p; } EXPORT_SYMBOL_GPL(devm_kmemdup); struct pages_devres { unsigned long addr; unsigned int order; }; static int devm_pages_match(struct device *dev, void *res, void *p) { struct pages_devres *devres = res; struct pages_devres *target = p; return devres->addr == target->addr; } static void devm_pages_release(struct device *dev, void *res) { struct pages_devres *devres = res; free_pages(devres->addr, devres->order); } /** * devm_get_free_pages - Resource-managed __get_free_pages * @dev: Device to allocate memory for * @gfp_mask: Allocation gfp flags * @order: Allocation size is (1 << order) pages * * Managed get_free_pages. Memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Address of allocated memory on success, 0 on failure. */ unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order) { struct pages_devres *devres; unsigned long addr; addr = __get_free_pages(gfp_mask, order); if (unlikely(!addr)) return 0; devres = devres_alloc(devm_pages_release, sizeof(struct pages_devres), GFP_KERNEL); if (unlikely(!devres)) { free_pages(addr, order); return 0; } devres->addr = addr; devres->order = order; devres_add(dev, devres); return addr; } EXPORT_SYMBOL_GPL(devm_get_free_pages); /** * devm_free_pages - Resource-managed free_pages * @dev: Device this memory belongs to * @addr: Memory to free * * Free memory allocated with devm_get_free_pages(). Unlike free_pages, * there is no need to supply the @order. */ void devm_free_pages(struct device *dev, unsigned long addr) { struct pages_devres devres = { .addr = addr }; WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match, &devres)); } EXPORT_SYMBOL_GPL(devm_free_pages); static void devm_percpu_release(struct device *dev, void *pdata) { void __percpu *p; p = *(void __percpu **)pdata; free_percpu(p); } static int devm_percpu_match(struct device *dev, void *data, void *p) { struct devres *devr = container_of(data, struct devres, data); return *(void **)devr->data == p; } /** * __devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @size: Size of per-cpu memory to allocate * @align: Alignment of per-cpu memory to allocate * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align) { void *p; void __percpu *pcpu; pcpu = __alloc_percpu(size, align); if (!pcpu) return NULL; p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL); if (!p) { free_percpu(pcpu); return NULL; } *(void __percpu **)p = pcpu; devres_add(dev, p); return pcpu; } EXPORT_SYMBOL_GPL(__devm_alloc_percpu); /** * devm_free_percpu - Resource-managed free_percpu * @dev: Device this memory belongs to * @pdata: Per-cpu memory to free * * Free memory allocated with devm_alloc_percpu(). */ void devm_free_percpu(struct device *dev, void __percpu *pdata) { /* * Use devres_release() to prevent memory leakage as * devm_free_pages() does. */ WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match, (__force void *)pdata)); } EXPORT_SYMBOL_GPL(devm_free_percpu);