diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2016-03-21 11:03:02 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-03-21 11:03:02 -0700 |
commit | d407574e7948210223a7adca5ff26e3b0ec8143e (patch) | |
tree | bff52bae4075eb84818da7c6a2d4b23839eb6aa4 /fs/crypto/keyinfo.c | |
parent | 5518f66b5a64b76fd602a7baf60590cd838a2ca0 (diff) | |
parent | 12bb0a8fd47e6020a7b52dc283a2d855f03d6ef5 (diff) | |
download | linux-rpi-d407574e7948210223a7adca5ff26e3b0ec8143e.tar.gz linux-rpi-d407574e7948210223a7adca5ff26e3b0ec8143e.tar.bz2 linux-rpi-d407574e7948210223a7adca5ff26e3b0ec8143e.zip |
Merge tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs
Pull f2fs updates from Jaegeuk Kim:
"New Features:
- uplift filesystem encryption into fs/crypto/
- give sysfs entries to control memroy consumption
Enhancements:
- aio performance by preallocating blocks in ->write_iter
- use writepages lock for only WB_SYNC_ALL
- avoid redundant inline_data conversion
- enhance forground GC
- use wait_for_stable_page as possible
- speed up SEEK_DATA and fiiemap
Bug Fixes:
- corner case in terms of -ENOSPC for inline_data
- hung task caused by long latency in shrinker
- corruption between atomic write and f2fs_trace_pid
- avoid garbage lengths in dentries
- revoke atomicly written pages if an error occurs
In addition, there are various minor bug fixes and clean-ups"
* tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (81 commits)
f2fs: submit node page write bios when really required
f2fs: add missing argument to f2fs_setxattr stub
f2fs: fix to avoid unneeded unlock_new_inode
f2fs: clean up opened code with f2fs_update_dentry
f2fs: declare static functions
f2fs: use cryptoapi crc32 functions
f2fs: modify the readahead method in ra_node_page()
f2fs crypto: sync ext4_lookup and ext4_file_open
fs crypto: move per-file encryption from f2fs tree to fs/crypto
f2fs: mutex can't be used by down_write_nest_lock()
f2fs: recovery missing dot dentries in root directory
f2fs: fix to avoid deadlock when merging inline data
f2fs: introduce f2fs_flush_merged_bios for cleanup
f2fs: introduce f2fs_update_data_blkaddr for cleanup
f2fs crypto: fix incorrect positioning for GCing encrypted data page
f2fs: fix incorrect upper bound when iterating inode mapping tree
f2fs: avoid hungtask problem caused by losing wake_up
f2fs: trace old block address for CoWed page
f2fs: try to flush inode after merging inline data
f2fs: show more info about superblock recovery
...
Diffstat (limited to 'fs/crypto/keyinfo.c')
-rw-r--r-- | fs/crypto/keyinfo.c | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/fs/crypto/keyinfo.c b/fs/crypto/keyinfo.c new file mode 100644 index 000000000000..06f5aa478bf2 --- /dev/null +++ b/fs/crypto/keyinfo.c @@ -0,0 +1,272 @@ +/* + * key management facility for FS encryption support. + * + * Copyright (C) 2015, Google, Inc. + * + * This contains encryption key functions. + * + * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. + */ + +#include <keys/encrypted-type.h> +#include <keys/user-type.h> +#include <linux/random.h> +#include <linux/scatterlist.h> +#include <uapi/linux/keyctl.h> +#include <linux/fscrypto.h> + +static void derive_crypt_complete(struct crypto_async_request *req, int rc) +{ + struct fscrypt_completion_result *ecr = req->data; + + if (rc == -EINPROGRESS) + return; + + ecr->res = rc; + complete(&ecr->completion); +} + +/** + * derive_key_aes() - Derive a key using AES-128-ECB + * @deriving_key: Encryption key used for derivation. + * @source_key: Source key to which to apply derivation. + * @derived_key: Derived key. + * + * Return: Zero on success; non-zero otherwise. + */ +static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE], + u8 source_key[FS_AES_256_XTS_KEY_SIZE], + u8 derived_key[FS_AES_256_XTS_KEY_SIZE]) +{ + int res = 0; + struct skcipher_request *req = NULL; + DECLARE_FS_COMPLETION_RESULT(ecr); + struct scatterlist src_sg, dst_sg; + struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); + + if (IS_ERR(tfm)) { + res = PTR_ERR(tfm); + tfm = NULL; + goto out; + } + crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); + req = skcipher_request_alloc(tfm, GFP_NOFS); + if (!req) { + res = -ENOMEM; + goto out; + } + skcipher_request_set_callback(req, + CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, + derive_crypt_complete, &ecr); + res = crypto_skcipher_setkey(tfm, deriving_key, + FS_AES_128_ECB_KEY_SIZE); + if (res < 0) + goto out; + + sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE); + sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE); + skcipher_request_set_crypt(req, &src_sg, &dst_sg, + FS_AES_256_XTS_KEY_SIZE, NULL); + res = crypto_skcipher_encrypt(req); + if (res == -EINPROGRESS || res == -EBUSY) { + wait_for_completion(&ecr.completion); + res = ecr.res; + } +out: + skcipher_request_free(req); + crypto_free_skcipher(tfm); + return res; +} + +static void put_crypt_info(struct fscrypt_info *ci) +{ + if (!ci) + return; + + key_put(ci->ci_keyring_key); + crypto_free_skcipher(ci->ci_ctfm); + kmem_cache_free(fscrypt_info_cachep, ci); +} + +int get_crypt_info(struct inode *inode) +{ + struct fscrypt_info *crypt_info; + u8 full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE + + (FS_KEY_DESCRIPTOR_SIZE * 2) + 1]; + struct key *keyring_key = NULL; + struct fscrypt_key *master_key; + struct fscrypt_context ctx; + const struct user_key_payload *ukp; + struct crypto_skcipher *ctfm; + const char *cipher_str; + u8 raw_key[FS_MAX_KEY_SIZE]; + u8 mode; + int res; + + res = fscrypt_initialize(); + if (res) + return res; + + if (!inode->i_sb->s_cop->get_context) + return -EOPNOTSUPP; +retry: + crypt_info = ACCESS_ONCE(inode->i_crypt_info); + if (crypt_info) { + if (!crypt_info->ci_keyring_key || + key_validate(crypt_info->ci_keyring_key) == 0) + return 0; + fscrypt_put_encryption_info(inode, crypt_info); + goto retry; + } + + res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); + if (res < 0) { + if (!fscrypt_dummy_context_enabled(inode)) + return res; + ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; + ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; + ctx.flags = 0; + } else if (res != sizeof(ctx)) { + return -EINVAL; + } + res = 0; + + crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS); + if (!crypt_info) + return -ENOMEM; + + crypt_info->ci_flags = ctx.flags; + crypt_info->ci_data_mode = ctx.contents_encryption_mode; + crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; + crypt_info->ci_ctfm = NULL; + crypt_info->ci_keyring_key = NULL; + memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, + sizeof(crypt_info->ci_master_key)); + if (S_ISREG(inode->i_mode)) + mode = crypt_info->ci_data_mode; + else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) + mode = crypt_info->ci_filename_mode; + else + BUG(); + + switch (mode) { + case FS_ENCRYPTION_MODE_AES_256_XTS: + cipher_str = "xts(aes)"; + break; + case FS_ENCRYPTION_MODE_AES_256_CTS: + cipher_str = "cts(cbc(aes))"; + break; + default: + printk_once(KERN_WARNING + "%s: unsupported key mode %d (ino %u)\n", + __func__, mode, (unsigned) inode->i_ino); + res = -ENOKEY; + goto out; + } + if (fscrypt_dummy_context_enabled(inode)) { + memset(raw_key, 0x42, FS_AES_256_XTS_KEY_SIZE); + goto got_key; + } + memcpy(full_key_descriptor, FS_KEY_DESC_PREFIX, + FS_KEY_DESC_PREFIX_SIZE); + sprintf(full_key_descriptor + FS_KEY_DESC_PREFIX_SIZE, + "%*phN", FS_KEY_DESCRIPTOR_SIZE, + ctx.master_key_descriptor); + full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE + + (2 * FS_KEY_DESCRIPTOR_SIZE)] = '\0'; + keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL); + if (IS_ERR(keyring_key)) { + res = PTR_ERR(keyring_key); + keyring_key = NULL; + goto out; + } + crypt_info->ci_keyring_key = keyring_key; + if (keyring_key->type != &key_type_logon) { + printk_once(KERN_WARNING + "%s: key type must be logon\n", __func__); + res = -ENOKEY; + goto out; + } + down_read(&keyring_key->sem); + ukp = user_key_payload(keyring_key); + if (ukp->datalen != sizeof(struct fscrypt_key)) { + res = -EINVAL; + up_read(&keyring_key->sem); + goto out; + } + master_key = (struct fscrypt_key *)ukp->data; + BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE); + + if (master_key->size != FS_AES_256_XTS_KEY_SIZE) { + printk_once(KERN_WARNING + "%s: key size incorrect: %d\n", + __func__, master_key->size); + res = -ENOKEY; + up_read(&keyring_key->sem); + goto out; + } + res = derive_key_aes(ctx.nonce, master_key->raw, raw_key); + up_read(&keyring_key->sem); + if (res) + goto out; +got_key: + ctfm = crypto_alloc_skcipher(cipher_str, 0, 0); + if (!ctfm || IS_ERR(ctfm)) { + res = ctfm ? PTR_ERR(ctfm) : -ENOMEM; + printk(KERN_DEBUG + "%s: error %d (inode %u) allocating crypto tfm\n", + __func__, res, (unsigned) inode->i_ino); + goto out; + } + crypt_info->ci_ctfm = ctfm; + crypto_skcipher_clear_flags(ctfm, ~0); + crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY); + res = crypto_skcipher_setkey(ctfm, raw_key, fscrypt_key_size(mode)); + if (res) + goto out; + + memzero_explicit(raw_key, sizeof(raw_key)); + if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) { + put_crypt_info(crypt_info); + goto retry; + } + return 0; + +out: + if (res == -ENOKEY) + res = 0; + put_crypt_info(crypt_info); + memzero_explicit(raw_key, sizeof(raw_key)); + return res; +} + +void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci) +{ + struct fscrypt_info *prev; + + if (ci == NULL) + ci = ACCESS_ONCE(inode->i_crypt_info); + if (ci == NULL) + return; + + prev = cmpxchg(&inode->i_crypt_info, ci, NULL); + if (prev != ci) + return; + + put_crypt_info(ci); +} +EXPORT_SYMBOL(fscrypt_put_encryption_info); + +int fscrypt_get_encryption_info(struct inode *inode) +{ + struct fscrypt_info *ci = inode->i_crypt_info; + + if (!ci || + (ci->ci_keyring_key && + (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | + (1 << KEY_FLAG_REVOKED) | + (1 << KEY_FLAG_DEAD))))) + return get_crypt_info(inode); + return 0; +} +EXPORT_SYMBOL(fscrypt_get_encryption_info); |