summaryrefslogtreecommitdiff
path: root/lib/Kconfig.debug
blob: 554ee688a9f8a397cad63a96458ca5d1198b88e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

config PRINTK_TIME
	bool "Show timing information on printks"
	help
	  Selecting this option causes timing information to be
	  included in printk output.  This allows you to measure
	  the interval between kernel operations, including bootup
	  operations.  This is useful for identifying long delays
	  in kernel startup.


config MAGIC_SYSRQ
	bool "Magic SysRq key"
	depends on !UML
	help
	  If you say Y here, you will have some control over the system even
	  if the system crashes for example during kernel debugging (e.g., you
	  will be able to flush the buffer cache to disk, reboot the system
	  immediately or dump some status information). This is accomplished
	  by pressing various keys while holding SysRq (Alt+PrintScreen). It
	  also works on a serial console (on PC hardware at least), if you
	  send a BREAK and then within 5 seconds a command keypress. The
	  keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
	  unless you really know what this hack does.

config UNUSED_SYMBOLS
	bool "Enable unused/obsolete exported symbols"
	default y if X86
	help
	  Unused but exported symbols make the kernel needlessly bigger.  For
	  that reason most of these unused exports will soon be removed.  This
	  option is provided temporarily to provide a transition period in case
	  some external kernel module needs one of these symbols anyway. If you
	  encounter such a case in your module, consider if you are actually
	  using the right API.  (rationale: since nobody in the kernel is using
	  this in a module, there is a pretty good chance it's actually the
	  wrong interface to use).  If you really need the symbol, please send a
	  mail to the linux kernel mailing list mentioning the symbol and why
	  you really need it, and what the merge plan to the mainline kernel for
	  your module is.

config DEBUG_KERNEL
	bool "Kernel debugging"
	help
	  Say Y here if you are developing drivers or trying to debug and
	  identify kernel problems.

config LOG_BUF_SHIFT
	int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" if DEBUG_KERNEL
	range 12 21
	default 17 if S390 || LOCKDEP
	default 16 if X86_NUMAQ || IA64
	default 15 if SMP
	default 14
	help
	  Select kernel log buffer size as a power of 2.
	  Defaults and Examples:
	  	     17 => 128 KB for S/390
		     16 => 64 KB for x86 NUMAQ or IA-64
	             15 => 32 KB for SMP
	             14 => 16 KB for uniprocessor
		     13 =>  8 KB
		     12 =>  4 KB

config DETECT_SOFTLOCKUP
	bool "Detect Soft Lockups"
	depends on DEBUG_KERNEL
	default y
	help
	  Say Y here to enable the kernel to detect "soft lockups",
	  which are bugs that cause the kernel to loop in kernel
	  mode for more than 10 seconds, without giving other tasks a
	  chance to run.

	  When a soft-lockup is detected, the kernel will print the
	  current stack trace (which you should report), but the
	  system will stay locked up. This feature has negligible
	  overhead.

	  (Note that "hard lockups" are separate type of bugs that
	   can be detected via the NMI-watchdog, on platforms that
	   support it.)

config SCHEDSTATS
	bool "Collect scheduler statistics"
	depends on DEBUG_KERNEL && PROC_FS
	help
	  If you say Y here, additional code will be inserted into the
	  scheduler and related routines to collect statistics about
	  scheduler behavior and provide them in /proc/schedstat.  These
	  stats may be useful for both tuning and debugging the scheduler
	  If you aren't debugging the scheduler or trying to tune a specific
	  application, you can say N to avoid the very slight overhead
	  this adds.

config DEBUG_SLAB
	bool "Debug slab memory allocations"
	depends on DEBUG_KERNEL && SLAB
	help
	  Say Y here to have the kernel do limited verification on memory
	  allocation as well as poisoning memory on free to catch use of freed
	  memory. This can make kmalloc/kfree-intensive workloads much slower.

config DEBUG_SLAB_LEAK
	bool "Memory leak debugging"
	depends on DEBUG_SLAB

config DEBUG_PREEMPT
	bool "Debug preemptible kernel"
	depends on DEBUG_KERNEL && PREEMPT && TRACE_IRQFLAGS_SUPPORT
	default y
	help
	  If you say Y here then the kernel will use a debug variant of the
	  commonly used smp_processor_id() function and will print warnings
	  if kernel code uses it in a preemption-unsafe way. Also, the kernel
	  will detect preemption count underflows.

config DEBUG_RT_MUTEXES
	bool "RT Mutex debugging, deadlock detection"
	depends on DEBUG_KERNEL && RT_MUTEXES
	help
	 This allows rt mutex semantics violations and rt mutex related
	 deadlocks (lockups) to be detected and reported automatically.

config DEBUG_PI_LIST
	bool
	default y
	depends on DEBUG_RT_MUTEXES

config RT_MUTEX_TESTER
	bool "Built-in scriptable tester for rt-mutexes"
	depends on DEBUG_KERNEL && RT_MUTEXES
	help
	  This option enables a rt-mutex tester.

config DEBUG_SPINLOCK
	bool "Spinlock and rw-lock debugging: basic checks"
	depends on DEBUG_KERNEL
	help
	  Say Y here and build SMP to catch missing spinlock initialization
	  and certain other kinds of spinlock errors commonly made.  This is
	  best used in conjunction with the NMI watchdog so that spinlock
	  deadlocks are also debuggable.

config DEBUG_MUTEXES
	bool "Mutex debugging: basic checks"
	depends on DEBUG_KERNEL
	help
	 This feature allows mutex semantics violations to be detected and
	 reported.

config DEBUG_RWSEMS
	bool "RW-sem debugging: basic checks"
	depends on DEBUG_KERNEL
	help
	 This feature allows read-write semaphore semantics violations to
	 be detected and reported.

config DEBUG_LOCK_ALLOC
	bool "Lock debugging: detect incorrect freeing of live locks"
	depends on DEBUG_KERNEL && TRACE_IRQFLAGS_SUPPORT && STACKTRACE_SUPPORT && LOCKDEP_SUPPORT
	select DEBUG_SPINLOCK
	select DEBUG_MUTEXES
	select DEBUG_RWSEMS
	select LOCKDEP
	help
	 This feature will check whether any held lock (spinlock, rwlock,
	 mutex or rwsem) is incorrectly freed by the kernel, via any of the
	 memory-freeing routines (kfree(), kmem_cache_free(), free_pages(),
	 vfree(), etc.), whether a live lock is incorrectly reinitialized via
	 spin_lock_init()/mutex_init()/etc., or whether there is any lock
	 held during task exit.

config PROVE_LOCKING
	bool "Lock debugging: prove locking correctness"
	depends on DEBUG_KERNEL && TRACE_IRQFLAGS_SUPPORT && STACKTRACE_SUPPORT && LOCKDEP_SUPPORT
	select LOCKDEP
	select DEBUG_SPINLOCK
	select DEBUG_MUTEXES
	select DEBUG_RWSEMS
	select DEBUG_LOCK_ALLOC
	default n
	help
	 This feature enables the kernel to prove that all locking
	 that occurs in the kernel runtime is mathematically
	 correct: that under no circumstance could an arbitrary (and
	 not yet triggered) combination of observed locking
	 sequences (on an arbitrary number of CPUs, running an
	 arbitrary number of tasks and interrupt contexts) cause a
	 deadlock.

	 In short, this feature enables the kernel to report locking
	 related deadlocks before they actually occur.

	 The proof does not depend on how hard and complex a
	 deadlock scenario would be to trigger: how many
	 participant CPUs, tasks and irq-contexts would be needed
	 for it to trigger. The proof also does not depend on
	 timing: if a race and a resulting deadlock is possible
	 theoretically (no matter how unlikely the race scenario
	 is), it will be proven so and will immediately be
	 reported by the kernel (once the event is observed that
	 makes the deadlock theoretically possible).

	 If a deadlock is impossible (i.e. the locking rules, as
	 observed by the kernel, are mathematically correct), the
	 kernel reports nothing.

	 NOTE: this feature can also be enabled for rwlocks, mutexes
	 and rwsems - in which case all dependencies between these
	 different locking variants are observed and mapped too, and
	 the proof of observed correctness is also maintained for an
	 arbitrary combination of these separate locking variants.

	 For more details, see Documentation/lockdep-design.txt.

config LOCKDEP
	bool
	depends on DEBUG_KERNEL && TRACE_IRQFLAGS_SUPPORT && STACKTRACE_SUPPORT && LOCKDEP_SUPPORT
	select STACKTRACE
	select FRAME_POINTER
	select KALLSYMS
	select KALLSYMS_ALL

config DEBUG_LOCKDEP
	bool "Lock dependency engine debugging"
	depends on DEBUG_KERNEL && LOCKDEP
	help
	  If you say Y here, the lock dependency engine will do
	  additional runtime checks to debug itself, at the price
	  of more runtime overhead.

config TRACE_IRQFLAGS
	depends on DEBUG_KERNEL
	bool
	default y
	depends on TRACE_IRQFLAGS_SUPPORT
	depends on PROVE_LOCKING

config DEBUG_SPINLOCK_SLEEP
	bool "Spinlock debugging: sleep-inside-spinlock checking"
	depends on DEBUG_KERNEL
	help
	  If you say Y here, various routines which may sleep will become very
	  noisy if they are called with a spinlock held.

config DEBUG_LOCKING_API_SELFTESTS
	bool "Locking API boot-time self-tests"
	depends on DEBUG_KERNEL
	help
	  Say Y here if you want the kernel to run a short self-test during
	  bootup. The self-test checks whether common types of locking bugs
	  are detected by debugging mechanisms or not. (if you disable
	  lock debugging then those bugs wont be detected of course.)
	  The following locking APIs are covered: spinlocks, rwlocks,
	  mutexes and rwsems.

config STACKTRACE
	bool
	depends on DEBUG_KERNEL
	depends on STACKTRACE_SUPPORT

config DEBUG_KOBJECT
	bool "kobject debugging"
	depends on DEBUG_KERNEL
	help
	  If you say Y here, some extra kobject debugging messages will be sent
	  to the syslog. 

config DEBUG_HIGHMEM
	bool "Highmem debugging"
	depends on DEBUG_KERNEL && HIGHMEM
	help
	  This options enables addition error checking for high memory systems.
	  Disable for production systems.

config DEBUG_BUGVERBOSE
	bool "Verbose BUG() reporting (adds 70K)" if DEBUG_KERNEL && EMBEDDED
	depends on BUG
	depends on ARM || ARM26 || M32R || M68K || SPARC32 || SPARC64 || X86_32 || FRV
	default !EMBEDDED
	help
	  Say Y here to make BUG() panics output the file name and line number
	  of the BUG call as well as the EIP and oops trace.  This aids
	  debugging but costs about 70-100K of memory.

config DEBUG_INFO
	bool "Compile the kernel with debug info"
	depends on DEBUG_KERNEL
	help
          If you say Y here the resulting kernel image will include
	  debugging info resulting in a larger kernel image.
	  Say Y here only if you plan to debug the kernel.

	  If unsure, say N.

config DEBUG_FS
	bool "Debug Filesystem"
	depends on SYSFS
	help
	  debugfs is a virtual file system that kernel developers use to put
	  debugging files into.  Enable this option to be able to read and
	  write to these files.

	  If unsure, say N.

config DEBUG_VM
	bool "Debug VM"
	depends on DEBUG_KERNEL
	help
	  Enable this to turn on extended checks in the virtual-memory system
          that may impact performance.

	  If unsure, say N.

config FRAME_POINTER
	bool "Compile the kernel with frame pointers"
	depends on DEBUG_KERNEL && (X86 || CRIS || M68K || M68KNOMMU || FRV || UML || S390)
	default y if DEBUG_INFO && UML
	help
	  If you say Y here the resulting kernel image will be slightly larger
	  and slower, but it might give very useful debugging information on
	  some architectures or if you use external debuggers.
	  If you don't debug the kernel, you can say N.

config UNWIND_INFO
	bool "Compile the kernel with frame unwind information"
	depends on !IA64 && !PARISC
	depends on !MODULES || !(MIPS || PPC || SUPERH || V850)
	help
	  If you say Y here the resulting kernel image will be slightly larger
	  but not slower, and it will give very useful debugging information.
	  If you don't debug the kernel, you can say N, but we may not be able
	  to solve problems without frame unwind information or frame pointers.

config STACK_UNWIND
	bool "Stack unwind support"
	depends on UNWIND_INFO
	depends on X86
	help
	  This enables more precise stack traces, omitting all unrelated
	  occurrences of pointers into kernel code from the dump.

config FORCED_INLINING
	bool "Force gcc to inline functions marked 'inline'"
	depends on DEBUG_KERNEL
	default y
	help
	  This option determines if the kernel forces gcc to inline the functions
	  developers have marked 'inline'. Doing so takes away freedom from gcc to
	  do what it thinks is best, which is desirable for the gcc 3.x series of
	  compilers. The gcc 4.x series have a rewritten inlining algorithm and
	  disabling this option will generate a smaller kernel there. Hopefully
	  this algorithm is so good that allowing gcc4 to make the decision can
	  become the default in the future, until then this option is there to
	  test gcc for this.

config RCU_TORTURE_TEST
	tristate "torture tests for RCU"
	depends on DEBUG_KERNEL
	default n
	help
	  This option provides a kernel module that runs torture tests
	  on the RCU infrastructure.  The kernel module may be built
	  after the fact on the running kernel to be tested, if desired.

	  Say Y here if you want RCU torture tests to start automatically
	  at boot time (you probably don't).
	  Say M if you want the RCU torture tests to build as a module.
	  Say N if you are unsure.