summaryrefslogtreecommitdiff
path: root/kernel/cpuset.c
blob: f382b0f775e15ca0d91600c796f746f11d159a72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>

#define CPUSET_SUPER_MAGIC		0x27e0eb

/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
int number_of_cpusets __read_mostly;

/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
	CS_MEMORY_MIGRATE,
	CS_REMOVED,
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}

static inline int is_removed(const struct cpuset *cs)
{
	return test_bit(CS_REMOVED, &cs->flags);
}

static inline int notify_on_release(const struct cpuset *cs)
{
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
}

static inline int is_memory_migrate(const struct cpuset *cs)
{
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}

static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

/*
 * Increment this integer everytime any cpuset changes its
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
 */
static int cpuset_mems_generation;

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
static struct super_block *cpuset_sb;

/*
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
 * also allocate memory while just holding manage_mutex.  While it is
 * performing these checks, various callback routines can briefly
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
 *
 * Calls to the kernel memory allocator can not be made while holding
 * callback_mutex, as that would risk double tripping on callback_mutex
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
 * If a task is only holding callback_mutex, then it has read-only
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding manage_mutex or callback_mutex can't rely
 * on the count field not changing.  However, if the count goes to
 * zero, then only attach_task(), which holds both mutexes, can
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
 * So code holding manage_mutex or callback_mutex can safely assume that
 * if the count is zero, it will stay zero.  Similarly, if a task
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
 * both of those mutexes.
 *
 * The cpuset_common_file_write handler for operations that modify
 * the cpuset hierarchy holds manage_mutex across the entire operation,
 * single threading all such cpuset modifications across the system.
 *
 * The cpuset_common_file_read() handlers only hold callback_mutex across
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
 * (usually) take either mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
 * is taken, and if the cpuset count is zero, a usermode call made
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
 * least one task in the system (init), therefore, top_cpuset
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
 * so using both mutexes, however there are several performance
 * critical places that need to reference task->cpuset without the
 * expense of grabbing a system global mutex.  Therefore except as
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
 */

static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
 *	- the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
 * Call with manage_mutex held.  Writes path of cpuset into buf.
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
 * When we had only one cpuset mutex, we had to call this
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
 */

static void cpuset_release_agent(const char *pathbuf)
{
	char *argv[3], *envp[3];
	int i;

	if (!pathbuf)
		return;

	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
	argv[i++] = (char *)pathbuf;
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
 */

static void check_for_release(struct cpuset *cs, char **ppathbuf)
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
			kfree(buf);
		else
			*ppathbuf = buf;
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
 * Call with callback_mutex held.
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
 * Call with callback_mutex held.
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
 *
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
 * current->mm->mmap_sem during call.
 *
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
 */

void cpuset_update_task_memory_state(void)
{
	int my_cpusets_mem_gen;
	struct task_struct *tsk = current;
	struct cpuset *cs;

	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}

	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
		mutex_lock(&callback_mutex);
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
		task_unlock(tsk);
		mutex_unlock(&callback_mutex);
		mpol_rebind_task(tsk, &tsk->mems_allowed);
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
 * are only set if the other's are set.  Call holding manage_mutex.
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
 * manage_mutex held.
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
	if (cur == &top_cpuset)
		return 0;

	par = cur->parent;

	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
 * Call with manage_mutex held.  May nest a call to the
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
 * Must not be called holding callback_mutex, because we must
 * not call lock_cpu_hotplug() while holding callback_mutex.
 */

static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
	if (!is_cpu_exclusive(cur)) {
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

/*
 * Call with manage_mutex held.  May take callback_mutex during call.
 */

static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
	int retval, cpus_unchanged;

	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;
	retval = cpulist_parse(buf, trialcs.cpus_allowed);
	if (retval < 0)
		return retval;
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	if (cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
	mutex_lock(&callback_mutex);
	cs->cpus_allowed = trialcs.cpus_allowed;
	mutex_unlock(&callback_mutex);
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
}

/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with manage_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */

static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
	nodemask_t oldmem;
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
	int migrate;
	int fudge;
	int retval;

	/* top_cpuset.mems_allowed tracks node_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;
	retval = nodelist_parse(buf, trialcs.mems_allowed);
	if (retval < 0)
		goto done;
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	if (nodes_empty(trialcs.mems_allowed)) {
		retval = -ENOSPC;
		goto done;
	}
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
	cs->mems_allowed = trialcs.mems_allowed;
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		write_lock_irq(&tasklist_lock);		/* block fork */
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
		write_unlock_irq(&tasklist_lock);	/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
	write_unlock_irq(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
	 * cpuset manage_mutex, we know that no other rebind effort will
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
	 * is idempotent.  Also migrate pages in each mm to new nodes.
	 */
	migrate = is_memory_migrate(cs);
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
done:
	return retval;
}

/*
 * Call with manage_mutex held.
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
 *
 * Call with manage_mutex held.
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
	int err, cpu_exclusive_changed;

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
	mutex_lock(&callback_mutex);
	cs->flags = trialcs.flags;
	mutex_unlock(&callback_mutex);

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
}

/*
 * Frequency meter - How fast is some event occurring?
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
 * the task 'pid' during call.
 */

static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	int retval;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
		if (!tsk || tsk->flags & PF_EXITING) {
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

	retval = security_task_setscheduler(tsk, 0, NULL);
	if (retval) {
		put_task_struct(tsk);
		return retval;
	}

	mutex_lock(&callback_mutex);

	task_lock(tsk);
	oldcs = tsk->cpuset;
	/*
	 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
	 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
	 * then fail this attach_task(), to avoid breaking top_cpuset.count.
	 */
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
		mutex_unlock(&callback_mutex);
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
	rcu_assign_pointer(tsk->cpuset, cs);
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

	mutex_unlock(&callback_mutex);

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
		if (is_memory_migrate(cs))
			cpuset_migrate_mm(mm, &from, &to);
		mmput(mm);
	}

	put_task_struct(tsk);
	synchronize_rcu();
	if (atomic_dec_and_test(&oldcs->count))
		check_for_release(oldcs, ppathbuf);
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
	FILE_MEMORY_MIGRATE,
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
	FILE_TASKLIST,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct file *file,
					const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_path.dentry);
	cpuset_filetype_t type = cft->private;
	char *buffer;
	char *pathbuf = NULL;
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

	mutex_lock(&manage_mutex);

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
		cs->mems_generation = cpuset_mems_generation++;
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
		cs->mems_generation = cpuset_mems_generation++;
		break;
	case FILE_TASKLIST:
		retval = attach_task(cs, buffer, &pathbuf);
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&manage_mutex);
	cpuset_release_agent(pathbuf);
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_path.dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

	mutex_lock(&callback_mutex);
	mask = cs->cpus_allowed;
	mutex_unlock(&callback_mutex);

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

	mutex_lock(&callback_mutex);
	mask = cs->mems_allowed;
	mutex_unlock(&callback_mutex);

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_path.dentry);
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_path.dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_path.dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_path.dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static const struct file_operations cpuset_file_operations = {
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

static const struct inode_operations cpuset_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
	.rename = cpuset_rename,
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
 *	cs:	the cpuset we create the directory for.
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
		inc_nlink(parent->d_inode);
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

	mutex_lock(&dir->d_inode->i_mutex);
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	mutex_unlock(&dir->d_inode->i_mutex);
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
 */
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			pidarray[n++] = p->pid;
			if (unlikely(n == npids))
				goto array_full;
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
 * Does not require any specific cpuset mutexes, and does not take any.
 */
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cpuset gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cpuset users didn't
	 * show up until sometime later on.
	 */
	npids = atomic_read(&cs->count);
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		goto err1;

	npids = pid_array_load(pidarray, npids, cs);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

	/* Call pid_array_to_buf() twice, first just to get bufsz */
	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
	if (!ctr->buf)
		goto err2;
	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

	kfree(pidarray);
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	if (*ppos + nbytes > ctr->bufsz)
		nbytes = ctr->bufsz - *ppos;
	if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
		return -EFAULT;
	*ppos += nbytes;
	return nbytes;
}

static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_tasks = {
	.name = "tasks",
	.open = cpuset_tasks_open,
	.read = cpuset_tasks_read,
	.release = cpuset_tasks_release,
	.private = FILE_TASKLIST,
};

static struct cftype cft_cpus = {
	.name = "cpus",
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_notify_on_release = {
	.name = "notify_on_release",
	.private = FILE_NOTIFY_ON_RELEASE,
};

static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
	.private = FILE_MEMORY_MIGRATE,
};

static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
	.private = FILE_MEMORY_PRESSURE,
};

static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
	.private = FILE_SPREAD_SLAB,
};

static int cpuset_populate_dir(struct dentry *cs_dentry)
{
	int err;

	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
		return err;
	return 0;
}

/*
 *	cpuset_create - create a cpuset
 *	parent:	cpuset that will be parent of the new cpuset.
 *	name:		name of the new cpuset. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
 *	Must be called with the mutex on the parent inode held
 */

static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
	struct cpuset *cs;
	int err;

	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return -ENOMEM;

	mutex_lock(&manage_mutex);
	cpuset_update_task_memory_state();
	cs->flags = 0;
	if (notify_on_release(parent))
		set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
	atomic_set(&cs->count, 0);
	INIT_LIST_HEAD(&cs->sibling);
	INIT_LIST_HEAD(&cs->children);
	cs->mems_generation = cpuset_mems_generation++;
	fmeter_init(&cs->fmeter);

	cs->parent = parent;

	mutex_lock(&callback_mutex);
	list_add(&cs->sibling, &cs->parent->children);
	number_of_cpusets++;
	mutex_unlock(&callback_mutex);

	err = cpuset_create_dir(cs, name, mode);
	if (err < 0)
		goto err;

	/*
	 * Release manage_mutex before cpuset_populate_dir() because it
	 * will down() this new directory's i_mutex and if we race with
	 * another mkdir, we might deadlock.
	 */
	mutex_unlock(&manage_mutex);

	err = cpuset_populate_dir(cs->dentry);
	/* If err < 0, we have a half-filled directory - oh well ;) */
	return 0;
err:
	list_del(&cs->sibling);
	mutex_unlock(&manage_mutex);
	kfree(cs);
	return err;
}

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cpuset *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}

/*
 * Locking note on the strange update_flag() call below:
 *
 * If the cpuset being removed is marked cpu_exclusive, then simulate
 * turning cpu_exclusive off, which will call update_cpu_domains().
 * The lock_cpu_hotplug() call in update_cpu_domains() must not be
 * made while holding callback_mutex.  Elsewhere the kernel nests
 * callback_mutex inside lock_cpu_hotplug() calls.  So the reverse
 * nesting would risk an ABBA deadlock.
 */

static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	struct cpuset *cs = dentry->d_fsdata;
	struct dentry *d;
	struct cpuset *parent;
	char *pathbuf = NULL;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&manage_mutex);
	cpuset_update_task_memory_state();
	if (atomic_read(&cs->count) > 0) {
		mutex_unlock(&manage_mutex);
		return -EBUSY;
	}
	if (!list_empty(&cs->children)) {
		mutex_unlock(&manage_mutex);
		return -EBUSY;
	}
	if (is_cpu_exclusive(cs)) {
		int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
		if (retval < 0) {
			mutex_unlock(&manage_mutex);
			return retval;
		}
	}
	parent = cs->parent;
	mutex_lock(&callback_mutex);
	set_bit(CS_REMOVED, &cs->flags);
	list_del(&cs->sibling);	/* delete my sibling from parent->children */
	spin_lock(&cs->dentry->d_lock);
	d = dget(cs->dentry);
	cs->dentry = NULL;
	spin_unlock(&d->d_lock);
	cpuset_d_remove_dir(d);
	dput(d);
	number_of_cpusets--;
	mutex_unlock(&callback_mutex);
	if (list_empty(&parent->children))
		check_for_release(parent, &pathbuf);
	mutex_unlock(&manage_mutex);
	cpuset_release_agent(pathbuf);
	return 0;
}

/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
	struct task_struct *tsk = current;

	tsk->cpuset = &top_cpuset;
	tsk->cpuset->mems_generation = cpuset_mems_generation++;
	return 0;
}

/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
	struct dentry *root;
	int err;

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

	fmeter_init(&top_cpuset.fmeter);
	top_cpuset.mems_generation = cpuset_mems_generation++;

	init_task.cpuset = &top_cpuset;

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
		goto out;
	cpuset_mount = kern_mount(&cpuset_fs_type);
	if (IS_ERR(cpuset_mount)) {
		printk(KERN_ERR "cpuset: could not mount!\n");
		err = PTR_ERR(cpuset_mount);
		cpuset_mount = NULL;
		goto out;
	}
	root = cpuset_mount->mnt_sb->s_root;
	root->d_fsdata = &top_cpuset;
	inc_nlink(root->d_inode);
	top_cpuset.dentry = root;
	root->d_inode->i_op = &cpuset_dir_inode_operations;
	number_of_cpusets = 1;
	err = cpuset_populate_dir(root);
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0)
		err = cpuset_add_file(root, &cft_memory_pressure_enabled);
out:
	return err;
}

/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
 * last CPU or node from a cpuset, then the guarantee_online_cpus()
 * or guarantee_online_mems() code will use that emptied cpusets
 * parent online CPUs or nodes.  Cpusets that were already empty of
 * CPUs or nodes are left empty.
 *
 * This routine is intentionally inefficient in a couple of regards.
 * It will check all cpusets in a subtree even if the top cpuset of
 * the subtree has no offline CPUs or nodes.  It checks both CPUs and
 * nodes, even though the caller could have been coded to know that
 * only one of CPUs or nodes needed to be checked on a given call.
 * This was done to minimize text size rather than cpu cycles.
 *
 * Call with both manage_mutex and callback_mutex held.
 *
 * Recursive, on depth of cpuset subtree.
 */

static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
{
	struct cpuset *c;

	/* Each of our child cpusets mems must be online */
	list_for_each_entry(c, &cur->children, sibling) {
		guarantee_online_cpus_mems_in_subtree(c);
		if (!cpus_empty(c->cpus_allowed))
			guarantee_online_cpus(c, &c->cpus_allowed);
		if (!nodes_empty(c->mems_allowed))
			guarantee_online_mems(c, &c->mems_allowed);
	}
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
 * cpu_online_map and node_online_map.  Force the top cpuset to track
 * whats online after any CPU or memory node hotplug or unplug event.
 *
 * To ensure that we don't remove a CPU or node from the top cpuset
 * that is currently in use by a child cpuset (which would violate
 * the rule that cpusets must be subsets of their parent), we first
 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

static void common_cpu_mem_hotplug_unplug(void)
{
	mutex_lock(&manage_mutex);
	mutex_lock(&callback_mutex);

	guarantee_online_cpus_mems_in_subtree(&top_cpuset);
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_online_map;

	mutex_unlock(&callback_mutex);
	mutex_unlock(&manage_mutex);
}

/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
 */

static int cpuset_handle_cpuhp(struct notifier_block *nb,
				unsigned long phase, void *cpu)
{
	common_cpu_mem_hotplug_unplug();
	return 0;
}

#ifdef CONFIG_MEMORY_HOTPLUG
/*
 * Keep top_cpuset.mems_allowed tracking node_online_map.
 * Call this routine anytime after you change node_online_map.
 * See also the previous routine cpuset_handle_cpuhp().
 */

void cpuset_track_online_nodes(void)
{
	common_cpu_mem_hotplug_unplug();
}
#endif

/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_online_map;

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
}

/**
 * cpuset_fork - attach newly forked task to its parents cpuset.
 * @tsk: pointer to task_struct of forking parent process.
 *
 * Description: A task inherits its parent's cpuset at fork().
 *
 * A pointer to the shared cpuset was automatically copied in fork.c
 * by dup_task_struct().  However, we ignore that copy, since it was
 * not made under the protection of task_lock(), so might no longer be
 * a valid cpuset pointer.  attach_task() might have already changed
 * current->cpuset, allowing the previously referenced cpuset to
 * be removed and freed.  Instead, we task_lock(current) and copy
 * its present value of current->cpuset for our freshly forked child.
 *
 * At the point that cpuset_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 **/

void cpuset_fork(struct task_struct *child)
{
	task_lock(current);
	child->cpuset = current->cpuset;
	atomic_inc(&child->cpuset->count);
	task_unlock(current);
}

/**
 * cpuset_exit - detach cpuset from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cpuset from @tsk and release it.
 *
 * Note that cpusets marked notify_on_release force every task in
 * them to take the global manage_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cpusets where very high task exit scaling
 * is required on large systems.
 *
 * Don't even think about derefencing 'cs' after the cpuset use count
 * goes to zero, except inside a critical section guarded by manage_mutex
 * or callback_mutex.   Otherwise a zero cpuset use count is a license to
 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
 *
 * This routine has to take manage_mutex, not callback_mutex, because
 * it is holding that mutex while calling check_for_release(),
 * which calls kmalloc(), so can't be called holding callback_mutex().
 *
 * We don't need to task_lock() this reference to tsk->cpuset,
 * because tsk is already marked PF_EXITING, so attach_task() won't
 * mess with it, or task is a failed fork, never visible to attach_task.
 *
 * the_top_cpuset_hack:
 *
 *    Set the exiting tasks cpuset to the root cpuset (top_cpuset).
 *
 *    Don't leave a task unable to allocate memory, as that is an
 *    accident waiting to happen should someone add a callout in
 *    do_exit() after the cpuset_exit() call that might allocate.
 *    If a task tries to allocate memory with an invalid cpuset,
 *    it will oops in cpuset_update_task_memory_state().
 *
 *    We call cpuset_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to
 *    the root cpuset (top_cpuset) for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cpuset, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cpuset function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cpuset reference count, to no avail.
 *
 *    Normally, holding a reference to a cpuset without bumping its
 *    count is unsafe.   The cpuset could go away, or someone could
 *    attach us to a different cpuset, decrementing the count on
 *    the first cpuset that we never incremented.  But in this case,
 *    top_cpuset isn't going away, and either task has PF_EXITING set,
 *    which wards off any attach_task() attempts, or task is a failed
 *    fork, never visible to attach_task.
 *
 *    Another way to do this would be to set the cpuset pointer
 *    to NULL here, and check in cpuset_update_task_memory_state()
 *    for a NULL pointer.  This hack avoids that NULL check, for no
 *    cost (other than this way too long comment ;).
 **/

void cpuset_exit(struct task_struct *tsk)
{
	struct cpuset *cs;

	cs = tsk->cpuset;
	tsk->cpuset = &top_cpuset;	/* the_top_cpuset_hack - see above */

	if (notify_on_release(cs)) {
		char *pathbuf = NULL;

		mutex_lock(&manage_mutex);
		if (atomic_dec_and_test(&cs->count))
			check_for_release(cs, &pathbuf);
		mutex_unlock(&manage_mutex);
		cpuset_release_agent(pathbuf);
	} else {
		atomic_dec(&cs->count);
	}
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
{
	cpumask_t mask;

	mutex_lock(&callback_mutex);
	task_lock(tsk);
	guarantee_online_cpus(tsk->cpuset, &mask);
	task_unlock(tsk);
	mutex_unlock(&callback_mutex);

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of node_online_map, even if this means going outside the
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

	mutex_lock(&callback_mutex);
	task_lock(tsk);
	guarantee_online_mems(tsk->cpuset, &mask);
	task_unlock(tsk);
	mutex_unlock(&callback_mutex);

	return mask;
}

/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
		int nid = zone_to_nid(zl->zones[i]);

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
 * ancestor to the specified cpuset.  Call holding callback_mutex.
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

/**
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
 * Otherwise, no.
 *
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 * and do not allow allocations outside the current tasks cpuset.
 * GFP_KERNEL allocations are not so marked, so can escape to the
 * nearest enclosing mem_exclusive ancestor cpuset.
 *
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
 *
 * The first call here from mm/page_alloc:get_page_from_freelist()
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
 *
 * Rule:
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
 */

int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
	int allowed;			/* is allocation in zone z allowed? */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
	if (node_isset(node, current->mems_allowed))
		return 1;
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

	/* Not hardwall and node outside mems_allowed: scan up cpusets */
	mutex_lock(&callback_mutex);

	task_lock(current);
	cs = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

	allowed = node_isset(node, cs->mems_allowed);
	mutex_unlock(&callback_mutex);
	return allowed;
}

/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.   Otherwise, no.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
	return 0;
}

/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
 * The out of memory (oom) code needs to mutex_lock cpusets
 * from being changed while it scans the tasklist looking for a
 * task in an overlapping cpuset.  Expose callback_mutex via this
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
 * must be taken inside callback_mutex.
 */

void cpuset_lock(void)
{
	mutex_lock(&callback_mutex);
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

/**
 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
 * @p: pointer to task_struct of some other task.
 *
 * Description: Return true if the nearest mem_exclusive ancestor
 * cpusets of tasks @p and current overlap.  Used by oom killer to
 * determine if task @p's memory usage might impact the memory
 * available to the current task.
 *
 * Call while holding callback_mutex.
 **/

int cpuset_excl_nodes_overlap(const struct task_struct *p)
{
	const struct cpuset *cs1, *cs2;	/* my and p's cpuset ancestors */
	int overlap = 1;		/* do cpusets overlap? */

	task_lock(current);
	if (current->flags & PF_EXITING) {
		task_unlock(current);
		goto done;
	}
	cs1 = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

	task_lock((struct task_struct *)p);
	if (p->flags & PF_EXITING) {
		task_unlock((struct task_struct *)p);
		goto done;
	}
	cs2 = nearest_exclusive_ancestor(p->cpuset);
	task_unlock((struct task_struct *)p);

	overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
done:
	return overlap;
}

/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

int cpuset_memory_pressure_enabled __read_mostly;

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	struct cpuset *cs;

	task_lock(current);
	cs = current->cpuset;
	fmeter_markevent(&cs->fmeter);
	task_unlock(current);
}

/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
 *    and we take manage_mutex, keeping attach_task() from changing it
 *    anyway.  No need to check that tsk->cpuset != NULL, thanks to
 *    the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
 *    cpuset to top_cpuset.
 */
static int proc_cpuset_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = -EINVAL;
	mutex_lock(&manage_mutex);

	retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
	if (retval < 0)
		goto out_unlock;
	seq_puts(m, buf);
	seq_putc(m, '\n');
out_unlock:
	mutex_unlock(&manage_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
}

const struct file_operations proc_cpuset_operations = {
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
	buffer += sprintf(buffer, "Cpus_allowed:\t");
	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
	buffer += sprintf(buffer, "\n");
	buffer += sprintf(buffer, "Mems_allowed:\t");
	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
	buffer += sprintf(buffer, "\n");
	return buffer;
}