summaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq_lab.c
blob: 3fe876ba3cb9503bed6f0b837b31fe661aa4b409 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 *  drivers/cpufreq/cpufreq_lab.c
 *
 *  LAB(Legacy Application Boost) cpufreq governor
 *
 *  Copyright (C) SAMSUNG Electronics. CO.
 *		Jonghwa Lee <jonghw3.lee@samusng.com>
 *		Lukasz Majewski <l.majewski@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
#include <linux/sysfs.h>
#include <linux/tick.h>
#include <linux/types.h>
#include <linux/cpuidle.h>
#include <linux/slab.h>

#include "cpufreq_governor.h"

#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)

#define MAX_HIST		5
#define FREQ_STEP		50000
#define IDLE_THRESHOLD		90

/* Pre-calculated summation of weight, 0.5
 * 1
 * 1 + 0.5^1 = 1.5
 * 1 + 0.5^1 + 0.5^2 = 1.75
 * 1 + 0.5^1 + 0.5^2 + 0.5^3 = 1.87
 * 1 + 0.5^1 + 0.5^2 + 0.5^3 + 0.5^4 = 1.93
 */
static int history_weight_sum[] = { 100, 150, 175, 187, 193 };

static unsigned int idle_avg[NR_CPUS];
static unsigned int idle_hist[NR_CPUS][MAX_HIST];

static DEFINE_PER_CPU(struct lb_cpu_dbs_info_s, lb_cpu_dbs_info);

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_LAB
static struct cpufreq_governor cpufreq_gov_lab;
#endif

/* Single polynomial approx -> all CPUs busy */
static int a_all = -6, b_all = 1331;
/* Single polynomial approx -> one CPUs busy */
static int a_one = 10, b_one = 205;
/* Single polynomial approx -> 2,3... CPUs busy */
static int a_rest = 4, b_rest1 = 100, b_rest2 = 300;
/* Polynomial divider */
static int poly_div = 1024;

static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
	if (p->cur == freq)
		return;

	__cpufreq_driver_target(p, freq, CPUFREQ_RELATION_L);
}

/* Calculate average of idle time with weighting 50% less to older one.
 * With weight, average can be affected by current phase more rapidly than
 * normal average. And it also has tolerance for temporary fluctuation of
 * idle time as normal average has.
 *
 * Weigted average = sum(ai * wi) / sum(wi)
 */
static inline int cpu_idle_calc_avg(unsigned int *p, int size)
{
	int i, sum;

	for (i = 0, sum = 0; i < size; p++, i++) {
		sum += *p;
		*p >>= 1;
	}
	sum *= 100;

	return (int) (sum / history_weight_sum[size - 1]);
}

/*
 * LAB governor policy adjustement
 */
static void lb_check_cpu(int cpu, unsigned int load_freq)
{
	struct lb_cpu_dbs_info_s *dbs_info = &per_cpu(lb_cpu_dbs_info, cpu);
	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
	int i, idx, idle_cpus = 0, b = 0;
	static int cnt = 0;
	unsigned int freq = 0;

	idx = cnt++ % MAX_HIST;

	for_each_possible_cpu(i) {
		struct lb_cpu_dbs_info_s *dbs_cpu_info =
			&per_cpu(lb_cpu_dbs_info, i);

		idle_hist[i][idx] = dbs_cpu_info->idle_time;
		idle_avg[i] = cpu_idle_calc_avg(idle_hist[i],
					cnt < MAX_HIST ? cnt : MAX_HIST);

		if (idle_avg[i] > IDLE_THRESHOLD)
			idle_cpus++;
	}

	if (idle_cpus < 0 || idle_cpus > NR_CPUS) {
		pr_warn("idle_cpus: %d out of range\n", idle_cpus);
		return;
	}

	if (idle_cpus == 0) {
		/* Full load -> reduce freq */
		freq = policy->max * (a_all * load_freq + b_all) / poly_div;
	} else if (idle_cpus == NR_CPUS) {
		/* Idle cpus */
		freq = policy->min;
	} else if (idle_cpus == (NR_CPUS - 1)) {
		freq = policy->max * (a_one * load_freq + b_one) / poly_div;
	} else {
		/* Adjust frequency with number of available CPUS */
		/* smaller idle_cpus -> smaller frequency */
		b = ((idle_cpus - 1) * b_rest1) + b_rest2;
		freq = policy->max * (a_rest * load_freq + b) / poly_div;
	}
#if 0 
	if (!idx)
		pr_info("p->max:%d,freq: %d,idle_cpus: %d,avg : %d %d %d %d load_f: %d\n",
		       policy->max, freq, idle_cpus, idle_avg[0], idle_avg[1],
			idle_avg[2], idle_avg[3], load_freq);
#endif

	dbs_freq_increase(policy, freq);
}

static void lb_dbs_timer(struct work_struct *work)
{
	struct lb_cpu_dbs_info_s *dbs_info =
		container_of(work, struct lb_cpu_dbs_info_s, cdbs.work.work);
	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
	struct lb_cpu_dbs_info_s *core_dbs_info = &per_cpu(lb_cpu_dbs_info,
			cpu);
	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
	struct lb_dbs_tuners *lb_tuners = dbs_data->tuners;
	int delay;

	mutex_lock(&core_dbs_info->cdbs.timer_mutex);

	dbs_check_cpu(dbs_data, cpu);

	delay = delay_for_sampling_rate(lb_tuners->sampling_rate
						* core_dbs_info->rate_mult);

	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, false);
	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
}

/************************** sysfs interface ************************/
static struct common_dbs_data lb_dbs_cdata;

/**
 * update_sampling_rate - update sampling rate effective immediately if needed.
 * @new_rate: new sampling rate
 *
 * If new rate is smaller than the old, simply updating
 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
 * original sampling_rate was 1 second and the requested new sampling rate is 10
 * ms because the user needs immediate reaction from lab governor, but not
 * sure if higher frequency will be required or not, then, the governor may
 * change the sampling rate too late; up to 1 second later. Thus, if we are
 * reducing the sampling rate, we need to make the new value effective
 * immediately.
 */
static void update_sampling_rate(struct dbs_data *dbs_data,
			unsigned int new_rate)
{
	struct lb_dbs_tuners *lb_tuners = dbs_data->tuners;
	int cpu;

	lb_tuners->sampling_rate = new_rate = max(new_rate,
			dbs_data->min_sampling_rate);

	for_each_online_cpu(cpu) {
		struct cpufreq_policy *policy;
		struct lb_cpu_dbs_info_s *dbs_info;
		unsigned long next_sampling, appointed_at;

		policy = cpufreq_cpu_get(cpu);
		if (!policy)
			continue;
		if (policy->governor != &cpufreq_gov_lab) {
			cpufreq_cpu_put(policy);
			continue;
		}
		dbs_info = &per_cpu(lb_cpu_dbs_info, cpu);
		cpufreq_cpu_put(policy);

		mutex_lock(&dbs_info->cdbs.timer_mutex);

		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
			mutex_unlock(&dbs_info->cdbs.timer_mutex);
			continue;
		}

		next_sampling = jiffies + usecs_to_jiffies(new_rate);
		appointed_at = dbs_info->cdbs.work.timer.expires;

		if (time_before(next_sampling, appointed_at)) {

			mutex_unlock(&dbs_info->cdbs.timer_mutex);
			cancel_delayed_work_sync(&dbs_info->cdbs.work);
			mutex_lock(&dbs_info->cdbs.timer_mutex);

			schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
					usecs_to_jiffies(new_rate));

		}
		mutex_unlock(&dbs_info->cdbs.timer_mutex);
	}
}

static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
				size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	update_sampling_rate(dbs_data, input);
	return count;
}

show_store_one(lb, sampling_rate);
gov_sys_pol_attr_rw(sampling_rate);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_gov_sys.attr,
	NULL
};

static struct attribute_group lb_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "lab",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_gov_pol.attr,
	NULL
};

static struct attribute_group lb_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
	.name = "lab",
};

/************************** sysfs end ************************/

static int lb_init(struct dbs_data *dbs_data)
{
	struct lb_dbs_tuners *tuners;
	u64 idle_time;
	int cpu;

	tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	cpu = get_cpu();
	idle_time = get_cpu_idle_time_us(cpu, NULL);
	put_cpu();
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
		tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
			MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
		/*
		 * In nohz/micro accounting case we set the minimum frequency
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
		tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
			DEF_FREQUENCY_DOWN_DIFFERENTIAL;

		/* For correct statistics, we need 10 ticks for each measure */
		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
			jiffies_to_usecs(10);
	}

	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	tuners->ignore_nice = 0;

	dbs_data->tuners = tuners;
	mutex_init(&dbs_data->mutex);
	return 0;
}

static void lb_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

define_get_cpu_dbs_routines(lb_cpu_dbs_info);

static struct common_dbs_data lb_dbs_data = {
	.governor = GOV_LAB,
	.attr_group_gov_sys = &lb_attr_group_gov_sys,
	.attr_group_gov_pol = &lb_attr_group_gov_pol,
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = lb_dbs_timer,
	.gov_check_cpu = lb_check_cpu,
	.init = lb_init,
	.exit = lb_exit,
};

static int lb_cpufreq_governor_dbs(struct cpufreq_policy *policy,
		unsigned int event)
{
	return cpufreq_governor_dbs(policy, &lb_dbs_data, event);
}

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_LAB
static
#endif
struct cpufreq_governor cpufreq_gov_lab = {
	.name			= "lab",
	.governor		= lb_cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_lab);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	cpufreq_unregister_governor(&cpufreq_gov_lab);
}

MODULE_AUTHOR("Jonghwa Lee <jonghwa3.lee@samsung.com>");
MODULE_AUTHOR("Lukasz Majewski <l.majewski@samsung.com>");
MODULE_DESCRIPTION("'cpufreq_lab' - A dynamic cpufreq governor for "
		"Legacy Application Boosting");
MODULE_LICENSE("GPL");

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_LAB
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);