#ifndef __ASM_SH_IO_H #define __ASM_SH_IO_H /* * Convention: * read{b,w,l}/write{b,w,l} are for PCI, * while in{b,w,l}/out{b,w,l} are for ISA * These may (will) be platform specific function. * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p * and 'string' versions: ins{b,w,l}/outs{b,w,l} * For read{b,w,l} and write{b,w,l} there are also __raw versions, which * do not have a memory barrier after them. * * In addition, we have * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. * which are processor specific. */ /* * We follow the Alpha convention here: * __inb expands to an inline function call (which calls via the mv) * _inb is a real function call (note ___raw fns are _ version of __raw) * inb by default expands to _inb, but the machine specific code may * define it to __inb if it chooses. */ #include #include #include #include #include /* * Depending on which platform we are running on, we need different * I/O functions. */ #ifdef __KERNEL__ /* * Since boards are able to define their own set of I/O routines through * their respective machine vector, we always wrap through the mv. * * Also, in the event that a board hasn't provided its own definition for * a given routine, it will be wrapped to generic code at run-time. */ # define __inb(p) sh_mv.mv_inb((p)) # define __inw(p) sh_mv.mv_inw((p)) # define __inl(p) sh_mv.mv_inl((p)) # define __outb(x,p) sh_mv.mv_outb((x),(p)) # define __outw(x,p) sh_mv.mv_outw((x),(p)) # define __outl(x,p) sh_mv.mv_outl((x),(p)) # define __inb_p(p) sh_mv.mv_inb_p((p)) # define __inw_p(p) sh_mv.mv_inw_p((p)) # define __inl_p(p) sh_mv.mv_inl_p((p)) # define __outb_p(x,p) sh_mv.mv_outb_p((x),(p)) # define __outw_p(x,p) sh_mv.mv_outw_p((x),(p)) # define __outl_p(x,p) sh_mv.mv_outl_p((x),(p)) # define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) # define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) # define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) # define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) # define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) # define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) # define __readb(a) sh_mv.mv_readb((a)) # define __readw(a) sh_mv.mv_readw((a)) # define __readl(a) sh_mv.mv_readl((a)) # define __writeb(v,a) sh_mv.mv_writeb((v),(a)) # define __writew(v,a) sh_mv.mv_writew((v),(a)) # define __writel(v,a) sh_mv.mv_writel((v),(a)) # define __ioremap(a,s) sh_mv.mv_ioremap((a), (s)) # define __iounmap(a) sh_mv.mv_iounmap((a)) # define __isa_port2addr(a) sh_mv.mv_isa_port2addr(a) # define inb __inb # define inw __inw # define inl __inl # define outb __outb # define outw __outw # define outl __outl # define inb_p __inb_p # define inw_p __inw_p # define inl_p __inl_p # define outb_p __outb_p # define outw_p __outw_p # define outl_p __outl_p # define insb __insb # define insw __insw # define insl __insl # define outsb __outsb # define outsw __outsw # define outsl __outsl # define __raw_readb __readb # define __raw_readw __readw # define __raw_readl __readl # define __raw_writeb __writeb # define __raw_writew __writew # define __raw_writel __writel /* * The platform header files may define some of these macros to use * the inlined versions where appropriate. These macros may also be * redefined by userlevel programs. */ #ifdef __raw_readb # define readb(a) ({ unsigned long r_ = __raw_readb((unsigned long)a); mb(); r_; }) #endif #ifdef __raw_readw # define readw(a) ({ unsigned long r_ = __raw_readw((unsigned long)a); mb(); r_; }) #endif #ifdef __raw_readl # define readl(a) ({ unsigned long r_ = __raw_readl((unsigned long)a); mb(); r_; }) #endif #ifdef __raw_writeb # define writeb(v,a) ({ __raw_writeb((v),(unsigned long)(a)); mb(); }) #endif #ifdef __raw_writew # define writew(v,a) ({ __raw_writew((v),(unsigned long)(a)); mb(); }) #endif #ifdef __raw_writel # define writel(v,a) ({ __raw_writel((v),(unsigned long)(a)); mb(); }) #endif #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) #define mmiowb() /* * If the platform has PC-like I/O, this function converts the offset into * an address. */ static __inline__ unsigned long isa_port2addr(unsigned long offset) { return __isa_port2addr(offset); } /* * This function provides a method for the generic case where a board-specific * isa_port2addr simply needs to return the port + some arbitrary port base. * * We use this at board setup time to implicitly set the port base, and * as a result, we can use the generic isa_port2addr. */ static inline void __set_io_port_base(unsigned long pbase) { extern unsigned long generic_io_base; generic_io_base = pbase; } #define isa_readb(a) readb(isa_port2addr(a)) #define isa_readw(a) readw(isa_port2addr(a)) #define isa_readl(a) readl(isa_port2addr(a)) #define isa_writeb(b,a) writeb(b,isa_port2addr(a)) #define isa_writew(w,a) writew(w,isa_port2addr(a)) #define isa_writel(l,a) writel(l,isa_port2addr(a)) #define isa_memset_io(a,b,c) \ memset((void *)(isa_port2addr((unsigned long)a)),(b),(c)) #define isa_memcpy_fromio(a,b,c) \ memcpy((a),(void *)(isa_port2addr((unsigned long)(b))),(c)) #define isa_memcpy_toio(a,b,c) \ memcpy((void *)(isa_port2addr((unsigned long)(a))),(b),(c)) /* We really want to try and get these to memcpy etc */ extern void memcpy_fromio(void *, unsigned long, unsigned long); extern void memcpy_toio(unsigned long, const void *, unsigned long); extern void memset_io(unsigned long, int, unsigned long); /* SuperH on-chip I/O functions */ static __inline__ unsigned char ctrl_inb(unsigned long addr) { return *(volatile unsigned char*)addr; } static __inline__ unsigned short ctrl_inw(unsigned long addr) { return *(volatile unsigned short*)addr; } static __inline__ unsigned int ctrl_inl(unsigned long addr) { return *(volatile unsigned long*)addr; } static __inline__ void ctrl_outb(unsigned char b, unsigned long addr) { *(volatile unsigned char*)addr = b; } static __inline__ void ctrl_outw(unsigned short b, unsigned long addr) { *(volatile unsigned short*)addr = b; } static __inline__ void ctrl_outl(unsigned int b, unsigned long addr) { *(volatile unsigned long*)addr = b; } #define IO_SPACE_LIMIT 0xffffffff /* * Change virtual addresses to physical addresses and vv. * These are trivial on the 1:1 Linux/SuperH mapping */ static __inline__ unsigned long virt_to_phys(volatile void * address) { return PHYSADDR(address); } static __inline__ void * phys_to_virt(unsigned long address) { return (void *)P1SEGADDR(address); } #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt #define page_to_bus page_to_phys /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. * * On SH, we have the whole physical address space mapped at all times * (as MIPS does), so "ioremap()" and "iounmap()" do not need to do * anything. (This isn't true for all machines but we still handle * these cases with wired TLB entries anyway ...) * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. */ static __inline__ void * ioremap(unsigned long offset, unsigned long size) { return __ioremap(offset, size); } static __inline__ void iounmap(void *addr) { return __iounmap(addr); } #define ioremap_nocache(off,size) ioremap(off,size) static __inline__ int check_signature(unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * - dma_cache_wback(start, size) writes back any dirty lines but does * not invalidate the cache. This can be used before DMA reads from * memory, */ #define dma_cache_wback_inv(_start,_size) \ __flush_purge_region(_start,_size) #define dma_cache_inv(_start,_size) \ __flush_invalidate_region(_start,_size) #define dma_cache_wback(_start,_size) \ __flush_wback_region(_start,_size) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __KERNEL__ */ #endif /* __ASM_SH_IO_H */