#ifndef __PARISC_SYSTEM_H #define __PARISC_SYSTEM_H #include #include /* The program status word as bitfields. */ struct pa_psw { unsigned int y:1; unsigned int z:1; unsigned int rv:2; unsigned int w:1; unsigned int e:1; unsigned int s:1; unsigned int t:1; unsigned int h:1; unsigned int l:1; unsigned int n:1; unsigned int x:1; unsigned int b:1; unsigned int c:1; unsigned int v:1; unsigned int m:1; unsigned int cb:8; unsigned int o:1; unsigned int g:1; unsigned int f:1; unsigned int r:1; unsigned int q:1; unsigned int p:1; unsigned int d:1; unsigned int i:1; }; #ifdef __LP64__ #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4)) #else #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW)) #endif struct task_struct; extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *); #define switch_to(prev, next, last) do { \ (last) = _switch_to(prev, next); \ } while(0) /* interrupt control */ #define local_save_flags(x) __asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory") #define local_irq_disable() __asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" ) #define local_irq_enable() __asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" ) #define local_irq_save(x) \ __asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" ) #define local_irq_restore(x) \ __asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" ) #define irqs_disabled() \ ({ \ unsigned long flags; \ local_save_flags(flags); \ (flags & PSW_I) == 0; \ }) #define mfctl(reg) ({ \ unsigned long cr; \ __asm__ __volatile__( \ "mfctl " #reg ",%0" : \ "=r" (cr) \ ); \ cr; \ }) #define mtctl(gr, cr) \ __asm__ __volatile__("mtctl %0,%1" \ : /* no outputs */ \ : "r" (gr), "i" (cr) : "memory") /* these are here to de-mystefy the calling code, and to provide hooks */ /* which I needed for debugging EIEM problems -PB */ #define get_eiem() mfctl(15) static inline void set_eiem(unsigned long val) { mtctl(val, 15); } #define mfsp(reg) ({ \ unsigned long cr; \ __asm__ __volatile__( \ "mfsp " #reg ",%0" : \ "=r" (cr) \ ); \ cr; \ }) #define mtsp(gr, cr) \ __asm__ __volatile__("mtsp %0,%1" \ : /* no outputs */ \ : "r" (gr), "i" (cr) : "memory") /* ** This is simply the barrier() macro from linux/kernel.h but when serial.c ** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h ** hasn't yet been included yet so it fails, thus repeating the macro here. ** ** PA-RISC architecture allows for weakly ordered memory accesses although ** none of the processors use it. There is a strong ordered bit that is ** set in the O-bit of the page directory entry. Operating systems that ** can not tolerate out of order accesses should set this bit when mapping ** pages. The O-bit of the PSW should also be set to 1 (I don't believe any ** of the processor implemented the PSW O-bit). The PCX-W ERS states that ** the TLB O-bit is not implemented so the page directory does not need to ** have the O-bit set when mapping pages (section 3.1). This section also ** states that the PSW Y, Z, G, and O bits are not implemented. ** So it looks like nothing needs to be done for parisc-linux (yet). ** (thanks to chada for the above comment -ggg) ** ** The __asm__ op below simple prevents gcc/ld from reordering ** instructions across the mb() "call". */ #define mb() __asm__ __volatile__("":::"memory") /* barrier() */ #define rmb() mb() #define wmb() mb() #define smp_mb() mb() #define smp_rmb() mb() #define smp_wmb() mb() #define smp_read_barrier_depends() do { } while(0) #define read_barrier_depends() do { } while(0) #define set_mb(var, value) do { var = value; mb(); } while (0) #define set_wmb(var, value) do { var = value; wmb(); } while (0) /* LDCW, the only atomic read-write operation PA-RISC has. *sigh*. */ #define __ldcw(a) ({ \ unsigned __ret; \ __asm__ __volatile__("ldcw 0(%1),%0" : "=r" (__ret) : "r" (a)); \ __ret; \ }) /* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data, and GCC only guarantees 8-byte alignment for stack locals, we can't be assured of 16-byte alignment for atomic lock data even if we specify "__attribute ((aligned(16)))" in the type declaration. So, we use a struct containing an array of four ints for the atomic lock type and dynamically select the 16-byte aligned int from the array for the semaphore. */ #define __PA_LDCW_ALIGNMENT 16 #define __ldcw_align(a) ({ \ unsigned long __ret = (unsigned long) &(a)->lock[0]; \ __ret = (__ret + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1); \ (volatile unsigned int *) __ret; \ }) #ifdef CONFIG_SMP /* * Your basic SMP spinlocks, allowing only a single CPU anywhere */ typedef struct { volatile unsigned int lock[4]; #ifdef CONFIG_DEBUG_SPINLOCK unsigned long magic; volatile unsigned int babble; const char *module; char *bfile; int bline; int oncpu; void *previous; struct task_struct * task; #endif #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } spinlock_t; #define __lock_aligned __attribute__((__section__(".data.lock_aligned"))) #endif #define KERNEL_START (0x10100000 - 0x1000) /* This is for the serialisation of PxTLB broadcasts. At least on the * N class systems, only one PxTLB inter processor broadcast can be * active at any one time on the Merced bus. This tlb purge * synchronisation is fairly lightweight and harmless so we activate * it on all SMP systems not just the N class. */ #ifdef CONFIG_SMP extern spinlock_t pa_tlb_lock; #define purge_tlb_start(x) spin_lock(&pa_tlb_lock) #define purge_tlb_end(x) spin_unlock(&pa_tlb_lock) #else #define purge_tlb_start(x) do { } while(0) #define purge_tlb_end(x) do { } while (0) #endif #define arch_align_stack(x) (x) #endif