/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_32_H #define _ASM_PGTABLE_32_H #include #include #include #include #include #include /* * - add_wired_entry() add a fixed TLB entry, and move wired register */ extern void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask); /* * - add_temporary_entry() add a temporary TLB entry. We use TLB entries * starting at the top and working down. This is for populating the * TLB before trap_init() puts the TLB miss handler in place. It * should be used only for entries matching the actual page tables, * to prevent inconsistencies. */ extern int add_temporary_entry(unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask); /* Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386. Some day * when we have proper page coloring support we can have a 1% quicker * tlb refill handling mechanism, but for now it is a bit slower but * works even with the cache aliasing problem the R4k and above have. */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #ifdef CONFIG_64BIT_PHYS_ADDR #define PMD_SHIFT 21 #else #define PMD_SHIFT 22 #endif #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT PMD_SHIFT #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level: we use two-level, so * we don't really have any PMD directory physically. */ #ifdef CONFIG_64BIT_PHYS_ADDR #define PGD_ORDER 1 #define PMD_ORDER 0 #define PTE_ORDER 0 #else #define PGD_ORDER 0 #define PMD_ORDER 0 #define PTE_ORDER 0 #endif #define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t)) #define PTRS_PER_PMD 1 #define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) #define USER_PTRS_PER_PGD (0x80000000UL/PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 #define VMALLOC_START KSEG2 #ifdef CONFIG_HIGHMEM # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) #else # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) #endif #ifdef CONFIG_64BIT_PHYS_ADDR #define pte_ERROR(e) \ printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) #else #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #endif #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) extern void load_pgd(unsigned long pg_dir); extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; /* * Empty pgd/pmd entries point to the invalid_pte_table. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } static inline void pgd_clear(pgd_t *pgdp) { } #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pte_pfn(x) ((unsigned long)((x).pte_high >> 6)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { pte_t pte; pte.pte_high = (pfn << 6) | (pgprot_val(prot) & 0x3f); pte.pte_low = pgprot_val(prot); return pte; } #else #define pte_page(x) pfn_to_page(pte_pfn(x)) #ifdef CONFIG_CPU_VR41XX #define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2))) #define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot)) #else #define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT)) #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #endif #endif /* defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32) */ #define __pgd_offset(address) pgd_index(address) #define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* to find an entry in a page-table-directory */ #define pgd_offset(mm,addr) ((mm)->pgd + pgd_index(addr)) /* Find an entry in the second-level page table.. */ static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ #define __pte_offset(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) \ ((pte_t *) (pmd_page_kernel(*dir)) + __pte_offset(address)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) #define pte_offset_map_nested(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) #define pte_unmap(pte) ((void)(pte)) #define pte_unmap_nested(pte) ((void)(pte)) #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX) /* Swap entries must have VALID bit cleared. */ #define __swp_type(x) (((x).val >> 10) & 0x1f) #define __swp_offset(x) ((x).val >> 15) #define __swp_entry(type,offset) \ ((swp_entry_t) { ((type) << 10) | ((offset) << 15) }) /* * Bits 0, 1, 2, 9 and 10 are taken, split up the 27 bits of offset * into this range: */ #define PTE_FILE_MAX_BITS 27 #define pte_to_pgoff(_pte) \ ((((_pte).pte >> 3) & 0x3f ) + (((_pte).pte >> 11) << 8 )) #define pgoff_to_pte(off) \ ((pte_t) { (((off) & 0x3f) << 3) + (((off) >> 8) << 11) + _PAGE_FILE }) #else /* Swap entries must have VALID and GLOBAL bits cleared. */ #define __swp_type(x) (((x).val >> 8) & 0x1f) #define __swp_offset(x) ((x).val >> 13) #define __swp_entry(type,offset) \ ((swp_entry_t) { ((type) << 8) | ((offset) << 13) }) /* * Bits 0, 1, 2, 7 and 8 are taken, split up the 27 bits of offset * into this range: */ #define PTE_FILE_MAX_BITS 27 #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32) /* fixme */ #define pte_to_pgoff(_pte) (((_pte).pte_high >> 6) + ((_pte).pte_high & 0x3f)) #define pgoff_to_pte(off) \ ((pte_t){(((off) & 0x3f) + ((off) << 6) + _PAGE_FILE)}) #else #define pte_to_pgoff(_pte) \ ((((_pte).pte >> 3) & 0x1f ) + (((_pte).pte >> 9) << 6 )) #define pgoff_to_pte(off) \ ((pte_t) { (((off) & 0x1f) << 3) + (((off) >> 6) << 9) + _PAGE_FILE }) #endif #endif #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* _ASM_PGTABLE_32_H */