/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_IA64_SN_ADDRS_H #define _ASM_IA64_SN_ADDRS_H #include #include #include #include /* * Memory/SHUB Address Format: * +-+---------+--+--------------+ * |0| NASID |AS| NodeOffset | * +-+---------+--+--------------+ * * NASID: (low NASID bit is 0) Memory and SHUB MMRs * AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0 * 00: Local Resources and MMR space * Top bit of NodeOffset * 0: Local resources space * node id: * 0: IA64/NT compatibility space * 2: Local MMR Space * 4: Local memory, regardless of local node id * 1: Global MMR space * 01: GET space. * 10: AMO space. * 11: Cacheable memory space. * * NodeOffset: byte offset * * * TIO address format: * +-+----------+--+--------------+ * |0| NASID |AS| Nodeoffset | * +-+----------+--+--------------+ * * NASID: (low NASID bit is 1) TIO * AS: 2-bit Chiplet Identifier * 00: TIO LB (Indicates TIO MMR access.) * 01: TIO ICE (indicates coretalk space access.) * * NodeOffset: top bit must be set. * * * Note that in both of the above address formats, the low * NASID bit indicates if the reference is to the SHUB or TIO MMRs. */ /* * Define basic shift & mask constants for manipulating NASIDs and AS values. */ #define NASID_BITMASK (sn_hub_info->nasid_bitmask) #define NASID_SHIFT (sn_hub_info->nasid_shift) #define AS_SHIFT (sn_hub_info->as_shift) #define AS_BITMASK 0x3UL #define NASID_MASK ((u64)NASID_BITMASK << NASID_SHIFT) #define AS_MASK ((u64)AS_BITMASK << AS_SHIFT) #define REGION_BITS 0xe000000000000000UL /* * AS values. These are the same on both SHUB1 & SHUB2. */ #define AS_GET_VAL 1UL #define AS_AMO_VAL 2UL #define AS_CAC_VAL 3UL #define AS_GET_SPACE (AS_GET_VAL << AS_SHIFT) #define AS_AMO_SPACE (AS_AMO_VAL << AS_SHIFT) #define AS_CAC_SPACE (AS_CAC_VAL << AS_SHIFT) /* * Base addresses for various address ranges. */ #define CACHED 0xe000000000000000UL #define UNCACHED 0xc000000000000000UL #define UNCACHED_PHYS 0x8000000000000000UL /* * Virtual Mode Local & Global MMR space. */ #define SH1_LOCAL_MMR_OFFSET 0x8000000000UL #define SH2_LOCAL_MMR_OFFSET 0x0200000000UL #define LOCAL_MMR_OFFSET (is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET) #define LOCAL_MMR_SPACE (UNCACHED | LOCAL_MMR_OFFSET) #define LOCAL_PHYS_MMR_SPACE (UNCACHED_PHYS | LOCAL_MMR_OFFSET) #define SH1_GLOBAL_MMR_OFFSET 0x0800000000UL #define SH2_GLOBAL_MMR_OFFSET 0x0300000000UL #define GLOBAL_MMR_OFFSET (is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET) #define GLOBAL_MMR_SPACE (UNCACHED | GLOBAL_MMR_OFFSET) /* * Physical mode addresses */ #define GLOBAL_PHYS_MMR_SPACE (UNCACHED_PHYS | GLOBAL_MMR_OFFSET) /* * Clear region & AS bits. */ #define TO_PHYS_MASK (~(REGION_BITS | AS_MASK)) /* * Misc NASID manipulation. */ #define NASID_SPACE(n) ((u64)(n) << NASID_SHIFT) #define REMOTE_ADDR(n,a) (NASID_SPACE(n) | (a)) #define NODE_OFFSET(x) ((x) & (NODE_ADDRSPACE_SIZE - 1)) #define NODE_ADDRSPACE_SIZE (1UL << AS_SHIFT) #define NASID_GET(x) (int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK) #define LOCAL_MMR_ADDR(a) (LOCAL_MMR_SPACE | (a)) #define GLOBAL_MMR_ADDR(n,a) (GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a)) #define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a)) #define GLOBAL_CAC_ADDR(n,a) (CAC_BASE | REMOTE_ADDR(n,a)) #define CHANGE_NASID(n,x) ((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n))) /* non-II mmr's start at top of big window space (4G) */ #define BWIN_TOP 0x0000000100000000UL /* * general address defines */ #define CAC_BASE (CACHED | AS_CAC_SPACE) #define AMO_BASE (UNCACHED | AS_AMO_SPACE) #define AMO_PHYS_BASE (UNCACHED_PHYS | AS_AMO_SPACE) #define GET_BASE (CACHED | AS_GET_SPACE) /* * Convert Memory addresses between various addressing modes. */ #define TO_PHYS(x) (TO_PHYS_MASK & (x)) #define TO_CAC(x) (CAC_BASE | TO_PHYS(x)) #define TO_AMO(x) (AMO_BASE | TO_PHYS(x)) #define TO_GET(x) (GET_BASE | TO_PHYS(x)) /* * Covert from processor physical address to II/TIO physical address: * II - squeeze out the AS bits * TIO- requires a chiplet id in bits 38-39. For DMA to memory, * the chiplet id is zero. If we implement TIO-TIO dma, we might need * to insert a chiplet id into this macro. However, it is our belief * right now that this chiplet id will be ICE, which is also zero. * Nasid starts on bit 40. */ #define PHYS_TO_TIODMA(x) ( (((u64)(NASID_GET(x))) << 40) | NODE_OFFSET(x)) #define PHYS_TO_DMA(x) ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x)) /* * Macros to test for address type. */ #define IS_AMO_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_BASE) #define IS_AMO_PHYS_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_PHYS_BASE) /* * The following definitions pertain to the IO special address * space. They define the location of the big and little windows * of any given node. */ #define BWIN_SIZE_BITS 29 /* big window size: 512M */ #define TIO_BWIN_SIZE_BITS 30 /* big window size: 1G */ #define NODE_SWIN_BASE(n, w) ((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \ : RAW_NODE_SWIN_BASE(n, w)) #define TIO_SWIN_BASE(n, w) (TIO_IO_BASE(n) + \ ((u64) (w) << TIO_SWIN_SIZE_BITS)) #define NODE_IO_BASE(n) (GLOBAL_MMR_SPACE | NASID_SPACE(n)) #define TIO_IO_BASE(n) (UNCACHED | NASID_SPACE(n)) #define BWIN_SIZE (1UL << BWIN_SIZE_BITS) #define NODE_BWIN_BASE0(n) (NODE_IO_BASE(n) + BWIN_SIZE) #define NODE_BWIN_BASE(n, w) (NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS)) #define RAW_NODE_SWIN_BASE(n, w) (NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS)) #define BWIN_WIDGET_MASK 0x7 #define BWIN_WINDOWNUM(x) (((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK) #define TIO_BWIN_WINDOW_SELECT_MASK 0x7 #define TIO_BWIN_WINDOWNUM(x) (((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK) /* * The following definitions pertain to the IO special address * space. They define the location of the big and little windows * of any given node. */ #define SWIN_SIZE_BITS 24 #define SWIN_WIDGET_MASK 0xF #define TIO_SWIN_SIZE_BITS 28 #define TIO_SWIN_SIZE (1UL << TIO_SWIN_SIZE_BITS) #define TIO_SWIN_WIDGET_MASK 0x3 /* * Convert smallwindow address to xtalk address. * * 'addr' can be physical or virtual address, but will be converted * to Xtalk address in the range 0 -> SWINZ_SIZEMASK */ #define SWIN_WIDGETNUM(x) (((x) >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK) #define TIO_SWIN_WIDGETNUM(x) (((x) >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK) /* * The following macros produce the correct base virtual address for * the hub registers. The REMOTE_HUB_* macro produce * the address for the specified hub's registers. The intent is * that the appropriate PI, MD, NI, or II register would be substituted * for x. * * WARNING: * When certain Hub chip workaround are defined, it's not sufficient * to dereference the *_HUB_ADDR() macros. You should instead use * HUB_L() and HUB_S() if you must deal with pointers to hub registers. * Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S(). * They're always safe. */ #define REMOTE_HUB_ADDR(n,x) \ ((n & 1) ? \ /* TIO: */ \ ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \ : /* SHUB: */ \ (((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))\ : ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x))))) #define HUB_L(x) (*((volatile typeof(*x) *)x)) #define HUB_S(x,d) (*((volatile typeof(*x) *)x) = (d)) #define REMOTE_HUB_L(n, a) HUB_L(REMOTE_HUB_ADDR((n), (a))) #define REMOTE_HUB_S(n, a, d) HUB_S(REMOTE_HUB_ADDR((n), (a)), (d)) #endif /* _ASM_IA64_SN_ADDRS_H */