#ifndef __ASM_ARCH_SPINLOCK_H #define __ASM_ARCH_SPINLOCK_H #include #define RW_LOCK_BIAS 0x01000000 #define SPIN_LOCK_UNLOCKED (spinlock_t) { 1 } #define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while(0) #define spin_is_locked(x) (*(volatile signed char *)(&(x)->lock) <= 0) #define spin_unlock_wait(x) do { barrier(); } while(spin_is_locked(x)) extern void cris_spin_unlock(void *l, int val); extern void cris_spin_lock(void *l); extern int cris_spin_trylock(void* l); static inline void _raw_spin_unlock(spinlock_t *lock) { __asm__ volatile ("move.d %1,%0" \ : "=m" (lock->lock) \ : "r" (1) \ : "memory"); } static inline int _raw_spin_trylock(spinlock_t *lock) { return cris_spin_trylock((void*)&lock->lock); } static inline void _raw_spin_lock(spinlock_t *lock) { cris_spin_lock((void*)&lock->lock); } static inline void _raw_spin_lock_flags (spinlock_t *lock, unsigned long flags) { _raw_spin_lock(lock); } /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. */ typedef struct { spinlock_t lock; volatile int counter; #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } rwlock_t; #define RW_LOCK_UNLOCKED (rwlock_t) { {1}, 0 } #define rwlock_init(lp) do { *(lp) = RW_LOCK_UNLOCKED; } while (0) /** * read_can_lock - would read_trylock() succeed? * @lock: the rwlock in question. */ #define read_can_lock(x) ((int)(x)->counter >= 0) /** * write_can_lock - would write_trylock() succeed? * @lock: the rwlock in question. */ #define write_can_lock(x) ((x)->counter == 0) #define _raw_read_trylock(lock) generic_raw_read_trylock(lock) /* read_lock, read_unlock are pretty straightforward. Of course it somehow * sucks we end up saving/restoring flags twice for read_lock_irqsave aso. */ static __inline__ void _raw_read_lock(rwlock_t *rw) { unsigned long flags; local_irq_save(flags); _raw_spin_lock(&rw->lock); rw->counter++; _raw_spin_unlock(&rw->lock); local_irq_restore(flags); } static __inline__ void _raw_read_unlock(rwlock_t *rw) { unsigned long flags; local_irq_save(flags); _raw_spin_lock(&rw->lock); rw->counter--; _raw_spin_unlock(&rw->lock); local_irq_restore(flags); } /* write_lock is less trivial. We optimistically grab the lock and check * if we surprised any readers. If so we release the lock and wait till * they're all gone before trying again * * Also note that we don't use the _irqsave / _irqrestore suffixes here. * If we're called with interrupts enabled and we've got readers (or other * writers) in interrupt handlers someone fucked up and we'd dead-lock * sooner or later anyway. prumpf */ static __inline__ void _raw_write_lock(rwlock_t *rw) { retry: _raw_spin_lock(&rw->lock); if(rw->counter != 0) { /* this basically never happens */ _raw_spin_unlock(&rw->lock); while(rw->counter != 0); goto retry; } /* got it. now leave without unlocking */ rw->counter = -1; /* remember we are locked */ } /* write_unlock is absolutely trivial - we don't have to wait for anything */ static __inline__ void _raw_write_unlock(rwlock_t *rw) { rw->counter = 0; _raw_spin_unlock(&rw->lock); } static __inline__ int _raw_write_trylock(rwlock_t *rw) { _raw_spin_lock(&rw->lock); if (rw->counter != 0) { /* this basically never happens */ _raw_spin_unlock(&rw->lock); return 0; } /* got it. now leave without unlocking */ rw->counter = -1; /* remember we are locked */ return 1; } static __inline__ int is_read_locked(rwlock_t *rw) { return rw->counter > 0; } static __inline__ int is_write_locked(rwlock_t *rw) { return rw->counter < 0; } #endif /* __ASM_ARCH_SPINLOCK_H */