#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #if __LINUX_ARM_ARCH__ < 6 #error SMP not supported on pre-ARMv6 CPUs #endif /* * ARMv6 Spin-locking. * * We exclusively read the old value. If it is zero, we may have * won the lock, so we try exclusively storing it. A memory barrier * is required after we get a lock, and before we release it, because * V6 CPUs are assumed to have weakly ordered memory. * * Unlocked value: 0 * Locked value: 1 */ typedef struct { volatile unsigned int lock; #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } spinlock_t; #define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 } #define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while (0) #define spin_is_locked(x) ((x)->lock != 0) #define spin_unlock_wait(x) do { barrier(); } while (spin_is_locked(x)) #define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock) static inline void _raw_spin_lock(spinlock_t *lock) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]\n" " teqeq %0, #0\n" " bne 1b" : "=&r" (tmp) : "r" (&lock->lock), "r" (1) : "cc"); smp_mb(); } static inline int _raw_spin_trylock(spinlock_t *lock) { unsigned long tmp; __asm__ __volatile__( " ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&lock->lock), "r" (1) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void _raw_spin_unlock(spinlock_t *lock) { smp_mb(); __asm__ __volatile__( " str %1, [%0]" : : "r" (&lock->lock), "r" (0) : "cc"); } /* * RWLOCKS */ typedef struct { volatile unsigned int lock; #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } rwlock_t; #define RW_LOCK_UNLOCKED (rwlock_t) { 0 } #define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while (0) #define rwlock_is_locked(x) (*((volatile unsigned int *)(x)) != 0) /* * Write locks are easy - we just set bit 31. When unlocking, we can * just write zero since the lock is exclusively held. */ static inline void _raw_write_lock(rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]\n" " teq %0, #0\n" " bne 1b" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); smp_mb(); } static inline int _raw_write_trylock(rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void _raw_write_unlock(rwlock_t *rw) { smp_mb(); __asm__ __volatile__( "str %1, [%0]" : : "r" (&rw->lock), "r" (0) : "cc"); } /* * Read locks are a bit more hairy: * - Exclusively load the lock value. * - Increment it. * - Store new lock value if positive, and we still own this location. * If the value is negative, we've already failed. * - If we failed to store the value, we want a negative result. * - If we failed, try again. * Unlocking is similarly hairy. We may have multiple read locks * currently active. However, we know we won't have any write * locks. */ static inline void _raw_read_lock(rwlock_t *rw) { unsigned long tmp, tmp2; __asm__ __volatile__( "1: ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" " rsbpls %0, %1, #0\n" " bmi 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); } static inline void _raw_read_unlock(rwlock_t *rw) { unsigned long tmp, tmp2; smp_mb(); __asm__ __volatile__( "1: ldrex %0, [%2]\n" " sub %0, %0, #1\n" " strex %1, %0, [%2]\n" " teq %1, #0\n" " bne 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); } #define _raw_read_trylock(lock) generic_raw_read_trylock(lock) #endif /* __ASM_SPINLOCK_H */