/* * rtc-s5m.c * * Copyright (c) 2011-2014 Samsung Electronics Co., Ltd * http://www.samsung.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include /* * Work-around for S5M8767 BIN->BCD time conversion issue. * * For the S5M8767 chip the time should be set in BCD mode to avoid issue with * S5M8767 BIN->BCD conversion (setting Year/Min/Sec to 0x38/0x39 will end * with wrong values set). * This does not apply to alarm setting. */ #define BCD_ALARM 0 #define BCD_TIME 1 /* * Maximum number of retries for checking changes in UDR field * (to limit possible endless loop). * * After writing to RTC registers (setting time or alarm) read the UDR field * in SEC_RTC_UDR_CON register. UDR is auto-cleared when registers data have * been transferred. */ #define UDR_READ_RETRY_CNT 5 /* Registers for S2MPS14 or S5M8767 */ struct s5m_rtc_reg_config { /* Number of registers used for setting time/alarm0/alarm1 */ unsigned int regs_count; unsigned int ctrl; unsigned int time; unsigned int alarm0; unsigned int alarm1; unsigned int smpl_wtsr; unsigned int rtc_udr_update; unsigned int rtc_udr_mask; }; /* Register map for S5M8763 and S5M8767 */ static const struct s5m_rtc_reg_config s5m_rtc_regs = { .regs_count = 8, .time = S5M_RTC_SEC, .ctrl = S5M_ALARM1_CONF, .alarm0 = S5M_ALARM0_SEC, .alarm1 = S5M_ALARM1_SEC, .smpl_wtsr = S5M_WTSR_SMPL_CNTL, .rtc_udr_update = S5M_RTC_UDR_CON, .rtc_udr_mask = S5M_RTC_UDR_MASK, }; /* * Register map for S2MPS14. * It may be also suitable for S2MPS11 but this was not tested. */ static const struct s5m_rtc_reg_config s2mps_rtc_regs = { .regs_count = 7, .time = S2MPS_RTC_SEC, .ctrl = S2MPS_RTC_CTRL, .alarm0 = S2MPS_ALARM0_SEC, .alarm1 = S2MPS_ALARM1_SEC, .smpl_wtsr = S2MPS_WTSR_SMPL_CNTL, .rtc_udr_update = S2MPS_RTC_UDR_CON, .rtc_udr_mask = S2MPS_RTC_WUDR_MASK, }; struct s5m_rtc_info { struct device *dev; struct sec_pmic_dev *iodev; struct i2c_client *rtc; struct regmap *regmap_rtc; struct rtc_device *rtc_dev; int irq; int device_type; int rtc_24hr_mode; struct sec_wtsr_smpl *wtsr_smpl; bool alarm_enabled; const struct s5m_rtc_reg_config *regs; }; static inline int s5m8767_rtc_calculate_wday(u8 shifted) { int counter = -1; while (shifted) { shifted >>= 1; counter++; } return counter; } /* * Read RTC_UDR_CON register and wait till UDR field is cleared. * This indicates that time update ended. */ static inline void s5m_rtc_wait_for_udr_update(struct s5m_rtc_info *info) { int err, retry = UDR_READ_RETRY_CNT; u8 data; do { err = sec_reg_read(info->regmap_rtc, info->regs->rtc_udr_update, &data); } while (--retry && (data & info->regs->rtc_udr_mask) && !err); if (!retry) dev_err(info->dev, "waiting for UDR update, reached max number of retries (last UDR: %d)\n", data & info->regs->rtc_udr_mask); } static inline int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info, struct rtc_wkalrm *alarm) { int ret; u8 val; switch (info->device_type) { case S5M8767X: case S5M8763X: ret = sec_reg_read(info->regmap_rtc, S5M_RTC_STATUS, &val); val &= S5M_ALARM0_STATUS; break; case S2MPS14X: ret = sec_reg_read(info->iodev->regmap_pmic, S2MPS14_REG_ST2, &val); val &= S2MPS_ALARM0_STATUS; break; default: return -EINVAL; } if (ret < 0) return ret; if (val) alarm->pending = 1; else alarm->pending = 0; return 0; } static const struct regmap_config s5m_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S5M_RTC_REG_MAX, }; static const struct regmap_config s2mps14_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S2MPS_RTC_REG_MAX, }; static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm, int rtc_24hr_mode) { tm->tm_sec = data[RTC_SEC] & 0x7f; tm->tm_min = data[RTC_MIN] & 0x7f; if (rtc_24hr_mode) tm->tm_hour = data[RTC_HOUR] & 0x1f; else { tm->tm_hour = data[RTC_HOUR] & 0x0f; if (data[RTC_HOUR] & HOUR_PM_MASK) tm->tm_hour += 12; } tm->tm_wday = s5m8767_rtc_calculate_wday(data[RTC_WEEKDAY] & 0x7f); tm->tm_mday = data[RTC_DATE] & 0x1f; tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; tm->tm_year = (data[RTC_YEAR1] & 0x7f) + (bcd2bin(data[RTC_YEAR2]) * 100); tm->tm_year -= 1900; tm->tm_yday = 0; tm->tm_isdst = 0; } static int s5m8767_tm_to_data(struct device *dev, struct rtc_time *tm, u8 *data, int set_mode) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int bcd_mode = 0; if ((tm->tm_sec == 56 || tm->tm_sec == 57 || tm->tm_min == 56 || tm->tm_min == 57 || tm->tm_year == 56 || tm->tm_year == 57) && set_mode) { data[RTC_SEC] = bin2bcd(tm->tm_sec); data[RTC_MIN] = bin2bcd(tm->tm_min); if (tm->tm_hour >= 12) data[RTC_HOUR] = bin2bcd(tm->tm_hour) | HOUR_PM_MASK; else data[RTC_HOUR] = bin2bcd(tm->tm_hour) & ~HOUR_PM_MASK; data[RTC_DATE] = bin2bcd(tm->tm_mday); data[RTC_MONTH] = bin2bcd(tm->tm_mon + 1); data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100); sec_reg_update(info->regmap_rtc, info->regs->ctrl, BCD_EN_MASK, BCD_EN_MASK); bcd_mode = 1; } else { data[RTC_SEC] = tm->tm_sec; data[RTC_MIN] = tm->tm_min; if (tm->tm_hour >= 12) data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK; else data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK; data[RTC_DATE] = tm->tm_mday; data[RTC_MONTH] = tm->tm_mon + 1; data[RTC_YEAR1] = tm->tm_year % 100; bcd_mode = 0; } data[RTC_WEEKDAY] = 1 << tm->tm_wday; data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100); return bcd_mode; } static void s2mps_data_to_tm(u8 *data, struct rtc_time *tm, int rtc_24hr_mode) { tm->tm_sec = data[RTC_SEC] & 0x7f; tm->tm_min = data[RTC_MIN] & 0x7f; if (rtc_24hr_mode) { tm->tm_hour = data[RTC_HOUR] & 0x1f; } else { tm->tm_hour = data[RTC_HOUR] & 0x0f; if (data[RTC_HOUR] & HOUR_PM_MASK) tm->tm_hour += 12; } tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f); tm->tm_mday = data[RTC_DATE] & 0x1f; tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100; tm->tm_yday = 0; tm->tm_isdst = 0; } static int s2mps_tm_to_data(struct device *dev, struct rtc_time *tm, u8 *data) { data[RTC_SEC] = tm->tm_sec; data[RTC_MIN] = tm->tm_min; if (tm->tm_hour >= 12) data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK; else data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK; data[RTC_WEEKDAY] = 1 << tm->tm_wday; data[RTC_DATE] = tm->tm_mday; data[RTC_MONTH] = tm->tm_mon + 1; data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0; if (tm->tm_year < 100) { dev_err(dev, "RTC cannot handle the year %d.\n", 1900 + tm->tm_year); return -EINVAL; } else { return 0; } } static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info) { int ret; u8 data; ret = sec_reg_read(info->regmap_rtc, info->regs->rtc_udr_update, &data); if (ret < 0) return ret; data |= info->regs->rtc_udr_mask; if (info->device_type == S5M8763X || info->device_type == S5M8767X) { data |= S5M_RTC_TIME_EN_MASK; data |= S5M_RTC_UDR_T_MASK; data &= ~S5M_RTC_TEST_OSC_MASK; } ret = sec_reg_write(info->regmap_rtc, info->regs->rtc_udr_update, data); if (ret < 0) dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret); else s5m_rtc_wait_for_udr_update(info); return ret; } static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) { int ret; u8 data; ret = sec_reg_read(info->regmap_rtc, info->regs->rtc_udr_update, &data); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: case S5M8767X: data &= ~S5M_RTC_TIME_EN_MASK; data |= info->regs->rtc_udr_mask; data |= S5M_RTC_UDR_T_MASK; data &= ~S5M_RTC_TEST_OSC_MASK; break; case S2MPS14X: /* Set RUDR and WUDR bits to high */ data |= S2MPS_RTC_RUDR_MASK; data |= info->regs->rtc_udr_mask; break; default: return -EINVAL; } ret = sec_reg_write(info->regmap_rtc, info->regs->rtc_udr_update, data); if (ret < 0) { dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret); } else s5m_rtc_wait_for_udr_update(info); return ret; } static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm) { tm->tm_sec = bcd2bin(data[RTC_SEC]); tm->tm_min = bcd2bin(data[RTC_MIN]); if (data[RTC_HOUR] & HOUR_12) { tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f); if (data[RTC_HOUR] & HOUR_PM) tm->tm_hour += 12; } else tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f); tm->tm_wday = data[RTC_WEEKDAY] & 0x07; tm->tm_mday = bcd2bin(data[RTC_DATE]); tm->tm_mon = bcd2bin(data[RTC_MONTH]); tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100; tm->tm_year -= 1900; } static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = bin2bcd(tm->tm_sec); data[RTC_MIN] = bin2bcd(tm->tm_min); data[RTC_HOUR] = bin2bcd(tm->tm_hour); data[RTC_WEEKDAY] = tm->tm_wday; data[RTC_DATE] = bin2bcd(tm->tm_mday); data[RTC_MONTH] = bin2bcd(tm->tm_mon); data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100); data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100); } static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret; if (info->device_type == S2MPS14X) { ret = sec_reg_update(info->regmap_rtc, info->regs->rtc_udr_update, S2MPS_RTC_RUDR_MASK, S2MPS_RTC_RUDR_MASK); if (ret) { dev_err(dev, "Failed to prepare registers for time reading: %d\n", ret); return ret; } } ret = sec_bulk_read(info->regmap_rtc, info->regs->time, data, info->regs->regs_count); if (ret < 0) goto out; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, tm); break; case S5M8767X: s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode); break; case S2MPS14X: s2mps_data_to_tm(data, tm, info->rtc_24hr_mode); break; default: ret = (-EINVAL); goto out; } pr_debug("%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); out: if (ret >= 0) ret = rtc_valid_tm(tm); return ret; } static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret, bcd_mode = 0; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(tm, data); break; case S5M8767X: bcd_mode = s5m8767_tm_to_data(dev, tm, data, BCD_TIME); break; case S2MPS14X: ret = s2mps_tm_to_data(dev, tm, data); if (ret) return ret; break; default: return -EINVAL; } pr_debug( "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); ret = sec_bulk_write(info->regmap_rtc, info->regs->time, data, info->regs->regs_count); if (ret < 0) goto out; ret = s5m8767_rtc_set_time_reg(info); /* * Simple work-around for S5M876X AM/PM update logic bug - update * the time registers twice. * * Setting AM hour after PM hour for the first time will result in * Date and Weekday incrementation. Second write to registers will * set proper values. */ if (info->device_type == S5M8763X || info->device_type == S5M8767X) ret = s5m8767_rtc_set_time_reg(info); if (bcd_mode) sec_reg_update(info->regmap_rtc, info->regs->ctrl, BCD_EN_MASK, ~BCD_EN_MASK); out: return ret; } static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; u8 val; int ret, i; ret = sec_bulk_read(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) goto out; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, &alrm->time); ret = sec_reg_read(info->regmap_rtc, S5M_ALARM0_CONF, &val); if (ret < 0) goto out; alrm->enabled = !!val; break; case S5M8767X: s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); alrm->enabled = 0; for (i = 0; i < info->regs->regs_count; i++) { if (data[i] & ALARM_ENABLE_MASK) { alrm->enabled = 1; break; } } break; case S2MPS14X: s2mps_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); alrm->enabled = 0; for (i = 0; i < info->regs->regs_count; i++) { if (data[i] & ALARM_ENABLE_MASK) { alrm->enabled = 1; break; } } break; default: ret = (-EINVAL); goto out; } pr_debug( "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min, alrm->time.tm_sec, alrm->time.tm_wday); ret = s5m_check_peding_alarm_interrupt(info, alrm); out: return ret; } static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info) { u8 data[info->regs->regs_count]; int ret, i; struct rtc_time tm; ret = sec_bulk_read(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, &tm); break; case S5M8767X: s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); break; case S2MPS14X: s2mps_data_to_tm(data, &tm, info->rtc_24hr_mode); break; default: return -EINVAL; } pr_debug( "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); switch (info->device_type) { case S5M8763X: ret = sec_reg_write(info->regmap_rtc, S5M_ALARM0_CONF, 0); break; case S5M8767X: case S2MPS14X: for (i = 0; i < info->regs->regs_count; i++) data[i] &= ~ALARM_ENABLE_MASK; ret = sec_bulk_write(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } info->alarm_enabled = false; return ret; } static int s5m_rtc_start_alarm(struct s5m_rtc_info *info) { int ret; u8 data[info->regs->regs_count]; u8 alarm0_conf; struct rtc_time tm; ret = sec_bulk_read(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, &tm); break; case S5M8767X: s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); break; case S2MPS14X: s2mps_data_to_tm(data, &tm, info->rtc_24hr_mode); break; default: return -EINVAL; } pr_debug( "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); switch (info->device_type) { case S5M8763X: alarm0_conf = 0x77; ret = sec_reg_write(info->regmap_rtc, S5M_ALARM0_CONF, alarm0_conf); break; case S5M8767X: case S2MPS14X: data[RTC_SEC] |= ALARM_ENABLE_MASK; data[RTC_MIN] |= ALARM_ENABLE_MASK; data[RTC_HOUR] |= ALARM_ENABLE_MASK; data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK; if (data[RTC_DATE] & 0x1f) data[RTC_DATE] |= ALARM_ENABLE_MASK; if (data[RTC_MONTH] & 0xf) data[RTC_MONTH] |= ALARM_ENABLE_MASK; if (data[RTC_YEAR1] & 0x7f) data[RTC_YEAR1] |= ALARM_ENABLE_MASK; ret = sec_bulk_write(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } info->alarm_enabled = true; return ret; } static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret, bcd_mode = 0; unsigned char enabled = alrm->enabled; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(&alrm->time, data); break; case S5M8767X: bcd_mode = s5m8767_tm_to_data(dev, &alrm->time, data, BCD_ALARM); break; case S2MPS14X: ret = s2mps_tm_to_data(dev, &alrm->time, data); if (ret) return ret; break; default: return -EINVAL; } pr_debug( "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min, alrm->time.tm_sec, alrm->time.tm_wday); ret = s5m_rtc_stop_alarm(info); if (ret < 0) goto out; ret = sec_bulk_write(info->regmap_rtc, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) goto out; ret = s5m8767_rtc_set_alarm_reg(info); if (ret < 0) goto out; if (enabled) ret = s5m_rtc_start_alarm(info); if (bcd_mode) sec_reg_update(info->regmap_rtc, info->regs->ctrl, BCD_EN_MASK, ~BCD_EN_MASK); out: return ret; } static int s5m_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret; if (enabled) { ret = s5m_rtc_start_alarm(info); } else { ret = s5m_rtc_stop_alarm(info); } return ret; } static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data) { struct s5m_rtc_info *info = data; dev_info(info->dev, "alarm IRQ, irq: %d\n", irq); rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static const struct rtc_class_ops s5m_rtc_ops = { .read_time = s5m_rtc_read_time, .set_time = s5m_rtc_set_time, .read_alarm = s5m_rtc_read_alarm, .set_alarm = s5m_rtc_set_alarm, .alarm_irq_enable = s5m_rtc_alarm_irq_enable, }; static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable) { int ret; u8 val, mask; if (enable) val = WTSR_ENABLE_MASK; else val = 0; mask = WTSR_ENABLE_MASK; dev_info(info->dev, "%s: %s WTSR\n", __func__, enable ? "enable" : "disable"); ret = sec_reg_update(info->regmap_rtc, info->regs->smpl_wtsr, mask, val); if (ret < 0) { dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n", __func__, ret); return; } ret = s5m8767_rtc_set_alarm_reg(info); } static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable) { int ret; u8 val, mask; if (enable) val = SMPL_ENABLE_MASK; else val = 0; mask = SMPL_ENABLE_MASK; dev_info(info->dev, "%s: %s SMPL\n", __func__, enable ? "enable" : "disable"); ret = sec_reg_update(info->regmap_rtc, info->regs->smpl_wtsr, mask, val); if (ret < 0) { dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n", __func__, ret); return; } ret = s5m8767_rtc_set_alarm_reg(info); val = 0; sec_reg_read(info->regmap_rtc, info->regs->smpl_wtsr, &val); pr_info("%s: WTSR_SMPL(0x%02x)\n", __func__, val); } static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info) { u8 data[2]; int ret; switch (info->device_type) { case S5M8763X: case S5M8767X: /* Set RTC control register : Binary mode, 24hour mdoe */ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = sec_bulk_write(info->regmap_rtc, S5M_ALARM0_CONF, data, 2); break; case S2MPS14X: data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = sec_reg_write(info->regmap_rtc, info->regs->ctrl, data[0]); break; default: return -EINVAL; } info->rtc_24hr_mode = 1; if (ret < 0) { dev_err(info->dev, "%s: fail to write controlm reg(%d)\n", __func__, ret); return ret; } return ret; } static struct sec_wtsr_smpl default_wtsr_smpl_data = { .wtsr_en = true, #if defined(CONFIG_SEC_FACTORY_MODE) .smpl_en = false, #endif }; static int s5m_rtc_probe(struct platform_device *pdev) { struct sec_pmic_dev *iodev = dev_get_drvdata(pdev->dev.parent); struct sec_platform_data *pdata = iodev->pdata; struct s5m_rtc_info *info; const struct regmap_config *regmap_cfg; int ret; if (!pdata) { dev_err(pdev->dev.parent, "Platform data not supplied\n"); return -ENODEV; } info = devm_kzalloc(&pdev->dev, sizeof(struct s5m_rtc_info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = &pdev->dev; info->iodev = iodev; info->device_type = iodev->device_type; if (pdata->wtsr_smpl) info->wtsr_smpl = pdata->wtsr_smpl; else info->wtsr_smpl = &default_wtsr_smpl_data; switch (pdata->device_type) { case S2MPS11X: /* * The rtc-s5m driver does not support S2MPS11 and there * is no mfd_cell for S2MPS11 RTC device. * However we must pass something to devm_regmap_init_i2c() * so use S5M-like regmap config even though it wouldn't work. */ regmap_cfg = &s5m_rtc_regmap_config; break; case S5M8763X: info->irq = regmap_irq_get_virq(iodev->irq_data, S5M8763_IRQ_ALARM0); info->regs = &s5m_rtc_regs; regmap_cfg = &s5m_rtc_regmap_config; break; case S5M8767X: info->irq = regmap_irq_get_virq(iodev->irq_data, S5M8767_IRQ_RTCA1); info->regs = &s5m_rtc_regs; regmap_cfg = &s5m_rtc_regmap_config; break; case S2MPS14X: info->irq = regmap_irq_get_virq(iodev->irq_data, S2MPS14_IRQ_RTCA0); info->regs = &s2mps_rtc_regs; regmap_cfg = &s2mps14_rtc_regmap_config; break; default: ret = -EINVAL; dev_err(&pdev->dev, "Unsupported device type: %d\n", ret); goto out_rtc; } info->rtc = i2c_new_dummy(iodev->i2c->adapter, RTC_I2C_ADDR); if (IS_ERR_OR_NULL(info->rtc)) { dev_err(&pdev->dev, "Failed to allocate i2c for RTC\n"); return -ENODEV; } info->regmap_rtc = devm_regmap_init_i2c(info->rtc, regmap_cfg); if (IS_ERR(info->regmap_rtc)) { ret = PTR_ERR(info->regmap_rtc); dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n", ret); goto err; } platform_set_drvdata(pdev, info); ret = s5m8767_rtc_init_reg(info); if (info->wtsr_smpl) { s5m_rtc_enable_wtsr(info, info->wtsr_smpl->wtsr_en); #if defined(CONFIG_SEC_FACTORY_MODE) s5m_rtc_enable_smpl(info, info->wtsr_smpl->smpl_en); #endif } device_init_wakeup(&pdev->dev, 1); info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc", &s5m_rtc_ops, THIS_MODULE); if (IS_ERR(info->rtc_dev)) { ret = PTR_ERR(info->rtc_dev); dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret); goto err; } ret = request_threaded_irq(info->irq, NULL, s5m_rtc_alarm_irq, pdata->irqflags, "rtc-alarm0", info); if (ret < 0) { dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", info->irq, ret); goto err; } dev_info(&pdev->dev, "RTC CHIP NAME: %s\n", pdev->id_entry->name); return 0; err: i2c_unregister_device(info->rtc); out_rtc: platform_set_drvdata(pdev, NULL); return ret; } static int s5m_rtc_remove(struct platform_device *pdev) { struct s5m_rtc_info *info = platform_get_drvdata(pdev); if (info) free_irq(info->irq, info); return 0; } static void s5m_rtc_shutdown(struct platform_device *pdev) { struct s5m_rtc_info *info = platform_get_drvdata(pdev); int i; u8 val = 0; if (info->wtsr_smpl->wtsr_en) { for (i = 0; i < 3; i++) { s5m_rtc_enable_wtsr(info, false); sec_reg_read(info->regmap_rtc, info->regs->smpl_wtsr, &val); pr_info("%s: WTSR_SMPL reg(0x%02x)\n", __func__, val); if (val & WTSR_ENABLE_MASK) pr_emerg("%s: fail to disable WTSR\n", __func__); else { pr_info("%s: success to disable WTSR\n", __func__); break; } } } /* Disable SMPL when power off */ s5m_rtc_enable_smpl(info, false); } static const struct platform_device_id s5m_rtc_id[] = { { "s5m-rtc", S5M8767X }, { "s2mps14-rtc", S2MPS14X }, { }, }; #ifdef CONFIG_PM_SLEEP static int s5m_rtc_resume(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (device_may_wakeup(dev)) ret = disable_irq_wake(info->irq); return ret; } static int s5m_rtc_suspend(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (device_may_wakeup(dev)) ret = enable_irq_wake(info->irq); return ret; } #endif static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume); static struct platform_driver s5m_rtc_driver = { .driver = { .name = "s5m-rtc", .owner = THIS_MODULE, .pm = &s5m_rtc_pm_ops, }, .probe = s5m_rtc_probe, .remove = s5m_rtc_remove, .shutdown = s5m_rtc_shutdown, .id_table = s5m_rtc_id, }; static int __init s5m_rtc_init(void) { return platform_driver_register(&s5m_rtc_driver); } module_init(s5m_rtc_init); static void __exit s5m_rtc_exit(void) { platform_driver_unregister(&s5m_rtc_driver); } module_exit(s5m_rtc_exit); /* Module information */ MODULE_AUTHOR("Sangbeom Kim "); MODULE_DESCRIPTION("Samsung S5M RTC driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s5m-rtc");