/* Intel EtherExpress 16 device driver for Linux * * Written by John Sullivan, 1995 * based on original code by Donald Becker, with changes by * Alan Cox and Pauline Middelink. * * Support for 8-bit mode by Zoltan Szilagyi * * Many modifications, and currently maintained, by * Philip Blundell * Added the Compaq LTE Alan Cox * Added MCA support Adam Fritzler * * Note - this driver is experimental still - it has problems on faster * machines. Someone needs to sit down and go through it line by line with * a databook... */ /* The EtherExpress 16 is a fairly simple card, based on a shared-memory * design using the i82586 Ethernet coprocessor. It bears no relationship, * as far as I know, to the similarly-named "EtherExpress Pro" range. * * Historically, Linux support for these cards has been very bad. However, * things seem to be getting better slowly. */ /* If your card is confused about what sort of interface it has (eg it * persistently reports "10baseT" when none is fitted), running 'SOFTSET /BART' * or 'SOFTSET /LISA' from DOS seems to help. */ /* Here's the scoop on memory mapping. * * There are three ways to access EtherExpress card memory: either using the * shared-memory mapping, or using PIO through the dataport, or using PIO * through the "shadow memory" ports. * * The shadow memory system works by having the card map some of its memory * as follows: * * (the low five bits of the SMPTR are ignored) * * base+0x4000..400f memory at SMPTR+0..15 * base+0x8000..800f memory at SMPTR+16..31 * base+0xc000..c007 dubious stuff (memory at SMPTR+16..23 apparently) * base+0xc008..c00f memory at 0x0008..0x000f * * This last set (the one at c008) is particularly handy because the SCB * lives at 0x0008. So that set of ports gives us easy random access to data * in the SCB without having to mess around setting up pointers and the like. * We always use this method to access the SCB (via the scb_xx() functions). * * Dataport access works by aiming the appropriate (read or write) pointer * at the first address you're interested in, and then reading or writing from * the dataport. The pointers auto-increment after each transfer. We use * this for data transfer. * * We don't use the shared-memory system because it allegedly doesn't work on * all cards, and because it's a bit more prone to go wrong (it's one more * thing to configure...). */ /* Known bugs: * * - The card seems to want to give us two interrupts every time something * happens, where just one would be better. */ /* * * Note by Zoltan Szilagyi 10-12-96: * * I've succeeded in eliminating the "CU wedged" messages, and hence the * lockups, which were only occurring with cards running in 8-bit mode ("force * 8-bit operation" in Intel's SoftSet utility). This version of the driver * sets the 82586 and the ASIC to 8-bit mode at startup; it also stops the * CU before submitting a packet for transmission, and then restarts it as soon * as the process of handing the packet is complete. This is definitely an * unnecessary slowdown if the card is running in 16-bit mode; therefore one * should detect 16-bit vs 8-bit mode from the EEPROM settings and act * accordingly. In 8-bit mode with this bugfix I'm getting about 150 K/s for * ftp's, which is significantly better than I get in DOS, so the overhead of * stopping and restarting the CU with each transmit is not prohibitive in * practice. * * Update by David Woodhouse 11/5/99: * * I've seen "CU wedged" messages in 16-bit mode, on the Alpha architecture. * I assume that this is because 16-bit accesses are actually handled as two * 8-bit accesses. */ #ifdef __alpha__ #define LOCKUP16 1 #endif #ifndef LOCKUP16 #define LOCKUP16 0 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NET_DEBUG #define NET_DEBUG 4 #endif #include "eexpress.h" #define EEXP_IO_EXTENT 16 /* * Private data declarations */ struct net_local { struct net_device_stats stats; unsigned long last_tx; /* jiffies when last transmit started */ unsigned long init_time; /* jiffies when eexp_hw_init586 called */ unsigned short rx_first; /* first rx buf, same as RX_BUF_START */ unsigned short rx_last; /* last rx buf */ unsigned short rx_ptr; /* first rx buf to look at */ unsigned short tx_head; /* next free tx buf */ unsigned short tx_reap; /* first in-use tx buf */ unsigned short tx_tail; /* previous tx buf to tx_head */ unsigned short tx_link; /* last known-executing tx buf */ unsigned short last_tx_restart; /* set to tx_link when we restart the CU */ unsigned char started; unsigned short rx_buf_start; unsigned short rx_buf_end; unsigned short num_tx_bufs; unsigned short num_rx_bufs; unsigned char width; /* 0 for 16bit, 1 for 8bit */ unsigned char was_promisc; unsigned char old_mc_count; spinlock_t lock; }; /* This is the code and data that is downloaded to the EtherExpress card's * memory at boot time. */ static unsigned short start_code[] = { /* 0x0000 */ 0x0001, /* ISCP: busy - cleared after reset */ 0x0008,0x0000,0x0000, /* offset,address (lo,hi) of SCB */ 0x0000,0x0000, /* SCB: status, commands */ 0x0000,0x0000, /* links to first command block, first receive descriptor */ 0x0000,0x0000, /* CRC error, alignment error counts */ 0x0000,0x0000, /* out of resources, overrun error counts */ 0x0000,0x0000, /* pad */ 0x0000,0x0000, /* 0x20 -- start of 82586 CU program */ #define CONF_LINK 0x20 0x0000,Cmd_Config, 0x0032, /* link to next command */ 0x080c, /* 12 bytes follow : fifo threshold=8 */ 0x2e40, /* don't rx bad frames * SRDY/ARDY => ext. sync. : preamble len=8 * take addresses from data buffers * 6 bytes/address */ 0x6000, /* default backoff method & priority * interframe spacing = 0x60 */ 0xf200, /* slot time=0x200 * max collision retry = 0xf */ #define CONF_PROMISC 0x2e 0x0000, /* no HDLC : normal CRC : enable broadcast * disable promiscuous/multicast modes */ 0x003c, /* minimum frame length = 60 octets) */ 0x0000,Cmd_SetAddr, 0x003e, /* link to next command */ #define CONF_HWADDR 0x38 0x0000,0x0000,0x0000, /* hardware address placed here */ 0x0000,Cmd_MCast, 0x0076, /* link to next command */ #define CONF_NR_MULTICAST 0x44 0x0000, /* number of multicast addresses */ #define CONF_MULTICAST 0x46 0x0000, 0x0000, 0x0000, /* some addresses */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, #define CONF_DIAG_RESULT 0x76 0x0000, Cmd_Diag, 0x007c, /* link to next command */ 0x0000,Cmd_TDR|Cmd_INT, 0x0084, #define CONF_TDR_RESULT 0x82 0x0000, 0x0000,Cmd_END|Cmd_Nop, /* end of configure sequence */ 0x0084 /* dummy link */ }; /* maps irq number to EtherExpress magic value */ static char irqrmap[] = { 0,0,1,2,3,4,0,0,0,1,5,6,0,0,0,0 }; #ifdef CONFIG_MCA_LEGACY /* mapping of the first four bits of the second POS register */ static unsigned short mca_iomap[] = { 0x270, 0x260, 0x250, 0x240, 0x230, 0x220, 0x210, 0x200, 0x370, 0x360, 0x350, 0x340, 0x330, 0x320, 0x310, 0x300 }; /* bits 5-7 of the second POS register */ static char mca_irqmap[] = { 12, 9, 3, 4, 5, 10, 11, 15 }; #endif /* * Prototypes for Linux interface */ static int eexp_open(struct net_device *dev); static int eexp_close(struct net_device *dev); static void eexp_timeout(struct net_device *dev); static struct net_device_stats *eexp_stats(struct net_device *dev); static int eexp_xmit(struct sk_buff *buf, struct net_device *dev); static irqreturn_t eexp_irq(int irq, void *dev_addr, struct pt_regs *regs); static void eexp_set_multicast(struct net_device *dev); /* * Prototypes for hardware access functions */ static void eexp_hw_rx_pio(struct net_device *dev); static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf, unsigned short len); static int eexp_hw_probe(struct net_device *dev,unsigned short ioaddr); static unsigned short eexp_hw_readeeprom(unsigned short ioaddr, unsigned char location); static unsigned short eexp_hw_lasttxstat(struct net_device *dev); static void eexp_hw_txrestart(struct net_device *dev); static void eexp_hw_txinit (struct net_device *dev); static void eexp_hw_rxinit (struct net_device *dev); static void eexp_hw_init586 (struct net_device *dev); static void eexp_setup_filter (struct net_device *dev); static char *eexp_ifmap[]={"AUI", "BNC", "RJ45"}; enum eexp_iftype {AUI=0, BNC=1, TPE=2}; #define STARTED_RU 2 #define STARTED_CU 1 /* * Primitive hardware access functions. */ static inline unsigned short scb_status(struct net_device *dev) { return inw(dev->base_addr + 0xc008); } static inline unsigned short scb_rdcmd(struct net_device *dev) { return inw(dev->base_addr + 0xc00a); } static inline void scb_command(struct net_device *dev, unsigned short cmd) { outw(cmd, dev->base_addr + 0xc00a); } static inline void scb_wrcbl(struct net_device *dev, unsigned short val) { outw(val, dev->base_addr + 0xc00c); } static inline void scb_wrrfa(struct net_device *dev, unsigned short val) { outw(val, dev->base_addr + 0xc00e); } static inline void set_loopback(struct net_device *dev) { outb(inb(dev->base_addr + Config) | 2, dev->base_addr + Config); } static inline void clear_loopback(struct net_device *dev) { outb(inb(dev->base_addr + Config) & ~2, dev->base_addr + Config); } static inline unsigned short int SHADOW(short int addr) { addr &= 0x1f; if (addr > 0xf) addr += 0x3ff0; return addr + 0x4000; } /* * Linux interface */ /* * checks for presence of EtherExpress card */ static int __init do_express_probe(struct net_device *dev) { unsigned short *port; static unsigned short ports[] = { 0x240,0x300,0x310,0x270,0x320,0x340,0 }; unsigned short ioaddr = dev->base_addr; int dev_irq = dev->irq; int err; SET_MODULE_OWNER(dev); dev->if_port = 0xff; /* not set */ #ifdef CONFIG_MCA_LEGACY if (MCA_bus) { int slot = 0; /* * Only find one card at a time. Subsequent calls * will find others, however, proper multicard MCA * probing and setup can't be done with the * old-style Space.c init routines. -- ASF */ while (slot != MCA_NOTFOUND) { int pos0, pos1; slot = mca_find_unused_adapter(0x628B, slot); if (slot == MCA_NOTFOUND) break; pos0 = mca_read_stored_pos(slot, 2); pos1 = mca_read_stored_pos(slot, 3); ioaddr = mca_iomap[pos1&0xf]; dev->irq = mca_irqmap[(pos1>>4)&0x7]; /* * XXX: Transciever selection is done * differently on the MCA version. * How to get it to select something * other than external/AUI is currently * unknown. This code is just for looks. -- ASF */ if ((pos0 & 0x7) == 0x1) dev->if_port = AUI; else if ((pos0 & 0x7) == 0x5) { if (pos1 & 0x80) dev->if_port = BNC; else dev->if_port = TPE; } mca_set_adapter_name(slot, "Intel EtherExpress 16 MCA"); mca_set_adapter_procfn(slot, NULL, dev); mca_mark_as_used(slot); break; } } #endif if (ioaddr&0xfe00) { if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) return -EBUSY; err = eexp_hw_probe(dev,ioaddr); release_region(ioaddr, EEXP_IO_EXTENT); return err; } else if (ioaddr) return -ENXIO; for (port=&ports[0] ; *port ; port++ ) { unsigned short sum = 0; int i; if (!request_region(*port, EEXP_IO_EXTENT, "EtherExpress")) continue; for ( i=0 ; i<4 ; i++ ) { unsigned short t; t = inb(*port + ID_PORT); sum |= (t>>4) << ((t & 0x03)<<2); } if (sum==0xbaba && !eexp_hw_probe(dev,*port)) { release_region(*port, EEXP_IO_EXTENT); return 0; } release_region(*port, EEXP_IO_EXTENT); dev->irq = dev_irq; } return -ENODEV; } #ifndef MODULE struct net_device * __init express_probe(int unit) { struct net_device *dev = alloc_etherdev(sizeof(struct net_local)); int err; if (!dev) return ERR_PTR(-ENOMEM); sprintf(dev->name, "eth%d", unit); netdev_boot_setup_check(dev); err = do_express_probe(dev); if (!err) return dev; free_netdev(dev); return ERR_PTR(err); } #endif /* * open and initialize the adapter, ready for use */ static int eexp_open(struct net_device *dev) { int ret; unsigned short ioaddr = dev->base_addr; struct net_local *lp = netdev_priv(dev); #if NET_DEBUG > 6 printk(KERN_DEBUG "%s: eexp_open()\n", dev->name); #endif if (!dev->irq || !irqrmap[dev->irq]) return -ENXIO; ret = request_irq(dev->irq,&eexp_irq,0,dev->name,dev); if (ret) return ret; if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) { printk(KERN_WARNING "EtherExpress io port %x, is busy.\n" , ioaddr); goto err_out1; } if (!request_region(ioaddr+0x4000, EEXP_IO_EXTENT, "EtherExpress shadow")) { printk(KERN_WARNING "EtherExpress io port %x, is busy.\n" , ioaddr+0x4000); goto err_out2; } if (!request_region(ioaddr+0x8000, EEXP_IO_EXTENT, "EtherExpress shadow")) { printk(KERN_WARNING "EtherExpress io port %x, is busy.\n" , ioaddr+0x8000); goto err_out3; } if (!request_region(ioaddr+0xc000, EEXP_IO_EXTENT, "EtherExpress shadow")) { printk(KERN_WARNING "EtherExpress io port %x, is busy.\n" , ioaddr+0xc000); goto err_out4; } if (lp->width) { printk("%s: forcing ASIC to 8-bit mode\n", dev->name); outb(inb(dev->base_addr+Config)&~4, dev->base_addr+Config); } eexp_hw_init586(dev); netif_start_queue(dev); #if NET_DEBUG > 6 printk(KERN_DEBUG "%s: leaving eexp_open()\n", dev->name); #endif return 0; err_out4: release_region(ioaddr+0x8000, EEXP_IO_EXTENT); err_out3: release_region(ioaddr+0x4000, EEXP_IO_EXTENT); err_out2: release_region(ioaddr, EEXP_IO_EXTENT); err_out1: free_irq(dev->irq, dev); return -EBUSY; } /* * close and disable the interface, leaving the 586 in reset. */ static int eexp_close(struct net_device *dev) { unsigned short ioaddr = dev->base_addr; struct net_local *lp = netdev_priv(dev); int irq = dev->irq; netif_stop_queue(dev); outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ); lp->started = 0; scb_command(dev, SCB_CUsuspend|SCB_RUsuspend); outb(0,ioaddr+SIGNAL_CA); free_irq(irq,dev); outb(i586_RST,ioaddr+EEPROM_Ctrl); release_region(ioaddr, EEXP_IO_EXTENT); release_region(ioaddr+0x4000, 16); release_region(ioaddr+0x8000, 16); release_region(ioaddr+0xc000, 16); return 0; } /* * Return interface stats */ static struct net_device_stats *eexp_stats(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); return &lp->stats; } /* * This gets called when a higher level thinks we are broken. Check that * nothing has become jammed in the CU. */ static void unstick_cu(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short ioaddr = dev->base_addr; if (lp->started) { if ((jiffies - dev->trans_start)>50) { if (lp->tx_link==lp->last_tx_restart) { unsigned short boguscount=200,rsst; printk(KERN_WARNING "%s: Retransmit timed out, status %04x, resetting...\n", dev->name, scb_status(dev)); eexp_hw_txinit(dev); lp->last_tx_restart = 0; scb_wrcbl(dev, lp->tx_link); scb_command(dev, SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); while (!SCB_complete(rsst=scb_status(dev))) { if (!--boguscount) { boguscount=200; printk(KERN_WARNING "%s: Reset timed out status %04x, retrying...\n", dev->name,rsst); scb_wrcbl(dev, lp->tx_link); scb_command(dev, SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); } } netif_wake_queue(dev); } else { unsigned short status = scb_status(dev); if (SCB_CUdead(status)) { unsigned short txstatus = eexp_hw_lasttxstat(dev); printk(KERN_WARNING "%s: Transmit timed out, CU not active status %04x %04x, restarting...\n", dev->name, status, txstatus); eexp_hw_txrestart(dev); } else { unsigned short txstatus = eexp_hw_lasttxstat(dev); if (netif_queue_stopped(dev) && !txstatus) { printk(KERN_WARNING "%s: CU wedged, status %04x %04x, resetting...\n", dev->name,status,txstatus); eexp_hw_init586(dev); netif_wake_queue(dev); } else { printk(KERN_WARNING "%s: transmit timed out\n", dev->name); } } } } } else { if ((jiffies-lp->init_time)>10) { unsigned short status = scb_status(dev); printk(KERN_WARNING "%s: i82586 startup timed out, status %04x, resetting...\n", dev->name, status); eexp_hw_init586(dev); netif_wake_queue(dev); } } } static void eexp_timeout(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); #ifdef CONFIG_SMP unsigned long flags; #endif int status; disable_irq(dev->irq); /* * Best would be to use synchronize_irq(); spin_lock() here * lets make it work first.. */ #ifdef CONFIG_SMP spin_lock_irqsave(&lp->lock, flags); #endif status = scb_status(dev); unstick_cu(dev); printk(KERN_INFO "%s: transmit timed out, %s?\n", dev->name, (SCB_complete(status)?"lost interrupt": "board on fire")); lp->stats.tx_errors++; lp->last_tx = jiffies; if (!SCB_complete(status)) { scb_command(dev, SCB_CUabort); outb(0,dev->base_addr+SIGNAL_CA); } netif_wake_queue(dev); #ifdef CONFIG_SMP spin_unlock_irqrestore(&lp->lock, flags); #endif } /* * Called to transmit a packet, or to allow us to right ourselves * if the kernel thinks we've died. */ static int eexp_xmit(struct sk_buff *buf, struct net_device *dev) { struct net_local *lp = netdev_priv(dev); short length = buf->len; #ifdef CONFIG_SMP unsigned long flags; #endif #if NET_DEBUG > 6 printk(KERN_DEBUG "%s: eexp_xmit()\n", dev->name); #endif if (buf->len < ETH_ZLEN) { buf = skb_padto(buf, ETH_ZLEN); if (buf == NULL) return 0; length = ETH_ZLEN; } disable_irq(dev->irq); /* * Best would be to use synchronize_irq(); spin_lock() here * lets make it work first.. */ #ifdef CONFIG_SMP spin_lock_irqsave(&lp->lock, flags); #endif { unsigned short *data = (unsigned short *)buf->data; lp->stats.tx_bytes += length; eexp_hw_tx_pio(dev,data,length); } dev_kfree_skb(buf); #ifdef CONFIG_SMP spin_unlock_irqrestore(&lp->lock, flags); #endif enable_irq(dev->irq); return 0; } /* * Handle an EtherExpress interrupt * If we've finished initializing, start the RU and CU up. * If we've already started, reap tx buffers, handle any received packets, * check to make sure we've not become wedged. */ /* * Handle an EtherExpress interrupt * If we've finished initializing, start the RU and CU up. * If we've already started, reap tx buffers, handle any received packets, * check to make sure we've not become wedged. */ static unsigned short eexp_start_irq(struct net_device *dev, unsigned short status) { unsigned short ack_cmd = SCB_ack(status); struct net_local *lp = netdev_priv(dev); unsigned short ioaddr = dev->base_addr; if ((dev->flags & IFF_UP) && !(lp->started & STARTED_CU)) { short diag_status, tdr_status; while (SCB_CUstat(status)==2) status = scb_status(dev); #if NET_DEBUG > 4 printk("%s: CU went non-active (status %04x)\n", dev->name, status); #endif outw(CONF_DIAG_RESULT & ~31, ioaddr + SM_PTR); diag_status = inw(ioaddr + SHADOW(CONF_DIAG_RESULT)); if (diag_status & 1<<11) { printk(KERN_WARNING "%s: 82586 failed self-test\n", dev->name); } else if (!(diag_status & 1<<13)) { printk(KERN_WARNING "%s: 82586 self-test failed to complete\n", dev->name); } outw(CONF_TDR_RESULT & ~31, ioaddr + SM_PTR); tdr_status = inw(ioaddr + SHADOW(CONF_TDR_RESULT)); if (tdr_status & (TDR_SHORT|TDR_OPEN)) { printk(KERN_WARNING "%s: TDR reports cable %s at %d tick%s\n", dev->name, (tdr_status & TDR_SHORT)?"short":"broken", tdr_status & TDR_TIME, ((tdr_status & TDR_TIME) != 1) ? "s" : ""); } else if (tdr_status & TDR_XCVRPROBLEM) { printk(KERN_WARNING "%s: TDR reports transceiver problem\n", dev->name); } else if (tdr_status & TDR_LINKOK) { #if NET_DEBUG > 4 printk(KERN_DEBUG "%s: TDR reports link OK\n", dev->name); #endif } else { printk("%s: TDR is ga-ga (status %04x)\n", dev->name, tdr_status); } lp->started |= STARTED_CU; scb_wrcbl(dev, lp->tx_link); /* if the RU isn't running, start it now */ if (!(lp->started & STARTED_RU)) { ack_cmd |= SCB_RUstart; scb_wrrfa(dev, lp->rx_buf_start); lp->rx_ptr = lp->rx_buf_start; lp->started |= STARTED_RU; } ack_cmd |= SCB_CUstart | 0x2000; } if ((dev->flags & IFF_UP) && !(lp->started & STARTED_RU) && SCB_RUstat(status)==4) lp->started|=STARTED_RU; return ack_cmd; } static void eexp_cmd_clear(struct net_device *dev) { unsigned long int oldtime = jiffies; while (scb_rdcmd(dev) && ((jiffies-oldtime)<10)); if (scb_rdcmd(dev)) { printk("%s: command didn't clear\n", dev->name); } } static irqreturn_t eexp_irq(int irq, void *dev_info, struct pt_regs *regs) { struct net_device *dev = dev_info; struct net_local *lp; unsigned short ioaddr,status,ack_cmd; unsigned short old_read_ptr, old_write_ptr; if (dev==NULL) { printk(KERN_WARNING "eexpress: irq %d for unknown device\n", irq); return IRQ_NONE; } lp = netdev_priv(dev); ioaddr = dev->base_addr; spin_lock(&lp->lock); old_read_ptr = inw(ioaddr+READ_PTR); old_write_ptr = inw(ioaddr+WRITE_PTR); outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ); status = scb_status(dev); #if NET_DEBUG > 4 printk(KERN_DEBUG "%s: interrupt (status %x)\n", dev->name, status); #endif if (lp->started == (STARTED_CU | STARTED_RU)) { do { eexp_cmd_clear(dev); ack_cmd = SCB_ack(status); scb_command(dev, ack_cmd); outb(0,ioaddr+SIGNAL_CA); eexp_cmd_clear(dev); if (SCB_complete(status)) { if (!eexp_hw_lasttxstat(dev)) { printk("%s: tx interrupt but no status\n", dev->name); } } if (SCB_rxdframe(status)) eexp_hw_rx_pio(dev); status = scb_status(dev); } while (status & 0xc000); if (SCB_RUdead(status)) { printk(KERN_WARNING "%s: RU stopped: status %04x\n", dev->name,status); #if 0 printk(KERN_WARNING "%s: cur_rfd=%04x, cur_rbd=%04x\n", dev->name, lp->cur_rfd, lp->cur_rbd); outw(lp->cur_rfd, ioaddr+READ_PTR); printk(KERN_WARNING "%s: [%04x]\n", dev->name, inw(ioaddr+DATAPORT)); outw(lp->cur_rfd+6, ioaddr+READ_PTR); printk(KERN_WARNING "%s: rbd is %04x\n", dev->name, rbd= inw(ioaddr+DATAPORT)); outw(rbd, ioaddr+READ_PTR); printk(KERN_WARNING "%s: [%04x %04x] ", dev->name, inw(ioaddr+DATAPORT), inw(ioaddr+DATAPORT)); outw(rbd+8, ioaddr+READ_PTR); printk("[%04x]\n", inw(ioaddr+DATAPORT)); #endif lp->stats.rx_errors++; #if 1 eexp_hw_rxinit(dev); #else lp->cur_rfd = lp->first_rfd; #endif scb_wrrfa(dev, lp->rx_buf_start); scb_command(dev, SCB_RUstart); outb(0,ioaddr+SIGNAL_CA); } } else { if (status & 0x8000) ack_cmd = eexp_start_irq(dev, status); else ack_cmd = SCB_ack(status); scb_command(dev, ack_cmd); outb(0,ioaddr+SIGNAL_CA); } eexp_cmd_clear(dev); outb(SIRQ_en|irqrmap[irq],ioaddr+SET_IRQ); #if NET_DEBUG > 6 printk("%s: leaving eexp_irq()\n", dev->name); #endif outw(old_read_ptr, ioaddr+READ_PTR); outw(old_write_ptr, ioaddr+WRITE_PTR); spin_unlock(&lp->lock); return IRQ_HANDLED; } /* * Hardware access functions */ /* * Set the cable type to use. */ static void eexp_hw_set_interface(struct net_device *dev) { unsigned char oldval = inb(dev->base_addr + 0x300e); oldval &= ~0x82; switch (dev->if_port) { case TPE: oldval |= 0x2; case BNC: oldval |= 0x80; break; } outb(oldval, dev->base_addr+0x300e); mdelay(20); } /* * Check all the receive buffers, and hand any received packets * to the upper levels. Basic sanity check on each frame * descriptor, though we don't bother trying to fix broken ones. */ static void eexp_hw_rx_pio(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short rx_block = lp->rx_ptr; unsigned short boguscount = lp->num_rx_bufs; unsigned short ioaddr = dev->base_addr; unsigned short status; #if NET_DEBUG > 6 printk(KERN_DEBUG "%s: eexp_hw_rx()\n", dev->name); #endif do { unsigned short rfd_cmd, rx_next, pbuf, pkt_len; outw(rx_block, ioaddr + READ_PTR); status = inw(ioaddr + DATAPORT); if (FD_Done(status)) { rfd_cmd = inw(ioaddr + DATAPORT); rx_next = inw(ioaddr + DATAPORT); pbuf = inw(ioaddr + DATAPORT); outw(pbuf, ioaddr + READ_PTR); pkt_len = inw(ioaddr + DATAPORT); if (rfd_cmd!=0x0000) { printk(KERN_WARNING "%s: rfd_cmd not zero:0x%04x\n", dev->name, rfd_cmd); continue; } else if (pbuf!=rx_block+0x16) { printk(KERN_WARNING "%s: rfd and rbd out of sync 0x%04x 0x%04x\n", dev->name, rx_block+0x16, pbuf); continue; } else if ((pkt_len & 0xc000)!=0xc000) { printk(KERN_WARNING "%s: EOF or F not set on received buffer (%04x)\n", dev->name, pkt_len & 0xc000); continue; } else if (!FD_OK(status)) { lp->stats.rx_errors++; if (FD_CRC(status)) lp->stats.rx_crc_errors++; if (FD_Align(status)) lp->stats.rx_frame_errors++; if (FD_Resrc(status)) lp->stats.rx_fifo_errors++; if (FD_DMA(status)) lp->stats.rx_over_errors++; if (FD_Short(status)) lp->stats.rx_length_errors++; } else { struct sk_buff *skb; pkt_len &= 0x3fff; skb = dev_alloc_skb(pkt_len+16); if (skb == NULL) { printk(KERN_WARNING "%s: Memory squeeze, dropping packet\n",dev->name); lp->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb, 2); outw(pbuf+10, ioaddr+READ_PTR); insw(ioaddr+DATAPORT, skb_put(skb,pkt_len),(pkt_len+1)>>1); skb->protocol = eth_type_trans(skb,dev); netif_rx(skb); dev->last_rx = jiffies; lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; } outw(rx_block, ioaddr+WRITE_PTR); outw(0, ioaddr+DATAPORT); outw(0, ioaddr+DATAPORT); rx_block = rx_next; } } while (FD_Done(status) && boguscount--); lp->rx_ptr = rx_block; } /* * Hand a packet to the card for transmission * If we get here, we MUST have already checked * to make sure there is room in the transmit * buffer region. */ static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf, unsigned short len) { struct net_local *lp = netdev_priv(dev); unsigned short ioaddr = dev->base_addr; if (LOCKUP16 || lp->width) { /* Stop the CU so that there is no chance that it jumps off to a bogus address while we are writing the pointer to the next transmit packet in 8-bit mode -- this eliminates the "CU wedged" errors in 8-bit mode. (Zoltan Szilagyi 10-12-96) */ scb_command(dev, SCB_CUsuspend); outw(0xFFFF, ioaddr+SIGNAL_CA); } outw(lp->tx_head, ioaddr + WRITE_PTR); outw(0x0000, ioaddr + DATAPORT); outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT); outw(lp->tx_head+0x08, ioaddr + DATAPORT); outw(lp->tx_head+0x0e, ioaddr + DATAPORT); outw(0x0000, ioaddr + DATAPORT); outw(0x0000, ioaddr + DATAPORT); outw(lp->tx_head+0x08, ioaddr + DATAPORT); outw(0x8000|len, ioaddr + DATAPORT); outw(-1, ioaddr + DATAPORT); outw(lp->tx_head+0x16, ioaddr + DATAPORT); outw(0, ioaddr + DATAPORT); outsw(ioaddr + DATAPORT, buf, (len+1)>>1); outw(lp->tx_tail+0xc, ioaddr + WRITE_PTR); outw(lp->tx_head, ioaddr + DATAPORT); dev->trans_start = jiffies; lp->tx_tail = lp->tx_head; if (lp->tx_head==TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE)) lp->tx_head = TX_BUF_START; else lp->tx_head += TX_BUF_SIZE; if (lp->tx_head != lp->tx_reap) netif_wake_queue(dev); if (LOCKUP16 || lp->width) { /* Restart the CU so that the packet can actually be transmitted. (Zoltan Szilagyi 10-12-96) */ scb_command(dev, SCB_CUresume); outw(0xFFFF, ioaddr+SIGNAL_CA); } lp->stats.tx_packets++; lp->last_tx = jiffies; } /* * Sanity check the suspected EtherExpress card * Read hardware address, reset card, size memory and initialize buffer * memory pointers. These are held in dev->priv, in case someone has more * than one card in a machine. */ static int __init eexp_hw_probe(struct net_device *dev, unsigned short ioaddr) { unsigned short hw_addr[3]; unsigned char buswidth; unsigned int memory_size; int i; unsigned short xsum = 0; struct net_local *lp = netdev_priv(dev); printk("%s: EtherExpress 16 at %#x ",dev->name,ioaddr); outb(ASIC_RST, ioaddr+EEPROM_Ctrl); outb(0, ioaddr+EEPROM_Ctrl); udelay(500); outb(i586_RST, ioaddr+EEPROM_Ctrl); hw_addr[0] = eexp_hw_readeeprom(ioaddr,2); hw_addr[1] = eexp_hw_readeeprom(ioaddr,3); hw_addr[2] = eexp_hw_readeeprom(ioaddr,4); /* Standard Address or Compaq LTE Address */ if (!((hw_addr[2]==0x00aa && ((hw_addr[1] & 0xff00)==0x0000)) || (hw_addr[2]==0x0080 && ((hw_addr[1] & 0xff00)==0x5F00)))) { printk(" rejected: invalid address %04x%04x%04x\n", hw_addr[2],hw_addr[1],hw_addr[0]); return -ENODEV; } /* Calculate the EEPROM checksum. Carry on anyway if it's bad, * though. */ for (i = 0; i < 64; i++) xsum += eexp_hw_readeeprom(ioaddr, i); if (xsum != 0xbaba) printk(" (bad EEPROM xsum 0x%02x)", xsum); dev->base_addr = ioaddr; for ( i=0 ; i<6 ; i++ ) dev->dev_addr[i] = ((unsigned char *)hw_addr)[5-i]; { static char irqmap[]={0, 9, 3, 4, 5, 10, 11, 0}; unsigned short setupval = eexp_hw_readeeprom(ioaddr,0); /* Use the IRQ from EEPROM if none was given */ if (!dev->irq) dev->irq = irqmap[setupval>>13]; if (dev->if_port == 0xff) { dev->if_port = !(setupval & 0x1000) ? AUI : eexp_hw_readeeprom(ioaddr,5) & 0x1 ? TPE : BNC; } buswidth = !((setupval & 0x400) >> 10); } memset(lp, 0, sizeof(struct net_local)); spin_lock_init(&lp->lock); printk("(IRQ %d, %s connector, %d-bit bus", dev->irq, eexp_ifmap[dev->if_port], buswidth?8:16); if (!request_region(dev->base_addr + 0x300e, 1, "EtherExpress")) return -EBUSY; eexp_hw_set_interface(dev); release_region(dev->base_addr + 0x300e, 1); /* Find out how much RAM we have on the card */ outw(0, dev->base_addr + WRITE_PTR); for (i = 0; i < 32768; i++) outw(0, dev->base_addr + DATAPORT); for (memory_size = 0; memory_size < 64; memory_size++) { outw(memory_size<<10, dev->base_addr + READ_PTR); if (inw(dev->base_addr+DATAPORT)) break; outw(memory_size<<10, dev->base_addr + WRITE_PTR); outw(memory_size | 0x5000, dev->base_addr+DATAPORT); outw(memory_size<<10, dev->base_addr + READ_PTR); if (inw(dev->base_addr+DATAPORT) != (memory_size | 0x5000)) break; } /* Sort out the number of buffers. We may have 16, 32, 48 or 64k * of RAM to play with. */ lp->num_tx_bufs = 4; lp->rx_buf_end = 0x3ff6; switch (memory_size) { case 64: lp->rx_buf_end += 0x4000; case 48: lp->num_tx_bufs += 4; lp->rx_buf_end += 0x4000; case 32: lp->rx_buf_end += 0x4000; case 16: printk(", %dk RAM)\n", memory_size); break; default: printk(") bad memory size (%dk).\n", memory_size); return -ENODEV; break; } lp->rx_buf_start = TX_BUF_START + (lp->num_tx_bufs*TX_BUF_SIZE); lp->width = buswidth; dev->open = eexp_open; dev->stop = eexp_close; dev->hard_start_xmit = eexp_xmit; dev->get_stats = eexp_stats; dev->set_multicast_list = &eexp_set_multicast; dev->tx_timeout = eexp_timeout; dev->watchdog_timeo = 2*HZ; return register_netdev(dev); } /* * Read a word from the EtherExpress on-board serial EEPROM. * The EEPROM contains 64 words of 16 bits. */ static unsigned short __init eexp_hw_readeeprom(unsigned short ioaddr, unsigned char location) { unsigned short cmd = 0x180|(location&0x7f); unsigned short rval = 0,wval = EC_CS|i586_RST; int i; outb(EC_CS|i586_RST,ioaddr+EEPROM_Ctrl); for (i=0x100 ; i ; i>>=1 ) { if (cmd&i) wval |= EC_Wr; else wval &= ~EC_Wr; outb(wval,ioaddr+EEPROM_Ctrl); outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl); eeprom_delay(); outb(wval,ioaddr+EEPROM_Ctrl); eeprom_delay(); } wval &= ~EC_Wr; outb(wval,ioaddr+EEPROM_Ctrl); for (i=0x8000 ; i ; i>>=1 ) { outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl); eeprom_delay(); if (inb(ioaddr+EEPROM_Ctrl)&EC_Rd) rval |= i; outb(wval,ioaddr+EEPROM_Ctrl); eeprom_delay(); } wval &= ~EC_CS; outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl); eeprom_delay(); outb(wval,ioaddr+EEPROM_Ctrl); eeprom_delay(); return rval; } /* * Reap tx buffers and return last transmit status. * if ==0 then either: * a) we're not transmitting anything, so why are we here? * b) we've died. * otherwise, Stat_Busy(return) means we've still got some packets * to transmit, Stat_Done(return) means our buffers should be empty * again */ static unsigned short eexp_hw_lasttxstat(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short tx_block = lp->tx_reap; unsigned short status; if (!netif_queue_stopped(dev) && lp->tx_head==lp->tx_reap) return 0x0000; do { outw(tx_block & ~31, dev->base_addr + SM_PTR); status = inw(dev->base_addr + SHADOW(tx_block)); if (!Stat_Done(status)) { lp->tx_link = tx_block; return status; } else { lp->last_tx_restart = 0; lp->stats.collisions += Stat_NoColl(status); if (!Stat_OK(status)) { char *whatsup = NULL; lp->stats.tx_errors++; if (Stat_Abort(status)) lp->stats.tx_aborted_errors++; if (Stat_TNoCar(status)) { whatsup = "aborted, no carrier"; lp->stats.tx_carrier_errors++; } if (Stat_TNoCTS(status)) { whatsup = "aborted, lost CTS"; lp->stats.tx_carrier_errors++; } if (Stat_TNoDMA(status)) { whatsup = "FIFO underran"; lp->stats.tx_fifo_errors++; } if (Stat_TXColl(status)) { whatsup = "aborted, too many collisions"; lp->stats.tx_aborted_errors++; } if (whatsup) printk(KERN_INFO "%s: transmit %s\n", dev->name, whatsup); } else lp->stats.tx_packets++; } if (tx_block == TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE)) lp->tx_reap = tx_block = TX_BUF_START; else lp->tx_reap = tx_block += TX_BUF_SIZE; netif_wake_queue(dev); } while (lp->tx_reap != lp->tx_head); lp->tx_link = lp->tx_tail + 0x08; return status; } /* * This should never happen. It is called when some higher routine detects * that the CU has stopped, to try to restart it from the last packet we knew * we were working on, or the idle loop if we had finished for the time. */ static void eexp_hw_txrestart(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short ioaddr = dev->base_addr; lp->last_tx_restart = lp->tx_link; scb_wrcbl(dev, lp->tx_link); scb_command(dev, SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); { unsigned short boguscount=50,failcount=5; while (!scb_status(dev)) { if (!--boguscount) { if (--failcount) { printk(KERN_WARNING "%s: CU start timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev)); scb_wrcbl(dev, lp->tx_link); scb_command(dev, SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); boguscount = 100; } else { printk(KERN_WARNING "%s: Failed to restart CU, resetting board...\n",dev->name); eexp_hw_init586(dev); netif_wake_queue(dev); return; } } } } } /* * Writes down the list of transmit buffers into card memory. Each * entry consists of an 82586 transmit command, followed by a jump * pointing to itself. When we want to transmit a packet, we write * the data into the appropriate transmit buffer and then modify the * preceding jump to point at the new transmit command. This means that * the 586 command unit is continuously active. */ static void eexp_hw_txinit(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short tx_block = TX_BUF_START; unsigned short curtbuf; unsigned short ioaddr = dev->base_addr; for ( curtbuf=0 ; curtbufnum_tx_bufs ; curtbuf++ ) { outw(tx_block, ioaddr + WRITE_PTR); outw(0x0000, ioaddr + DATAPORT); outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT); outw(tx_block+0x08, ioaddr + DATAPORT); outw(tx_block+0x0e, ioaddr + DATAPORT); outw(0x0000, ioaddr + DATAPORT); outw(0x0000, ioaddr + DATAPORT); outw(tx_block+0x08, ioaddr + DATAPORT); outw(0x8000, ioaddr + DATAPORT); outw(-1, ioaddr + DATAPORT); outw(tx_block+0x16, ioaddr + DATAPORT); outw(0x0000, ioaddr + DATAPORT); tx_block += TX_BUF_SIZE; } lp->tx_head = TX_BUF_START; lp->tx_reap = TX_BUF_START; lp->tx_tail = tx_block - TX_BUF_SIZE; lp->tx_link = lp->tx_tail + 0x08; lp->rx_buf_start = tx_block; } /* * Write the circular list of receive buffer descriptors to card memory. * The end of the list isn't marked, which means that the 82586 receive * unit will loop until buffers become available (this avoids it giving us * "out of resources" messages). */ static void eexp_hw_rxinit(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short rx_block = lp->rx_buf_start; unsigned short ioaddr = dev->base_addr; lp->num_rx_bufs = 0; lp->rx_first = lp->rx_ptr = rx_block; do { lp->num_rx_bufs++; outw(rx_block, ioaddr + WRITE_PTR); outw(0, ioaddr + DATAPORT); outw(0, ioaddr+DATAPORT); outw(rx_block + RX_BUF_SIZE, ioaddr+DATAPORT); outw(0xffff, ioaddr+DATAPORT); outw(0x0000, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0xdead, ioaddr+DATAPORT); outw(0x0000, ioaddr+DATAPORT); outw(rx_block + RX_BUF_SIZE + 0x16, ioaddr+DATAPORT); outw(rx_block + 0x20, ioaddr+DATAPORT); outw(0, ioaddr+DATAPORT); outw(RX_BUF_SIZE-0x20, ioaddr+DATAPORT); lp->rx_last = rx_block; rx_block += RX_BUF_SIZE; } while (rx_block <= lp->rx_buf_end-RX_BUF_SIZE); /* Make first Rx frame descriptor point to first Rx buffer descriptor */ outw(lp->rx_first + 6, ioaddr+WRITE_PTR); outw(lp->rx_first + 0x16, ioaddr+DATAPORT); /* Close Rx frame descriptor ring */ outw(lp->rx_last + 4, ioaddr+WRITE_PTR); outw(lp->rx_first, ioaddr+DATAPORT); /* Close Rx buffer descriptor ring */ outw(lp->rx_last + 0x16 + 2, ioaddr+WRITE_PTR); outw(lp->rx_first + 0x16, ioaddr+DATAPORT); } /* * Un-reset the 586, and start the configuration sequence. We don't wait for * this to finish, but allow the interrupt handler to start the CU and RU for * us. We can't start the receive/transmission system up before we know that * the hardware is configured correctly. */ static void eexp_hw_init586(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned short ioaddr = dev->base_addr; int i; #if NET_DEBUG > 6 printk("%s: eexp_hw_init586()\n", dev->name); #endif lp->started = 0; set_loopback(dev); outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ); /* Download the startup code */ outw(lp->rx_buf_end & ~31, ioaddr + SM_PTR); outw(lp->width?0x0001:0x0000, ioaddr + 0x8006); outw(0x0000, ioaddr + 0x8008); outw(0x0000, ioaddr + 0x800a); outw(0x0000, ioaddr + 0x800c); outw(0x0000, ioaddr + 0x800e); for (i = 0; i < (sizeof(start_code)); i+=32) { int j; outw(i, ioaddr + SM_PTR); for (j = 0; j < 16; j+=2) outw(start_code[(i+j)/2], ioaddr+0x4000+j); for (j = 0; j < 16; j+=2) outw(start_code[(i+j+16)/2], ioaddr+0x8000+j); } /* Do we want promiscuous mode or multicast? */ outw(CONF_PROMISC & ~31, ioaddr+SM_PTR); i = inw(ioaddr+SHADOW(CONF_PROMISC)); outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1), ioaddr+SHADOW(CONF_PROMISC)); lp->was_promisc = dev->flags & IFF_PROMISC; #if 0 eexp_setup_filter(dev); #endif /* Write our hardware address */ outw(CONF_HWADDR & ~31, ioaddr+SM_PTR); outw(((unsigned short *)dev->dev_addr)[0], ioaddr+SHADOW(CONF_HWADDR)); outw(((unsigned short *)dev->dev_addr)[1], ioaddr+SHADOW(CONF_HWADDR+2)); outw(((unsigned short *)dev->dev_addr)[2], ioaddr+SHADOW(CONF_HWADDR+4)); eexp_hw_txinit(dev); eexp_hw_rxinit(dev); outb(0,ioaddr+EEPROM_Ctrl); mdelay(5); scb_command(dev, 0xf000); outb(0,ioaddr+SIGNAL_CA); outw(0, ioaddr+SM_PTR); { unsigned short rboguscount=50,rfailcount=5; while (inw(ioaddr+0x4000)) { if (!--rboguscount) { printk(KERN_WARNING "%s: i82586 reset timed out, kicking...\n", dev->name); scb_command(dev, 0); outb(0,ioaddr+SIGNAL_CA); rboguscount = 100; if (!--rfailcount) { printk(KERN_WARNING "%s: i82586 not responding, giving up.\n", dev->name); return; } } } } scb_wrcbl(dev, CONF_LINK); scb_command(dev, 0xf000|SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); { unsigned short iboguscount=50,ifailcount=5; while (!scb_status(dev)) { if (!--iboguscount) { if (--ifailcount) { printk(KERN_WARNING "%s: i82586 initialization timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev)); scb_wrcbl(dev, CONF_LINK); scb_command(dev, 0xf000|SCB_CUstart); outb(0,ioaddr+SIGNAL_CA); iboguscount = 100; } else { printk(KERN_WARNING "%s: Failed to initialize i82586, giving up.\n",dev->name); return; } } } } clear_loopback(dev); outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ); lp->init_time = jiffies; #if NET_DEBUG > 6 printk("%s: leaving eexp_hw_init586()\n", dev->name); #endif return; } static void eexp_setup_filter(struct net_device *dev) { struct dev_mc_list *dmi = dev->mc_list; unsigned short ioaddr = dev->base_addr; int count = dev->mc_count; int i; if (count > 8) { printk(KERN_INFO "%s: too many multicast addresses (%d)\n", dev->name, count); count = 8; } outw(CONF_NR_MULTICAST & ~31, ioaddr+SM_PTR); outw(count, ioaddr+SHADOW(CONF_NR_MULTICAST)); for (i = 0; i < count; i++) { unsigned short *data = (unsigned short *)dmi->dmi_addr; if (!dmi) { printk(KERN_INFO "%s: too few multicast addresses\n", dev->name); break; } if (dmi->dmi_addrlen != ETH_ALEN) { printk(KERN_INFO "%s: invalid multicast address length given.\n", dev->name); continue; } outw((CONF_MULTICAST+(6*i)) & ~31, ioaddr+SM_PTR); outw(data[0], ioaddr+SHADOW(CONF_MULTICAST+(6*i))); outw((CONF_MULTICAST+(6*i)+2) & ~31, ioaddr+SM_PTR); outw(data[1], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+2)); outw((CONF_MULTICAST+(6*i)+4) & ~31, ioaddr+SM_PTR); outw(data[2], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+4)); } } /* * Set or clear the multicast filter for this adaptor. */ static void eexp_set_multicast(struct net_device *dev) { unsigned short ioaddr = dev->base_addr; struct net_local *lp = netdev_priv(dev); int kick = 0, i; if ((dev->flags & IFF_PROMISC) != lp->was_promisc) { outw(CONF_PROMISC & ~31, ioaddr+SM_PTR); i = inw(ioaddr+SHADOW(CONF_PROMISC)); outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1), ioaddr+SHADOW(CONF_PROMISC)); lp->was_promisc = dev->flags & IFF_PROMISC; kick = 1; } if (!(dev->flags & IFF_PROMISC)) { eexp_setup_filter(dev); if (lp->old_mc_count != dev->mc_count) { kick = 1; lp->old_mc_count = dev->mc_count; } } if (kick) { unsigned long oj; scb_command(dev, SCB_CUsuspend); outb(0, ioaddr+SIGNAL_CA); outb(0, ioaddr+SIGNAL_CA); #if 0 printk("%s: waiting for CU to go suspended\n", dev->name); #endif oj = jiffies; while ((SCB_CUstat(scb_status(dev)) == 2) && ((jiffies-oj) < 2000)); if (SCB_CUstat(scb_status(dev)) == 2) printk("%s: warning, CU didn't stop\n", dev->name); lp->started &= ~(STARTED_CU); scb_wrcbl(dev, CONF_LINK); scb_command(dev, SCB_CUstart); outb(0, ioaddr+SIGNAL_CA); } } /* * MODULE stuff */ #ifdef MODULE #define EEXP_MAX_CARDS 4 /* max number of cards to support */ static struct net_device *dev_eexp[EEXP_MAX_CARDS]; static int irq[EEXP_MAX_CARDS]; static int io[EEXP_MAX_CARDS]; module_param_array(io, int, NULL, 0); module_param_array(irq, int, NULL, 0); MODULE_PARM_DESC(io, "EtherExpress 16 I/O base address(es)"); MODULE_PARM_DESC(irq, "EtherExpress 16 IRQ number(s)"); MODULE_LICENSE("GPL"); /* Ideally the user would give us io=, irq= for every card. If any parameters * are specified, we verify and then use them. If no parameters are given, we * autoprobe for one card only. */ int init_module(void) { struct net_device *dev; int this_dev, found = 0; for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) { dev = alloc_etherdev(sizeof(struct net_local)); dev->irq = irq[this_dev]; dev->base_addr = io[this_dev]; if (io[this_dev] == 0) { if (this_dev) break; printk(KERN_NOTICE "eexpress.c: Module autoprobe not recommended, give io=xx.\n"); } if (do_express_probe(dev) == 0) { dev_eexp[this_dev] = dev; found++; continue; } printk(KERN_WARNING "eexpress.c: Failed to register card at 0x%x.\n", io[this_dev]); free_netdev(dev); break; } if (found) return 0; return -ENXIO; } void cleanup_module(void) { int this_dev; for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) { struct net_device *dev = dev_eexp[this_dev]; if (dev) { unregister_netdev(dev); free_netdev(dev); } } } #endif /* * Local Variables: * c-file-style: "linux" * tab-width: 8 * End: */