/* linux/drivers/iommu/exynos_iommu.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifdef CONFIG_EXYNOS_IOMMU_DEBUG #define DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* We does not consider super section mapping (16MB) */ #define SECT_ORDER 20 #define LPAGE_ORDER 16 #define SPAGE_ORDER 12 #define SECT_SIZE (1 << SECT_ORDER) #define LPAGE_SIZE (1 << LPAGE_ORDER) #define SPAGE_SIZE (1 << SPAGE_ORDER) #define SECT_MASK (~(SECT_SIZE - 1)) #define LPAGE_MASK (~(LPAGE_SIZE - 1)) #define SPAGE_MASK (~(SPAGE_SIZE - 1)) #define lv1ent_fault(sent) (((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) #define lv1ent_page(sent) ((*(sent) & 3) == 1) #define lv1ent_section(sent) ((*(sent) & 3) == 2) #define lv2ent_fault(pent) ((*(pent) & 3) == 0) #define lv2ent_small(pent) ((*(pent) & 2) == 2) #define lv2ent_large(pent) ((*(pent) & 3) == 1) #define section_phys(sent) (*(sent) & SECT_MASK) #define section_offs(iova) ((iova) & ~SECT_MASK) #define lpage_phys(pent) (*(pent) & LPAGE_MASK) #define lpage_offs(iova) ((iova) & ~LPAGE_MASK) #define spage_phys(pent) (*(pent) & SPAGE_MASK) #define spage_offs(iova) ((iova) & ~SPAGE_MASK) #define lv1ent_offset(iova) ((iova) >> SECT_ORDER) #define lv2ent_offset(iova) (((iova) & 0xFF000) >> SPAGE_ORDER) #define NUM_LV1ENTRIES 4096 #define NUM_LV2ENTRIES 256 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(long)) #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) #define lv2table_base(sent) (*(sent) & 0xFFFFFC00) #define mk_lv1ent_sect(pa) ((pa) | 2) #define mk_lv1ent_page(pa) ((pa) | 1) #define mk_lv2ent_lpage(pa) ((pa) | 1) #define mk_lv2ent_spage(pa) ((pa) | 2) #define CTRL_ENABLE 0x5 #define CTRL_BLOCK 0x7 #define CTRL_DISABLE 0x0 #define CFG_LRU 0x1 #define CFG_QOS(n) ((n & 0xF) << 7) #define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */ #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */ #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */ #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */ #define CFG_SHAREABLE (1 << 12) /* System MMU 3.x only */ #define REG_MMU_CTRL 0x000 #define REG_MMU_CFG 0x004 #define REG_MMU_STATUS 0x008 #define REG_MMU_FLUSH 0x00C #define REG_MMU_FLUSH_ENTRY 0x010 #define REG_PT_BASE_ADDR 0x014 #define REG_INT_STATUS 0x018 #define REG_INT_CLEAR 0x01C #define REG_PAGE_FAULT_ADDR 0x024 #define REG_AW_FAULT_ADDR 0x028 #define REG_AR_FAULT_ADDR 0x02C #define REG_DEFAULT_SLAVE_ADDR 0x030 #define REG_MMU_VERSION 0x034 #define MMU_MAJ_VER(reg) (reg >> 28) #define MMU_MIN_VER(reg) ((reg >> 21) & 0x7F) #define REG_PB0_SADDR 0x04C #define REG_PB0_EADDR 0x050 #define REG_PB1_SADDR 0x054 #define REG_PB1_EADDR 0x058 static struct kmem_cache *lv2table_kmem_cache; static unsigned long *section_entry(unsigned long *pgtable, unsigned long iova) { return pgtable + lv1ent_offset(iova); } static unsigned long *page_entry(unsigned long *sent, unsigned long iova) { return (unsigned long *)__va(lv2table_base(sent)) + lv2ent_offset(iova); } enum exynos_sysmmu_inttype { SYSMMU_PAGEFAULT, SYSMMU_AR_MULTIHIT, SYSMMU_AW_MULTIHIT, SYSMMU_BUSERROR, SYSMMU_AR_SECURITY, SYSMMU_AR_ACCESS, SYSMMU_AW_SECURITY, SYSMMU_AW_PROTECTION, /* 7 */ SYSMMU_FAULT_UNKNOWN, SYSMMU_FAULTS_NUM }; static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = { REG_PAGE_FAULT_ADDR, REG_AR_FAULT_ADDR, REG_AW_FAULT_ADDR, REG_DEFAULT_SLAVE_ADDR, REG_AR_FAULT_ADDR, REG_AR_FAULT_ADDR, REG_AW_FAULT_ADDR, REG_AW_FAULT_ADDR }; static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = { "PAGE FAULT", "AR MULTI-HIT FAULT", "AW MULTI-HIT FAULT", "BUS ERROR", "AR SECURITY PROTECTION FAULT", "AR ACCESS PROTECTION FAULT", "AW SECURITY PROTECTION FAULT", "AW ACCESS PROTECTION FAULT", "UNKNOWN FAULT" }; struct exynos_iommu_domain { struct list_head clients; /* list of sysmmu_drvdata.node */ unsigned long *pgtable; /* lv1 page table, 16KB */ short *lv2entcnt; /* free lv2 entry counter for each section */ spinlock_t lock; /* lock for this structure */ spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ }; struct sysmmu_drvdata { struct list_head node; /* entry of exynos_iommu_domain.clients */ struct device *sysmmu; /* System MMU's device descriptor */ struct device *master; /* Owner of system MMU */ struct clk *clk; struct clk *clk_master; int activations; spinlock_t lock; struct iommu_domain *domain; bool runtime_active; bool suspended; unsigned long pgtable; void __iomem *sfrbase; }; static bool set_sysmmu_active(struct sysmmu_drvdata *data) { /* return true if the System MMU was not active previously and it needs to be initialized */ return ++data->activations == 1; } static bool set_sysmmu_inactive(struct sysmmu_drvdata *data) { /* return true if the System MMU is needed to be disabled */ BUG_ON(data->activations < 1); return --data->activations == 0; } static bool is_sysmmu_active(struct sysmmu_drvdata *data) { return data->activations > 0; } static unsigned int __sysmmu_version(struct sysmmu_drvdata *data, unsigned int *minor) { unsigned long major; major = readl(data->sfrbase + REG_MMU_VERSION); if (minor) *minor = MMU_MIN_VER(major); if (MMU_MAJ_VER(major) > 3) return 1; return MMU_MAJ_VER(major); } static void sysmmu_unblock(void __iomem *sfrbase) { __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL); } static bool sysmmu_block(void __iomem *sfrbase) { int i = 120; __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL); while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) --i; if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) { sysmmu_unblock(sfrbase); return false; } return true; } static void __sysmmu_tlb_invalidate(void __iomem *sfrbase) { __raw_writel(0x1, sfrbase + REG_MMU_FLUSH); } static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase, unsigned long iova) { __raw_writel((iova & SPAGE_MASK) | 1, sfrbase + REG_MMU_FLUSH_ENTRY); } static void __sysmmu_set_ptbase(void __iomem *sfrbase, unsigned long pgd) { __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR); __sysmmu_tlb_invalidate(sfrbase); } static void __sysmmu_set_prefbuf(void __iomem *sfrbase, unsigned long base, unsigned long size, int idx) { __raw_writel(base, sfrbase + REG_PB0_SADDR + idx * 8); __raw_writel(size - 1 + base, sfrbase + REG_PB0_EADDR + idx * 8); } void exynos_sysmmu_set_prefbuf(struct device *dev, unsigned long base0, unsigned long size0, unsigned long base1, unsigned long size1) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); unsigned long flags; BUG_ON((base0 + size0) <= base0); BUG_ON((size1 > 0) && ((base1 + size1) <= base1)); spin_lock_irqsave(&data->lock, flags); if (!is_sysmmu_active(data)) goto finish; clk_enable(data->clk_master); if ((readl(data->sfrbase + REG_MMU_VERSION) >> 28) == 3) { if (!sysmmu_block(data->sfrbase)) goto skip; if (size1 == 0) { if (size0 <= SZ_128K) { base1 = base0; size1 = size0; } else { size1 = size0 - ALIGN(size0 / 2, SZ_64K); size0 = size0 - size1; base1 = base0 + size0; } } __sysmmu_set_prefbuf( data->sfrbase, base0, size0, 0); __sysmmu_set_prefbuf( data->sfrbase, base1, size1, 1); sysmmu_unblock(data->sfrbase); } skip: clk_disable(data->clk_master); finish: spin_unlock_irqrestore(&data->lock, flags); } static void show_fault_information(const char *name, enum exynos_sysmmu_inttype itype, unsigned long pgtable_base, unsigned long fault_addr) { unsigned long *ent; if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT)) itype = SYSMMU_FAULT_UNKNOWN; pr_err("%s occurred at 0x%lx by %s(Page table base: 0x%lx)\n", sysmmu_fault_name[itype], fault_addr, name, pgtable_base); ent = section_entry(__va(pgtable_base), fault_addr); pr_err("\tLv1 entry: 0x%lx\n", *ent); if (lv1ent_page(ent)) { ent = page_entry(ent, fault_addr); pr_err("\t Lv2 entry: 0x%lx\n", *ent); } pr_err("Generating Kernel OOPS... because it is unrecoverable.\n"); BUG(); } static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) { /* SYSMMU is in blocked when interrupt occurred. */ struct sysmmu_drvdata *data = dev_id; enum exynos_sysmmu_inttype itype; unsigned long addr = -1; int ret = -ENOSYS; WARN_ON(!is_sysmmu_active(data)); spin_lock(&data->lock); itype = (enum exynos_sysmmu_inttype) __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS)); if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN)))) itype = SYSMMU_FAULT_UNKNOWN; else addr = __raw_readl( data->sfrbase + fault_reg_offset[itype]); if (data->domain) ret = report_iommu_fault(data->domain, data->master, addr, itype); if (!ret && (itype != SYSMMU_FAULT_UNKNOWN)) __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR); else { unsigned long ba = data->pgtable; if (itype != SYSMMU_FAULT_UNKNOWN) ba = __raw_readl(data->sfrbase + REG_PT_BASE_ADDR); show_fault_information(dev_name(data->sysmmu), itype, ba, addr); } if (itype != SYSMMU_FAULT_UNKNOWN) sysmmu_unblock(data->sfrbase); spin_unlock(&data->lock); return IRQ_HANDLED; } static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data) { if (data->suspended) return; data->suspended = 1; clk_enable(data->clk_master); __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); __raw_writel(0, data->sfrbase + REG_MMU_CFG); clk_disable(data->clk); clk_disable(data->clk_master); } static bool __sysmmu_disable(struct sysmmu_drvdata *data) { bool disabled; unsigned long flags; spin_lock_irqsave(&data->lock, flags); disabled = set_sysmmu_inactive(data); if (disabled) { data->pgtable = 0; data->domain = NULL; if (data->runtime_active) __sysmmu_disable_nocount(data); dev_dbg(data->sysmmu, "Disabled\n"); } else { dev_dbg(data->sysmmu, "%d times left to disable\n", data->activations); } spin_unlock_irqrestore(&data->lock, flags); return disabled; } static void __sysmmu_init_config(struct sysmmu_drvdata *data) { unsigned long cfg = CFG_LRU | CFG_QOS(15); int maj, min = 0; maj = __sysmmu_version(data, &min); if (maj == 3) { if (min > 1) { cfg |= CFG_FLPDCACHE; cfg |= (min == 2) ? CFG_SYSSEL : CFG_ACGEN; } } __raw_writel(cfg, data->sfrbase + REG_MMU_CFG); } static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data) { if (!data->suspended) return; data->suspended = 0; clk_enable(data->clk_master); clk_enable(data->clk); __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); __sysmmu_init_config(data); __sysmmu_set_ptbase(data->sfrbase, data->pgtable); __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); clk_disable(data->clk_master); } static int __sysmmu_enable(struct sysmmu_drvdata *data, unsigned long pgtable, struct iommu_domain *domain) { int ret = 0; unsigned long flags; spin_lock_irqsave(&data->lock, flags); if (set_sysmmu_active(data)) { data->pgtable = pgtable; data->domain = domain; if (data->runtime_active) __sysmmu_enable_nocount(data); dev_dbg(data->sysmmu, "Enabled\n"); } else { ret = (pgtable == data->pgtable) ? 1 : -EBUSY; dev_dbg(data->sysmmu, "already enabled\n"); } if (WARN_ON(ret < 0)) set_sysmmu_inactive(data); /* decrement count */ spin_unlock_irqrestore(&data->lock, flags); return ret; } /* __exynos_sysmmu_enable: Enables System MMU * * returns -error if an error occurred and System MMU is not enabled, * 0 if the System MMU has been just enabled and 1 if System MMU was already * enabled before. */ static int __exynos_sysmmu_enable(struct device *dev, unsigned long pgtable, struct iommu_domain *domain) { int ret = 0; struct device *sysmmu = dev->archdata.iommu; struct sysmmu_drvdata *data; if (WARN_ON(!sysmmu)) return -ENODEV; data = dev_get_drvdata(sysmmu); ret = __sysmmu_enable(data, pgtable, domain); if (ret >= 0) data->master = dev; return ret; } int exynos_sysmmu_enable(struct device *dev, unsigned long pgtable) { int ret; BUG_ON(!memblock_is_memory(pgtable)); ret = __exynos_sysmmu_enable(dev, pgtable, NULL); return ret; } static bool exynos_sysmmu_disable(struct sysmmu_drvdata *data) { bool disabled = __sysmmu_disable(data); if (disabled) data->master = NULL; return disabled; } static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, unsigned long iova) { unsigned long flags; spin_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data) && data->runtime_active) { clk_enable(data->clk_master); __sysmmu_tlb_invalidate_entry(data->sfrbase, iova); clk_disable(data->clk_master); } else { dev_dbg(data->master, "disabled. Skipping TLB invalidation @ %#lx\n", iova); } spin_unlock_irqrestore(&data->lock, flags); } void exynos_sysmmu_tlb_invalidate(struct device *dev) { struct device *sysmmu = dev->archdata.iommu; struct sysmmu_drvdata *data; unsigned long flags; data = dev_get_drvdata(sysmmu); spin_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data) && data->runtime_active) { clk_enable(data->clk_master); if (sysmmu_block(data->sfrbase)) { __sysmmu_tlb_invalidate(data->sfrbase); sysmmu_unblock(data->sfrbase); } clk_disable(data->clk_master); } else { dev_dbg(dev, "disabled. Skipping TLB invalidation\n"); } spin_unlock_irqrestore(&data->lock, flags); } static int __init exynos_sysmmu_probe(struct platform_device *pdev) { int ret; struct device *dev = &pdev->dev; struct sysmmu_drvdata *data; struct resource *res; int irq; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) { dev_err(dev, "Not enough memory for initialization\n"); return -ENOMEM; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "Unable to find IOMEM region\n"); return -ENOENT; } data->sfrbase = devm_request_and_ioremap(dev, res); if (!data->sfrbase) { dev_err(dev, "Unable to map IOMEM @ %#x\n", res->start); return -EBUSY; } irq = platform_get_irq(pdev, 0); if (irq <= 0) { dev_err(dev, "Unable to find IRQ resource\n"); return -ENOENT; } ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0, dev_name(dev), data); if (ret) { dev_err(dev, "Unable to register handler to irq %d\n", irq); return ret; } pm_runtime_enable(dev); data->sysmmu = dev; data->clk = devm_clk_get(dev, "sysmmu"); if (IS_ERR(data->clk)) { dev_info(dev, "No gate clock found!\n"); data->clk = NULL; } ret = clk_prepare(data->clk); if (ret) { dev_err(dev, "Failed to prepare clk\n"); return ret; } data->clk_master = devm_clk_get(dev, "master"); if (IS_ERR(data->clk_master)) data->clk_master = NULL; ret = clk_prepare(data->clk_master); if (ret) { clk_unprepare(data->clk); dev_err(dev, "Failed to prepare master's clk\n"); return ret; } data->runtime_active = !pm_runtime_enabled(dev); data->suspended = 1; spin_lock_init(&data->lock); INIT_LIST_HEAD(&data->node); platform_set_drvdata(pdev, data); dev_dbg(dev, "Probed and initialized\n"); return ret; } #ifdef CONFIG_PM_SLEEP static int sysmmu_suspend(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev); unsigned long flags; spin_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data) && (!pm_runtime_enabled(dev) || data->runtime_active)) __sysmmu_disable_nocount(data); spin_unlock_irqrestore(&data->lock, flags); return 0; } static int sysmmu_resume(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev); unsigned long flags; spin_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data) && (!pm_runtime_enabled(dev) || data->runtime_active)) __sysmmu_enable_nocount(data); spin_unlock_irqrestore(&data->lock, flags); return 0; } #endif static SIMPLE_DEV_PM_OPS(sysmmu_pm_ops, sysmmu_suspend, sysmmu_resume); #ifdef CONFIG_OF static struct of_device_id sysmmu_of_match[] __initconst = { { .compatible = "samsung,exynos4210-sysmmu", }, { }, }; #endif static struct platform_driver exynos_sysmmu_driver __refdata = { .probe = exynos_sysmmu_probe, .driver = { .owner = THIS_MODULE, .name = "exynos-sysmmu", .pm = &sysmmu_pm_ops, .of_match_table = of_match_ptr(sysmmu_of_match), } }; static inline void pgtable_flush(void *vastart, void *vaend) { dmac_flush_range(vastart, vaend); outer_flush_range(virt_to_phys(vastart), virt_to_phys(vaend)); } static int exynos_iommu_domain_init(struct iommu_domain *domain) { struct exynos_iommu_domain *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->pgtable = (unsigned long *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, 2); if (!priv->pgtable) goto err_pgtable; priv->lv2entcnt = (short *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, 1); if (!priv->lv2entcnt) goto err_counter; pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES); spin_lock_init(&priv->lock); spin_lock_init(&priv->pgtablelock); INIT_LIST_HEAD(&priv->clients); domain->geometry.aperture_start = 0; domain->geometry.aperture_end = ~0UL; domain->geometry.force_aperture = true; domain->priv = priv; return 0; err_counter: free_pages((unsigned long)priv->pgtable, 2); err_pgtable: kfree(priv); return -ENOMEM; } static void exynos_iommu_domain_destroy(struct iommu_domain *domain) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data; unsigned long flags; int i; WARN_ON(!list_empty(&priv->clients)); spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(data, &priv->clients, node) { while (!exynos_sysmmu_disable(data)) ; /* until System MMU is actually disabled */ } while (!list_empty(&priv->clients)) list_del_init(priv->clients.next); spin_unlock_irqrestore(&priv->lock, flags); for (i = 0; i < NUM_LV1ENTRIES; i++) if (lv1ent_page(priv->pgtable + i)) kmem_cache_free(lv2table_kmem_cache, __va(lv2table_base(priv->pgtable + i))); free_pages((unsigned long)priv->pgtable, 2); free_pages((unsigned long)priv->lv2entcnt, 1); kfree(domain->priv); domain->priv = NULL; } static int exynos_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); unsigned long flags; int ret; spin_lock_irqsave(&priv->lock, flags); ret = __exynos_sysmmu_enable(dev, __pa(priv->pgtable), domain); if (ret == 0) list_add_tail(&data->node, &priv->clients); spin_unlock_irqrestore(&priv->lock, flags); if (ret < 0) { dev_err(dev, "%s: Failed to attach IOMMU with pgtable %#lx\n", __func__, __pa(priv->pgtable)); return ret; } dev_dbg(dev, "%s: Attached IOMMU with pgtable 0x%lx%s\n", __func__, __pa(priv->pgtable), (ret == 0) ? "" : ", again"); return 0; } static void exynos_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(data, &priv->clients, node) { if (data->sysmmu == dev->archdata.iommu) { if (exynos_sysmmu_disable(data)) list_del_init(&data->node); break; } } spin_unlock_irqrestore(&priv->lock, flags); if (data->sysmmu == dev->archdata.iommu) dev_dbg(dev, "%s: Detached IOMMU with pgtable %#lx\n", __func__, __pa(priv->pgtable)); else dev_dbg(dev, "%s: No IOMMU is attached\n", __func__); } static unsigned long *alloc_lv2entry(unsigned long *sent, unsigned long iova, short *pgcounter) { if (lv1ent_fault(sent)) { unsigned long *pent; pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC); BUG_ON((unsigned long)pent & (LV2TABLE_SIZE - 1)); if (!pent) return ERR_PTR(-ENOMEM); *sent = mk_lv1ent_page(__pa(pent)); *pgcounter = NUM_LV2ENTRIES; pgtable_flush(pent, pent + NUM_LV2ENTRIES); pgtable_flush(sent, sent + 1); } else if (lv1ent_section(sent)) { return ERR_PTR(-EADDRINUSE); } return page_entry(sent, iova); } static int lv1set_section(unsigned long *sent, phys_addr_t paddr, short *pgcnt) { if (lv1ent_section(sent)) return -EADDRINUSE; if (lv1ent_page(sent)) { if (*pgcnt != NUM_LV2ENTRIES) return -EADDRINUSE; kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0)); *pgcnt = 0; } *sent = mk_lv1ent_sect(paddr); pgtable_flush(sent, sent + 1); return 0; } static void clear_page_table(unsigned long *ent, int n) { if (n > 0) memset(ent, 0, sizeof(*ent) * n); } static int lv2set_page(unsigned long *pent, phys_addr_t paddr, size_t size, short *pgcnt) { if (size == SPAGE_SIZE) { if (!lv2ent_fault(pent)) return -EADDRINUSE; *pent = mk_lv2ent_spage(paddr); pgtable_flush(pent, pent + 1); *pgcnt -= 1; } else { /* size == LPAGE_SIZE */ int i; for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { if (!lv2ent_fault(pent)) { clear_page_table(pent - i, i); return -EADDRINUSE; } *pent = mk_lv2ent_lpage(paddr); } pgtable_flush(pent - SPAGES_PER_LPAGE, pent); *pgcnt -= SPAGES_PER_LPAGE; } return 0; } static int exynos_iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { struct exynos_iommu_domain *priv = domain->priv; unsigned long *entry; unsigned long flags; int ret = -ENOMEM; BUG_ON(priv->pgtable == NULL); spin_lock_irqsave(&priv->pgtablelock, flags); entry = section_entry(priv->pgtable, iova); if (size == SECT_SIZE) { ret = lv1set_section(entry, paddr, &priv->lv2entcnt[lv1ent_offset(iova)]); } else { unsigned long *pent; pent = alloc_lv2entry(entry, iova, &priv->lv2entcnt[lv1ent_offset(iova)]); if (IS_ERR(pent)) ret = PTR_ERR(pent); else ret = lv2set_page(pent, paddr, size, &priv->lv2entcnt[lv1ent_offset(iova)]); } if (ret) pr_err("%s: Failed(%d) to map 0x%#x bytes @ %#lx\n", __func__, ret, size, iova); spin_unlock_irqrestore(&priv->pgtablelock, flags); return ret; } static size_t exynos_iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data; unsigned long flags; unsigned long *ent; size_t err_pgsize; BUG_ON(priv->pgtable == NULL); spin_lock_irqsave(&priv->pgtablelock, flags); ent = section_entry(priv->pgtable, iova); if (lv1ent_section(ent)) { if (WARN_ON(size < SECT_SIZE)) { err_pgsize = SECT_SIZE; goto err; } *ent = 0; pgtable_flush(ent, ent + 1); size = SECT_SIZE; goto done; } if (unlikely(lv1ent_fault(ent))) { if (size > SECT_SIZE) size = SECT_SIZE; goto done; } /* lv1ent_page(sent) == true here */ ent = page_entry(ent, iova); if (unlikely(lv2ent_fault(ent))) { size = SPAGE_SIZE; goto done; } if (lv2ent_small(ent)) { *ent = 0; size = SPAGE_SIZE; pgtable_flush(ent, ent +1); priv->lv2entcnt[lv1ent_offset(iova)] += 1; goto done; } /* lv1ent_large(ent) == true here */ if (WARN_ON(size < LPAGE_SIZE)) { err_pgsize = LPAGE_SIZE; goto err; } clear_page_table(ent, SPAGES_PER_LPAGE); pgtable_flush(ent, ent + SPAGES_PER_LPAGE); size = LPAGE_SIZE; priv->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; done: spin_unlock_irqrestore(&priv->pgtablelock, flags); spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(data, &priv->clients, node) sysmmu_tlb_invalidate_entry(data, iova); spin_unlock_irqrestore(&priv->lock, flags); return size; err: spin_unlock_irqrestore(&priv->pgtablelock, flags); pr_err("%s: Failed due to size(%#x) @ %#lx is"\ " smaller than page size %#x\n", __func__, size, iova, err_pgsize); return 0; } static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct exynos_iommu_domain *priv = domain->priv; unsigned long *entry; unsigned long flags; phys_addr_t phys = 0; spin_lock_irqsave(&priv->pgtablelock, flags); entry = section_entry(priv->pgtable, iova); if (lv1ent_section(entry)) { phys = section_phys(entry) + section_offs(iova); } else if (lv1ent_page(entry)) { entry = page_entry(entry, iova); if (lv2ent_large(entry)) phys = lpage_phys(entry) + lpage_offs(iova); else if (lv2ent_small(entry)) phys = spage_phys(entry) + spage_offs(iova); } spin_unlock_irqrestore(&priv->pgtablelock, flags); return phys; } static struct iommu_ops exynos_iommu_ops = { .domain_init = &exynos_iommu_domain_init, .domain_destroy = &exynos_iommu_domain_destroy, .attach_dev = &exynos_iommu_attach_device, .detach_dev = &exynos_iommu_detach_device, .map = &exynos_iommu_map, .unmap = &exynos_iommu_unmap, .iova_to_phys = &exynos_iommu_iova_to_phys, .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, }; #ifdef CONFIG_PM_SLEEP static int sysmmu_pm_genpd_suspend(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); int ret; ret = pm_generic_suspend(data->sysmmu); if (ret) return ret; ret = pm_generic_suspend(dev); if (ret) pm_generic_resume(data->sysmmu); return ret; } static int sysmmu_pm_genpd_resume(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); int ret = 0; ret = pm_generic_resume(data->sysmmu); if (ret) return ret; ret = pm_generic_resume(dev); if (ret) pm_generic_suspend(data->sysmmu); return ret; } #endif #ifdef CONFIG_PM_RUNTIME static void sysmmu_restore_state(struct device *sysmmu) { struct sysmmu_drvdata *data = dev_get_drvdata(sysmmu); unsigned long flags; spin_lock_irqsave(&data->lock, flags); data->runtime_active = true; if (is_sysmmu_active(data)) __sysmmu_enable_nocount(data); spin_unlock_irqrestore(&data->lock, flags); } static void sysmmu_save_state(struct device *sysmmu) { struct sysmmu_drvdata *data = dev_get_drvdata(sysmmu); unsigned long flags; spin_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data)) __sysmmu_disable_nocount(data); data->runtime_active = false; spin_unlock_irqrestore(&data->lock, flags); } static int sysmmu_pm_genpd_save_state(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); int (*cb)(struct device *__dev); if (dev->type && dev->type->pm) cb = dev->type->pm->runtime_suspend; else if (dev->class && dev->class->pm) cb = dev->class->pm->runtime_suspend; else if (dev->bus && dev->bus->pm) cb = dev->bus->pm->runtime_suspend; else cb = NULL; if (!cb && dev->driver && dev->driver->pm) cb = dev->driver->pm->runtime_suspend; if (cb) { int ret; ret = cb(dev); if (ret) return ret; } sysmmu_save_state(data->sysmmu); return 0; } static int sysmmu_pm_genpd_restore_state(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); int (*cb)(struct device *__dev); if (dev->type && dev->type->pm) cb = dev->type->pm->runtime_resume; else if (dev->class && dev->class->pm) cb = dev->class->pm->runtime_resume; else if (dev->bus && dev->bus->pm) cb = dev->bus->pm->runtime_resume; else cb = NULL; if (!cb && dev->driver && dev->driver->pm) cb = dev->driver->pm->runtime_resume; sysmmu_restore_state(data->sysmmu); if (cb) { int ret; ret = cb(dev); if (ret) { sysmmu_save_state(data->sysmmu); return ret; } } return 0; } #endif #ifdef CONFIG_PM_GENERIC_DOMAINS struct gpd_dev_ops sysmmu_devpm_ops = { #ifdef CONFIG_PM_RUNTIME .save_state = &sysmmu_pm_genpd_save_state, .restore_state = &sysmmu_pm_genpd_restore_state, #endif #ifdef CONFIG_PM_SLEEP .suspend = &sysmmu_pm_genpd_suspend, .resume = &sysmmu_pm_genpd_resume, #endif }; #endif /* CONFIG_PM_GENERIC_DOMAINS */ static int exynos_create_default_iommu_mapping(struct device *dev) { struct dma_iommu_mapping *mapping; dma_addr_t base = 0x20000000; unsigned int size = SZ_128M; int order = 4; mapping = arm_iommu_create_mapping(&platform_bus_type, base, size, order); if (!mapping) return -ENOMEM; dev->dma_parms = kzalloc(sizeof(*dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(dev, 0xffffffffu); arm_iommu_attach_device(dev, mapping); return 0; } static int exynos_remove_iommu_mapping(struct device *dev) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); arm_iommu_detach_device(dev); arm_iommu_release_mapping(mapping); return 0; } static int sysmmu_hook_driver_register(struct notifier_block *nb, unsigned long val, void *p) { struct device *dev = p; switch (val) { case BUS_NOTIFY_BIND_DRIVER: { struct platform_device *sysmmu; struct device_node *np; const __be32 *phandle; int ret; phandle = of_get_property(dev->of_node, "iommu", NULL); if (!phandle) break; /* this always success: see above of_find_property() */ np = of_parse_phandle(dev->of_node, "iommu", 0); sysmmu = of_find_device_by_node(np); if (!sysmmu) { dev_err(dev, "sysmmu node '%s' is not found\n", np->name); return -ENODEV; } dev_info(dev, "attaching sysmmu controller %s\n", dev_name(&sysmmu->dev)); ret = pm_genpd_add_callbacks(dev, &sysmmu_devpm_ops, NULL); if (ret && (ret != -ENOSYS)) { dev_err(dev, "Failed to register 'dev_pm_ops' for iommu\n"); return ret; } dev->archdata.iommu = &sysmmu->dev; if (!to_dma_iommu_mapping(dev)) exynos_create_default_iommu_mapping(dev); break; } case BUS_NOTIFY_BOUND_DRIVER: { if (dev->archdata.iommu && (!pm_runtime_enabled(dev) || IS_ERR(dev_to_genpd(dev)))) { struct sysmmu_drvdata *data; data = dev_get_drvdata(dev->archdata.iommu); pm_runtime_disable(data->sysmmu); data->runtime_active = !pm_runtime_enabled(data->sysmmu); if (data->runtime_active && is_sysmmu_active(data)) __sysmmu_enable_nocount(data); } break; } case BUS_NOTIFY_UNBOUND_DRIVER: case BUS_NOTIFY_BIND_FAILED: { if (dev->archdata.iommu) { __pm_genpd_remove_callbacks(dev, false); if (to_dma_iommu_mapping(dev)) exynos_remove_iommu_mapping(dev); dev->archdata.iommu = NULL; } break; } } /* switch (val) */ return 0; } static struct notifier_block sysmmu_notifier = { .notifier_call = &sysmmu_hook_driver_register, }; static int __init exynos_iommu_init(void) { int ret; lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table", LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL); if (!lv2table_kmem_cache) { pr_err("%s: Failed to create kmem cache\n", __func__); return -ENOMEM; } ret = platform_driver_register(&exynos_sysmmu_driver); if (ret == 0) { ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); if (ret == 0) ret = bus_register_notifier(&platform_bus_type, &sysmmu_notifier); } if (ret) { pr_err("%s: Failed to register exynos-iommu driver.\n", __func__); kmem_cache_destroy(lv2table_kmem_cache); } return ret; } arch_initcall(exynos_iommu_init); /* * Dummy driver to enable runtime power management for memport * devices, which required for correct Exynos SYSMMU operation. * Must be registered before drivers, which will use memport nodes. */ static int __init exynos_memport_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; pm_runtime_enable(dev); return 0; } #ifdef CONFIG_OF static struct of_device_id memport_of_match[] __initconst = { { .compatible = "samsung,memport", }, { }, }; #endif static struct platform_driver exynos_memport_driver __refdata = { .probe = exynos_memport_probe, .driver = { .owner = THIS_MODULE, .name = "exynos-memport", .of_match_table = of_match_ptr(memport_of_match), } }; static int __init exynos_memport_init(void) { return platform_driver_register(&exynos_memport_driver); } subsys_initcall(exynos_memport_init);