/* * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * EXYNOS - CPU frequency scaling support for EXYNOS series * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "exynos-cpufreq.h" static struct exynos_dvfs_info *exynos_info; static struct regulator *arm_regulator; static struct cpufreq_freqs freqs; static unsigned int locking_frequency; static bool frequency_locked; static DEFINE_MUTEX(cpufreq_lock); static int exynos_verify_speed(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, exynos_info->freq_table); } static unsigned int exynos_getspeed(unsigned int cpu) { return clk_get_rate(exynos_info->cpu_clk) / 1000; } static int exynos_cpufreq_get_index(unsigned int freq) { struct cpufreq_frequency_table *freq_table = exynos_info->freq_table; int index; for (index = 0; freq_table[index].frequency != CPUFREQ_TABLE_END; index++) if (freq_table[index].frequency == freq) break; if (freq_table[index].frequency == CPUFREQ_TABLE_END) return -EINVAL; return index; } static int exynos_cpufreq_scale(unsigned int target_freq) { struct cpufreq_frequency_table *freq_table = exynos_info->freq_table; unsigned int *volt_table = exynos_info->volt_table; struct cpufreq_policy *policy = cpufreq_cpu_get(0); unsigned int arm_volt, safe_arm_volt = 0; unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz; int index, old_index; int ret = 0; freqs.old = policy->cur; freqs.new = target_freq; if (freqs.new == freqs.old) goto out; /* * The policy max have been changed so that we cannot get proper * old_index with cpufreq_frequency_table_target(). Thus, ignore * policy and get the index from the raw freqeuncy table. */ old_index = exynos_cpufreq_get_index(freqs.old); if (old_index < 0) { ret = old_index; goto out; } index = exynos_cpufreq_get_index(target_freq); if (index < 0) { ret = index; goto out; } /* * ARM clock source will be changed APLL to MPLL temporary * To support this level, need to control regulator for * required voltage level */ if (exynos_info->need_apll_change != NULL) { if (exynos_info->need_apll_change(old_index, index) && (freq_table[index].frequency < mpll_freq_khz) && (freq_table[old_index].frequency < mpll_freq_khz)) safe_arm_volt = volt_table[exynos_info->pll_safe_idx]; } arm_volt = volt_table[index]; cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); /* When the new frequency is higher than current frequency */ if ((freqs.new > freqs.old) && !safe_arm_volt) { /* Firstly, voltage up to increase frequency */ ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt); if (ret) { pr_err("%s: failed to set cpu voltage to %d\n", __func__, arm_volt); goto out; } } if (safe_arm_volt) { ret = regulator_set_voltage(arm_regulator, safe_arm_volt, safe_arm_volt); if (ret) { pr_err("%s: failed to set cpu voltage to %d\n", __func__, safe_arm_volt); goto out; } } exynos_info->set_freq(old_index, index); cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); /* When the new frequency is lower than current frequency */ if ((freqs.new < freqs.old) || ((freqs.new > freqs.old) && safe_arm_volt)) { /* down the voltage after frequency change */ regulator_set_voltage(arm_regulator, arm_volt, arm_volt); if (ret) { pr_err("%s: failed to set cpu voltage to %d\n", __func__, arm_volt); goto out; } } out: cpufreq_cpu_put(policy); return ret; } static int exynos_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_frequency_table *freq_table = exynos_info->freq_table; unsigned int index; unsigned int new_freq; int ret = 0; mutex_lock(&cpufreq_lock); if (frequency_locked) goto out; if (cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index)) { ret = -EINVAL; goto out; } new_freq = freq_table[index].frequency; ret = exynos_cpufreq_scale(new_freq); out: mutex_unlock(&cpufreq_lock); return ret; } #ifdef CONFIG_PM static int exynos_cpufreq_suspend(struct cpufreq_policy *policy) { return 0; } static int exynos_cpufreq_resume(struct cpufreq_policy *policy) { return 0; } #endif /** * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume * context * @notifier * @pm_event * @v * * While frequency_locked == true, target() ignores every frequency but * locking_frequency. The locking_frequency value is the initial frequency, * which is set by the bootloader. In order to eliminate possible * inconsistency in clock values, we save and restore frequencies during * suspend and resume and block CPUFREQ activities. Note that the standard * suspend/resume cannot be used as they are too deep (syscore_ops) for * regulator actions. */ static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *v) { int ret; switch (pm_event) { case PM_SUSPEND_PREPARE: mutex_lock(&cpufreq_lock); frequency_locked = true; mutex_unlock(&cpufreq_lock); ret = exynos_cpufreq_scale(locking_frequency); if (ret < 0) return NOTIFY_BAD; break; case PM_POST_SUSPEND: mutex_lock(&cpufreq_lock); frequency_locked = false; mutex_unlock(&cpufreq_lock); break; } return NOTIFY_OK; } static struct notifier_block exynos_cpufreq_nb = { .notifier_call = exynos_cpufreq_pm_notifier, }; static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy) { policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu); cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu); /* set the transition latency value */ policy->cpuinfo.transition_latency = 100000; cpumask_setall(policy->cpus); return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table); } static int exynos_cpufreq_cpu_exit(struct cpufreq_policy *policy) { cpufreq_frequency_table_put_attr(policy->cpu); return 0; } static struct freq_attr *exynos_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, &cpufreq_freq_attr_scaling_boost_freqs, NULL, }; static struct cpufreq_driver exynos_driver = { .flags = CPUFREQ_STICKY, .verify = exynos_verify_speed, .target = exynos_target, .get = exynos_getspeed, .init = exynos_cpufreq_cpu_init, .exit = exynos_cpufreq_cpu_exit, .name = "exynos_cpufreq", .attr = exynos_cpufreq_attr, #ifdef CONFIG_CPU_FREQ_BOOST_SW .boost_supported = true, #endif #ifdef CONFIG_PM .suspend = exynos_cpufreq_suspend, .resume = exynos_cpufreq_resume, #endif }; /* Device Tree Support for CPU freq */ int exynos_of_parse_boost(struct exynos_dvfs_info *info, const char *property_name) { struct cpufreq_frequency_table *ft = info->freq_table; struct device_node *node = info->dev->of_node; unsigned int boost_freq; if (of_property_read_u32(node, property_name, &boost_freq)) { pr_err("%s: Property: %s not found\n", __func__, property_name); return -ENODEV; } /* * Adjust the BOOST setting code to the current cpufreq code * Now we have static table definitions for frequencies, dividers * and PLL parameters (like P M S) * * In the current cpufreq code base only the change of one entry at * frequency table is required. */ ft[0].index = CPUFREQ_BOOST_FREQ; ft[0].frequency = boost_freq; pr_debug("%s: BOOST frequency: %d\n", __func__, ft[0].frequency); return 0; } struct cpufreq_frequency_table *exynos_of_parse_freq_table( struct exynos_dvfs_info *info, const char *property_name) { struct device_node *node = info->dev->of_node; struct cpufreq_frequency_table *ft, *ret = NULL; struct property *pp; int len, num, i = 0; u32 *of_f_tab; if (!node) return NULL; pp = of_find_property(node, property_name, &len); if (!pp) { pr_debug("%s: Property: %s not found\n", __func__, property_name); goto err; } if (len == 0) { pr_debug("%s: Length wrong value!\n", __func__); goto err; } of_f_tab = kzalloc(len, GFP_KERNEL); if (!of_f_tab) { pr_err("%s: Allocation failed\n", __func__); goto err; } num = len / sizeof(u32); if (of_property_read_u32_array(node, pp->name, of_f_tab, num)) { pr_err("%s: Property: %s cannot be read!\n", __func__, pp->name); goto err_of_f_tab; } /* * Here + 2 is required for CPUFREQ_ENTRY_INVALID and * CPUFREQ_TABLE_END * * Number of those entries must correspond to the apll_freq_4412 table */ ft = kzalloc(sizeof(struct cpufreq_frequency_table) * (num + 2), GFP_KERNEL); if (!ft) { pr_err("%s: Allocation failed\n", __func__); goto err_of_f_tab; } ft[0].index = L0; ft[0].frequency = CPUFREQ_ENTRY_INVALID; for (i = 1; i <= num; i++) { ft[i].index = i; ft[i].frequency = of_f_tab[i-1]; } ft[i].index = 0; ft[i].frequency = CPUFREQ_TABLE_END; ret = ft; err_of_f_tab: kfree(of_f_tab); err: return ret; } unsigned int *exynos_of_parse_volt_table(struct exynos_dvfs_info *info, const char *property_name) { struct device_node *node = info->dev->of_node; struct property *pp; int len, num; u32 *of_v_tab; if (!node) return NULL; pp = of_find_property(node, property_name, &len); if (!pp) { pr_debug("%s: Property: %s not found\n", __func__, property_name); goto err; } if (len == 0) { pr_debug("%s: Length wrong value!\n", __func__); goto err; } of_v_tab = kzalloc(len, GFP_KERNEL); if (!of_v_tab) { pr_err("%s: Allocation failed\n", __func__); goto err; } num = len / sizeof(u32); if (of_property_read_u32_array(node, pp->name, of_v_tab, num)) { pr_err("%s: Property: %s cannot be read!\n", __func__, pp->name); goto err_of_v_tab; } return of_v_tab; err_of_v_tab: kfree(of_v_tab); err: return NULL; } #ifdef CONFIG_OF static struct of_device_id exynos_cpufreq_of_match[] = { { .compatible = "samsung,exynos-cpufreq", }, { }, }; #endif static int exynos_cpufreq_probe(struct platform_device *pdev) { int ret = -EINVAL; exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL); if (!exynos_info) return -ENOMEM; exynos_info->dev = &pdev->dev; if (soc_is_exynos4210()) ret = exynos4210_cpufreq_init(exynos_info); else if (soc_is_exynos4212() || soc_is_exynos4412()) ret = exynos4x12_cpufreq_init(exynos_info); else if (soc_is_exynos5250()) ret = exynos5250_cpufreq_init(exynos_info); else return 0; if (ret) goto err_vdd_arm; if (exynos_info->set_freq == NULL) { pr_err("%s: No set_freq function (ERR)\n", __func__); goto err_vdd_arm; } arm_regulator = regulator_get(exynos_info->dev, "vdd_arm"); if (IS_ERR(arm_regulator)) { pr_err("%s: failed to get resource vdd_arm\n", __func__); goto err_vdd_arm; } locking_frequency = exynos_getspeed(0); register_pm_notifier(&exynos_cpufreq_nb); if (cpufreq_register_driver(&exynos_driver)) { pr_err("%s: failed to register cpufreq driver\n", __func__); goto err_cpufreq; } return 0; err_cpufreq: unregister_pm_notifier(&exynos_cpufreq_nb); regulator_put(arm_regulator); err_vdd_arm: kfree(exynos_info); pr_debug("%s: failed initialization\n", __func__); return -EINVAL; } static struct platform_driver exynos_cpufreq_driver = { .probe = exynos_cpufreq_probe, .driver = { .owner = THIS_MODULE, .name = "exynos-cpufreq", .of_match_table = of_match_ptr(exynos_cpufreq_of_match), } }; static int __init exynos_cpufreq_init(void) { int ret; ret = platform_driver_register(&exynos_cpufreq_driver); if (ret) { pr_err("%s: Failed to register CPUFREQ driver\n", __func__); } return ret; } late_initcall(exynos_cpufreq_init);