/* * Driver for NEC VR4100 series Real Time Clock unit. * * Copyright (C) 2003-2005 Yoichi Yuasa * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Yoichi Yuasa "); MODULE_DESCRIPTION("NEC VR4100 series RTC driver"); MODULE_LICENSE("GPL"); #define RTC1_TYPE1_START 0x0b0000c0UL #define RTC1_TYPE1_END 0x0b0000dfUL #define RTC2_TYPE1_START 0x0b0001c0UL #define RTC2_TYPE1_END 0x0b0001dfUL #define RTC1_TYPE2_START 0x0f000100UL #define RTC1_TYPE2_END 0x0f00011fUL #define RTC2_TYPE2_START 0x0f000120UL #define RTC2_TYPE2_END 0x0f00013fUL #define RTC1_SIZE 0x20 #define RTC2_SIZE 0x20 /* RTC 1 registers */ #define ETIMELREG 0x00 #define ETIMEMREG 0x02 #define ETIMEHREG 0x04 /* RFU */ #define ECMPLREG 0x08 #define ECMPMREG 0x0a #define ECMPHREG 0x0c /* RFU */ #define RTCL1LREG 0x10 #define RTCL1HREG 0x12 #define RTCL1CNTLREG 0x14 #define RTCL1CNTHREG 0x16 #define RTCL2LREG 0x18 #define RTCL2HREG 0x1a #define RTCL2CNTLREG 0x1c #define RTCL2CNTHREG 0x1e /* RTC 2 registers */ #define TCLKLREG 0x00 #define TCLKHREG 0x02 #define TCLKCNTLREG 0x04 #define TCLKCNTHREG 0x06 /* RFU */ #define RTCINTREG 0x1e #define TCLOCK_INT 0x08 #define RTCLONG2_INT 0x04 #define RTCLONG1_INT 0x02 #define ELAPSEDTIME_INT 0x01 #define RTC_FREQUENCY 32768 #define MAX_PERIODIC_RATE 6553 #define MAX_USER_PERIODIC_RATE 64 static void __iomem *rtc1_base; static void __iomem *rtc2_base; #define rtc1_read(offset) readw(rtc1_base + (offset)) #define rtc1_write(offset, value) writew((value), rtc1_base + (offset)) #define rtc2_read(offset) readw(rtc2_base + (offset)) #define rtc2_write(offset, value) writew((value), rtc2_base + (offset)) static unsigned long epoch = 1970; /* Jan 1 1970 00:00:00 */ static spinlock_t rtc_task_lock; static wait_queue_head_t rtc_wait; static unsigned long rtc_irq_data; static struct fasync_struct *rtc_async_queue; static rtc_task_t *rtc_callback; static char rtc_name[] = "RTC"; static unsigned long periodic_frequency; static unsigned long periodic_count; typedef enum { RTC_RELEASE, RTC_OPEN, } rtc_status_t; static rtc_status_t rtc_status; typedef enum { FUNCTION_RTC_IOCTL, FUNCTION_RTC_CONTROL, } rtc_callfrom_t; struct resource rtc_resource[2] = { { .name = rtc_name, .flags = IORESOURCE_MEM, }, { .name = rtc_name, .flags = IORESOURCE_MEM, }, }; #define RTC_NUM_RESOURCES sizeof(rtc_resource) / sizeof(struct resource) static inline unsigned long read_elapsed_second(void) { unsigned long first_low, first_mid, first_high; unsigned long second_low, second_mid, second_high; do { first_low = rtc1_read(ETIMELREG); first_mid = rtc1_read(ETIMEMREG); first_high = rtc1_read(ETIMEHREG); second_low = rtc1_read(ETIMELREG); second_mid = rtc1_read(ETIMEMREG); second_high = rtc1_read(ETIMEHREG); } while (first_low != second_low || first_mid != second_mid || first_high != second_high); return (first_high << 17) | (first_mid << 1) | (first_low >> 15); } static inline void write_elapsed_second(unsigned long sec) { spin_lock_irq(&rtc_lock); rtc1_write(ETIMELREG, (uint16_t)(sec << 15)); rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1)); rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17)); spin_unlock_irq(&rtc_lock); } static void set_alarm(struct rtc_time *time) { unsigned long alarm_sec; alarm_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); spin_lock_irq(&rtc_lock); rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15)); rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1)); rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17)); spin_unlock_irq(&rtc_lock); } static void read_alarm(struct rtc_time *time) { unsigned long low, mid, high; spin_lock_irq(&rtc_lock); low = rtc1_read(ECMPLREG); mid = rtc1_read(ECMPMREG); high = rtc1_read(ECMPHREG); spin_unlock_irq(&rtc_lock); to_tm((high << 17) | (mid << 1) | (low >> 15), time); time->tm_year -= 1900; } static void read_time(struct rtc_time *time) { unsigned long epoch_sec, elapsed_sec; epoch_sec = mktime(epoch, 1, 1, 0, 0, 0); elapsed_sec = read_elapsed_second(); to_tm(epoch_sec + elapsed_sec, time); time->tm_year -= 1900; } static void set_time(struct rtc_time *time) { unsigned long epoch_sec, current_sec; epoch_sec = mktime(epoch, 1, 1, 0, 0, 0); current_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); write_elapsed_second(current_sec - epoch_sec); } static ssize_t rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(wait, current); unsigned long irq_data; int retval = 0; if (count != sizeof(unsigned int) && count != sizeof(unsigned long)) return -EINVAL; add_wait_queue(&rtc_wait, &wait); do { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irq(&rtc_lock); irq_data = rtc_irq_data; rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); if (irq_data != 0) break; if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; break; } if (signal_pending(current)) { retval = -ERESTARTSYS; break; } } while (1); if (retval == 0) { if (count == sizeof(unsigned int)) { retval = put_user(irq_data, (unsigned int __user *)buf); if (retval == 0) retval = sizeof(unsigned int); } else { retval = put_user(irq_data, (unsigned long __user *)buf); if (retval == 0) retval = sizeof(unsigned long); } } __set_current_state(TASK_RUNNING); remove_wait_queue(&rtc_wait, &wait); return retval; } static unsigned int rtc_poll(struct file *file, struct poll_table_struct *table) { poll_wait(file, &rtc_wait, table); if (rtc_irq_data != 0) return POLLIN | POLLRDNORM; return 0; } static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, rtc_callfrom_t from) { struct rtc_time time; unsigned long count; switch (cmd) { case RTC_AIE_ON: enable_irq(ELAPSEDTIME_IRQ); break; case RTC_AIE_OFF: disable_irq(ELAPSEDTIME_IRQ); break; case RTC_PIE_ON: enable_irq(RTCLONG1_IRQ); break; case RTC_PIE_OFF: disable_irq(RTCLONG1_IRQ); break; case RTC_ALM_SET: if (copy_from_user(&time, (struct rtc_time __user *)arg, sizeof(struct rtc_time))) return -EFAULT; set_alarm(&time); break; case RTC_ALM_READ: memset(&time, 0, sizeof(struct rtc_time)); read_alarm(&time); break; case RTC_RD_TIME: memset(&time, 0, sizeof(struct rtc_time)); read_time(&time); if (copy_to_user((void __user *)arg, &time, sizeof(struct rtc_time))) return -EFAULT; break; case RTC_SET_TIME: if (capable(CAP_SYS_TIME) == 0) return -EACCES; if (copy_from_user(&time, (struct rtc_time __user *)arg, sizeof(struct rtc_time))) return -EFAULT; set_time(&time); break; case RTC_IRQP_READ: return put_user(periodic_frequency, (unsigned long __user *)arg); break; case RTC_IRQP_SET: if (arg > MAX_PERIODIC_RATE) return -EINVAL; if (from == FUNCTION_RTC_IOCTL && arg > MAX_USER_PERIODIC_RATE && capable(CAP_SYS_RESOURCE) == 0) return -EACCES; periodic_frequency = arg; count = RTC_FREQUENCY; do_div(count, arg); periodic_count = count; spin_lock_irq(&rtc_lock); rtc1_write(RTCL1LREG, count); rtc1_write(RTCL1HREG, count >> 16); spin_unlock_irq(&rtc_lock); break; case RTC_EPOCH_READ: return put_user(epoch, (unsigned long __user *)arg); case RTC_EPOCH_SET: /* Doesn't support before 1900 */ if (arg < 1900) return -EINVAL; if (capable(CAP_SYS_TIME) == 0) return -EACCES; epoch = arg; break; default: return -EINVAL; } return 0; } static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return rtc_do_ioctl(cmd, arg, FUNCTION_RTC_IOCTL); } static int rtc_open(struct inode *inode, struct file *file) { spin_lock_irq(&rtc_lock); if (rtc_status == RTC_OPEN) { spin_unlock_irq(&rtc_lock); return -EBUSY; } rtc_status = RTC_OPEN; rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); return 0; } static int rtc_release(struct inode *inode, struct file *file) { if (file->f_flags & FASYNC) (void)fasync_helper(-1, file, 0, &rtc_async_queue); spin_lock_irq(&rtc_lock); rtc1_write(ECMPLREG, 0); rtc1_write(ECMPMREG, 0); rtc1_write(ECMPHREG, 0); rtc1_write(RTCL1LREG, 0); rtc1_write(RTCL1HREG, 0); rtc_status = RTC_RELEASE; spin_unlock_irq(&rtc_lock); disable_irq(ELAPSEDTIME_IRQ); disable_irq(RTCLONG1_IRQ); return 0; } static int rtc_fasync(int fd, struct file *file, int on) { return fasync_helper(fd, file, on, &rtc_async_queue); } static struct file_operations rtc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = rtc_read, .poll = rtc_poll, .ioctl = rtc_ioctl, .open = rtc_open, .release = rtc_release, .fasync = rtc_fasync, }; static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id, struct pt_regs *regs) { spin_lock(&rtc_lock); rtc2_write(RTCINTREG, ELAPSEDTIME_INT); rtc_irq_data += 0x100; rtc_irq_data &= ~0xff; rtc_irq_data |= RTC_AF; spin_unlock(&rtc_lock); spin_lock(&rtc_lock); if (rtc_callback) rtc_callback->func(rtc_callback->private_data); spin_unlock(&rtc_lock); wake_up_interruptible(&rtc_wait); kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); return IRQ_HANDLED; } static irqreturn_t rtclong1_interrupt(int irq, void *dev_id, struct pt_regs *regs) { unsigned long count = periodic_count; spin_lock(&rtc_lock); rtc2_write(RTCINTREG, RTCLONG1_INT); rtc1_write(RTCL1LREG, count); rtc1_write(RTCL1HREG, count >> 16); rtc_irq_data += 0x100; rtc_irq_data &= ~0xff; rtc_irq_data |= RTC_PF; spin_unlock(&rtc_lock); spin_lock(&rtc_task_lock); if (rtc_callback) rtc_callback->func(rtc_callback->private_data); spin_unlock(&rtc_task_lock); wake_up_interruptible(&rtc_wait); kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); return IRQ_HANDLED; } int rtc_register(rtc_task_t *task) { if (task == NULL || task->func == NULL) return -EINVAL; spin_lock_irq(&rtc_lock); if (rtc_status == RTC_OPEN) { spin_unlock_irq(&rtc_lock); return -EBUSY; } spin_lock(&rtc_task_lock); if (rtc_callback != NULL) { spin_unlock(&rtc_task_lock); spin_unlock_irq(&rtc_task_lock); return -EBUSY; } rtc_callback = task; spin_unlock(&rtc_task_lock); rtc_status = RTC_OPEN; spin_unlock_irq(&rtc_lock); return 0; } EXPORT_SYMBOL_GPL(rtc_register); int rtc_unregister(rtc_task_t *task) { spin_lock_irq(&rtc_task_lock); if (task == NULL || rtc_callback != task) { spin_unlock_irq(&rtc_task_lock); return -ENXIO; } spin_lock(&rtc_lock); rtc1_write(ECMPLREG, 0); rtc1_write(ECMPMREG, 0); rtc1_write(ECMPHREG, 0); rtc1_write(RTCL1LREG, 0); rtc1_write(RTCL1HREG, 0); rtc_status = RTC_RELEASE; spin_unlock(&rtc_lock); rtc_callback = NULL; spin_unlock_irq(&rtc_task_lock); disable_irq(ELAPSEDTIME_IRQ); disable_irq(RTCLONG1_IRQ); return 0; } EXPORT_SYMBOL_GPL(rtc_unregister); int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) { int retval = 0; spin_lock_irq(&rtc_task_lock); if (rtc_callback != task) retval = -ENXIO; else rtc_do_ioctl(cmd, arg, FUNCTION_RTC_CONTROL); spin_unlock_irq(&rtc_task_lock); return retval; } EXPORT_SYMBOL_GPL(rtc_control); static struct miscdevice rtc_miscdevice = { .minor = RTC_MINOR, .name = rtc_name, .fops = &rtc_fops, }; static int rtc_probe(struct device *dev) { struct platform_device *pdev; unsigned int irq; int retval; pdev = to_platform_device(dev); if (pdev->num_resources != 2) return -EBUSY; rtc1_base = ioremap(pdev->resource[0].start, RTC1_SIZE); if (rtc1_base == NULL) return -EBUSY; rtc2_base = ioremap(pdev->resource[1].start, RTC2_SIZE); if (rtc2_base == NULL) { iounmap(rtc1_base); rtc1_base = NULL; return -EBUSY; } retval = misc_register(&rtc_miscdevice); if (retval < 0) { iounmap(rtc1_base); iounmap(rtc2_base); rtc1_base = NULL; rtc2_base = NULL; return retval; } spin_lock_irq(&rtc_lock); rtc1_write(ECMPLREG, 0); rtc1_write(ECMPMREG, 0); rtc1_write(ECMPHREG, 0); rtc1_write(RTCL1LREG, 0); rtc1_write(RTCL1HREG, 0); rtc_status = RTC_RELEASE; rtc_irq_data = 0; spin_unlock_irq(&rtc_lock); init_waitqueue_head(&rtc_wait); irq = ELAPSEDTIME_IRQ; retval = request_irq(irq, elapsedtime_interrupt, SA_INTERRUPT, "elapsed_time", NULL); if (retval == 0) { irq = RTCLONG1_IRQ; retval = request_irq(irq, rtclong1_interrupt, SA_INTERRUPT, "rtclong1", NULL); } if (retval < 0) { printk(KERN_ERR "rtc: IRQ%d is busy\n", irq); if (irq == RTCLONG1_IRQ) free_irq(ELAPSEDTIME_IRQ, NULL); iounmap(rtc1_base); iounmap(rtc2_base); rtc1_base = NULL; rtc2_base = NULL; return retval; } disable_irq(ELAPSEDTIME_IRQ); disable_irq(RTCLONG1_IRQ); spin_lock_init(&rtc_task_lock); printk(KERN_INFO "rtc: Real Time Clock of NEC VR4100 series\n"); return 0; } static int rtc_remove(struct device *dev) { int retval; retval = misc_deregister(&rtc_miscdevice); if (retval < 0) return retval; free_irq(ELAPSEDTIME_IRQ, NULL); free_irq(RTCLONG1_IRQ, NULL); if (rtc1_base != NULL) iounmap(rtc1_base); if (rtc2_base != NULL) iounmap(rtc2_base); return 0; } static struct platform_device *rtc_platform_device; static struct device_driver rtc_device_driver = { .name = rtc_name, .bus = &platform_bus_type, .probe = rtc_probe, .remove = rtc_remove, }; static int __devinit vr41xx_rtc_init(void) { int retval; switch (current_cpu_data.cputype) { case CPU_VR4111: case CPU_VR4121: rtc_resource[0].start = RTC1_TYPE1_START; rtc_resource[0].end = RTC1_TYPE1_END; rtc_resource[1].start = RTC2_TYPE1_START; rtc_resource[1].end = RTC2_TYPE1_END; break; case CPU_VR4122: case CPU_VR4131: case CPU_VR4133: rtc_resource[0].start = RTC1_TYPE2_START; rtc_resource[0].end = RTC1_TYPE2_END; rtc_resource[1].start = RTC2_TYPE2_START; rtc_resource[1].end = RTC2_TYPE2_END; break; default: return -ENODEV; break; } rtc_platform_device = platform_device_register_simple("RTC", -1, rtc_resource, RTC_NUM_RESOURCES); if (IS_ERR(rtc_platform_device)) return PTR_ERR(rtc_platform_device); retval = driver_register(&rtc_device_driver); if (retval < 0) platform_device_unregister(rtc_platform_device); return retval; } static void __devexit vr41xx_rtc_exit(void) { driver_unregister(&rtc_device_driver); platform_device_unregister(rtc_platform_device); } module_init(vr41xx_rtc_init); module_exit(vr41xx_rtc_exit);