/****************************************************************************** * hypercall.h * * Linux-specific hypervisor handling. * * Copyright (c) 2002-2004, K A Fraser * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation; or, when distributed * separately from the Linux kernel or incorporated into other * software packages, subject to the following license: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this source file (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef _ASM_X86_XEN_HYPERCALL_H #define _ASM_X86_XEN_HYPERCALL_H #include #include #include #include #include #include #include #include #include #include #include #include /* * The hypercall asms have to meet several constraints: * - Work on 32- and 64-bit. * The two architectures put their arguments in different sets of * registers. * * - Work around asm syntax quirks * It isn't possible to specify one of the rNN registers in a * constraint, so we use explicit register variables to get the * args into the right place. * * - Mark all registers as potentially clobbered * Even unused parameters can be clobbered by the hypervisor, so we * need to make sure gcc knows it. * * - Avoid compiler bugs. * This is the tricky part. Because x86_32 has such a constrained * register set, gcc versions below 4.3 have trouble generating * code when all the arg registers and memory are trashed by the * asm. There are syntactically simpler ways of achieving the * semantics below, but they cause the compiler to crash. * * The only combination I found which works is: * - assign the __argX variables first * - list all actually used parameters as "+r" (__argX) * - clobber the rest * * The result certainly isn't pretty, and it really shows up cpp's * weakness as as macro language. Sorry. (But let's just give thanks * there aren't more than 5 arguments...) */ extern struct { char _entry[32]; } hypercall_page[]; #define __HYPERCALL "call hypercall_page+%c[offset]" #define __HYPERCALL_ENTRY(x) \ [offset] "i" (__HYPERVISOR_##x * sizeof(hypercall_page[0])) #ifdef CONFIG_X86_32 #define __HYPERCALL_RETREG "eax" #define __HYPERCALL_ARG1REG "ebx" #define __HYPERCALL_ARG2REG "ecx" #define __HYPERCALL_ARG3REG "edx" #define __HYPERCALL_ARG4REG "esi" #define __HYPERCALL_ARG5REG "edi" #else #define __HYPERCALL_RETREG "rax" #define __HYPERCALL_ARG1REG "rdi" #define __HYPERCALL_ARG2REG "rsi" #define __HYPERCALL_ARG3REG "rdx" #define __HYPERCALL_ARG4REG "r10" #define __HYPERCALL_ARG5REG "r8" #endif #define __HYPERCALL_DECLS \ register unsigned long __res asm(__HYPERCALL_RETREG); \ register unsigned long __arg1 asm(__HYPERCALL_ARG1REG) = __arg1; \ register unsigned long __arg2 asm(__HYPERCALL_ARG2REG) = __arg2; \ register unsigned long __arg3 asm(__HYPERCALL_ARG3REG) = __arg3; \ register unsigned long __arg4 asm(__HYPERCALL_ARG4REG) = __arg4; \ register unsigned long __arg5 asm(__HYPERCALL_ARG5REG) = __arg5; #define __HYPERCALL_0PARAM "=r" (__res) #define __HYPERCALL_1PARAM __HYPERCALL_0PARAM, "+r" (__arg1) #define __HYPERCALL_2PARAM __HYPERCALL_1PARAM, "+r" (__arg2) #define __HYPERCALL_3PARAM __HYPERCALL_2PARAM, "+r" (__arg3) #define __HYPERCALL_4PARAM __HYPERCALL_3PARAM, "+r" (__arg4) #define __HYPERCALL_5PARAM __HYPERCALL_4PARAM, "+r" (__arg5) #define __HYPERCALL_0ARG() #define __HYPERCALL_1ARG(a1) \ __HYPERCALL_0ARG() __arg1 = (unsigned long)(a1); #define __HYPERCALL_2ARG(a1,a2) \ __HYPERCALL_1ARG(a1) __arg2 = (unsigned long)(a2); #define __HYPERCALL_3ARG(a1,a2,a3) \ __HYPERCALL_2ARG(a1,a2) __arg3 = (unsigned long)(a3); #define __HYPERCALL_4ARG(a1,a2,a3,a4) \ __HYPERCALL_3ARG(a1,a2,a3) __arg4 = (unsigned long)(a4); #define __HYPERCALL_5ARG(a1,a2,a3,a4,a5) \ __HYPERCALL_4ARG(a1,a2,a3,a4) __arg5 = (unsigned long)(a5); #define __HYPERCALL_CLOBBER5 "memory" #define __HYPERCALL_CLOBBER4 __HYPERCALL_CLOBBER5, __HYPERCALL_ARG5REG #define __HYPERCALL_CLOBBER3 __HYPERCALL_CLOBBER4, __HYPERCALL_ARG4REG #define __HYPERCALL_CLOBBER2 __HYPERCALL_CLOBBER3, __HYPERCALL_ARG3REG #define __HYPERCALL_CLOBBER1 __HYPERCALL_CLOBBER2, __HYPERCALL_ARG2REG #define __HYPERCALL_CLOBBER0 __HYPERCALL_CLOBBER1, __HYPERCALL_ARG1REG #define _hypercall0(type, name) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_0ARG(); \ asm volatile (__HYPERCALL \ : __HYPERCALL_0PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER0); \ (type)__res; \ }) #define _hypercall1(type, name, a1) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_1ARG(a1); \ asm volatile (__HYPERCALL \ : __HYPERCALL_1PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER1); \ (type)__res; \ }) #define _hypercall2(type, name, a1, a2) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_2ARG(a1, a2); \ asm volatile (__HYPERCALL \ : __HYPERCALL_2PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER2); \ (type)__res; \ }) #define _hypercall3(type, name, a1, a2, a3) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_3ARG(a1, a2, a3); \ asm volatile (__HYPERCALL \ : __HYPERCALL_3PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER3); \ (type)__res; \ }) #define _hypercall4(type, name, a1, a2, a3, a4) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_4ARG(a1, a2, a3, a4); \ asm volatile (__HYPERCALL \ : __HYPERCALL_4PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER4); \ (type)__res; \ }) #define _hypercall5(type, name, a1, a2, a3, a4, a5) \ ({ \ __HYPERCALL_DECLS; \ __HYPERCALL_5ARG(a1, a2, a3, a4, a5); \ asm volatile (__HYPERCALL \ : __HYPERCALL_5PARAM \ : __HYPERCALL_ENTRY(name) \ : __HYPERCALL_CLOBBER5); \ (type)__res; \ }) static inline long privcmd_call(unsigned call, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5) { __HYPERCALL_DECLS; __HYPERCALL_5ARG(a1, a2, a3, a4, a5); asm volatile("call *%[call]" : __HYPERCALL_5PARAM : [call] "a" (&hypercall_page[call]) : __HYPERCALL_CLOBBER5); return (long)__res; } static inline int HYPERVISOR_set_trap_table(struct trap_info *table) { return _hypercall1(int, set_trap_table, table); } static inline int HYPERVISOR_mmu_update(struct mmu_update *req, int count, int *success_count, domid_t domid) { return _hypercall4(int, mmu_update, req, count, success_count, domid); } static inline int HYPERVISOR_mmuext_op(struct mmuext_op *op, int count, int *success_count, domid_t domid) { return _hypercall4(int, mmuext_op, op, count, success_count, domid); } static inline int HYPERVISOR_set_gdt(unsigned long *frame_list, int entries) { return _hypercall2(int, set_gdt, frame_list, entries); } static inline int HYPERVISOR_stack_switch(unsigned long ss, unsigned long esp) { return _hypercall2(int, stack_switch, ss, esp); } #ifdef CONFIG_X86_32 static inline int HYPERVISOR_set_callbacks(unsigned long event_selector, unsigned long event_address, unsigned long failsafe_selector, unsigned long failsafe_address) { return _hypercall4(int, set_callbacks, event_selector, event_address, failsafe_selector, failsafe_address); } #else /* CONFIG_X86_64 */ static inline int HYPERVISOR_set_callbacks(unsigned long event_address, unsigned long failsafe_address, unsigned long syscall_address) { return _hypercall3(int, set_callbacks, event_address, failsafe_address, syscall_address); } #endif /* CONFIG_X86_{32,64} */ static inline int HYPERVISOR_callback_op(int cmd, void *arg) { return _hypercall2(int, callback_op, cmd, arg); } static inline int HYPERVISOR_fpu_taskswitch(int set) { return _hypercall1(int, fpu_taskswitch, set); } static inline int HYPERVISOR_sched_op(int cmd, void *arg) { return _hypercall2(int, sched_op, cmd, arg); } static inline long HYPERVISOR_set_timer_op(u64 timeout) { unsigned long timeout_hi = (unsigned long)(timeout>>32); unsigned long timeout_lo = (unsigned long)timeout; return _hypercall2(long, set_timer_op, timeout_lo, timeout_hi); } static inline int HYPERVISOR_dom0_op(struct xen_platform_op *platform_op) { platform_op->interface_version = XENPF_INTERFACE_VERSION; return _hypercall1(int, dom0_op, platform_op); } static inline int HYPERVISOR_set_debugreg(int reg, unsigned long value) { return _hypercall2(int, set_debugreg, reg, value); } static inline unsigned long HYPERVISOR_get_debugreg(int reg) { return _hypercall1(unsigned long, get_debugreg, reg); } static inline int HYPERVISOR_update_descriptor(u64 ma, u64 desc) { if (sizeof(u64) == sizeof(long)) return _hypercall2(int, update_descriptor, ma, desc); return _hypercall4(int, update_descriptor, ma, ma>>32, desc, desc>>32); } static inline int HYPERVISOR_memory_op(unsigned int cmd, void *arg) { return _hypercall2(int, memory_op, cmd, arg); } static inline int HYPERVISOR_multicall(void *call_list, int nr_calls) { return _hypercall2(int, multicall, call_list, nr_calls); } static inline int HYPERVISOR_update_va_mapping(unsigned long va, pte_t new_val, unsigned long flags) { if (sizeof(new_val) == sizeof(long)) return _hypercall3(int, update_va_mapping, va, new_val.pte, flags); else return _hypercall4(int, update_va_mapping, va, new_val.pte, new_val.pte >> 32, flags); } static inline int HYPERVISOR_event_channel_op(int cmd, void *arg) { int rc = _hypercall2(int, event_channel_op, cmd, arg); if (unlikely(rc == -ENOSYS)) { struct evtchn_op op; op.cmd = cmd; memcpy(&op.u, arg, sizeof(op.u)); rc = _hypercall1(int, event_channel_op_compat, &op); memcpy(arg, &op.u, sizeof(op.u)); } return rc; } static inline int HYPERVISOR_xen_version(int cmd, void *arg) { return _hypercall2(int, xen_version, cmd, arg); } static inline int HYPERVISOR_console_io(int cmd, int count, char *str) { return _hypercall3(int, console_io, cmd, count, str); } static inline int HYPERVISOR_physdev_op(int cmd, void *arg) { int rc = _hypercall2(int, physdev_op, cmd, arg); if (unlikely(rc == -ENOSYS)) { struct physdev_op op; op.cmd = cmd; memcpy(&op.u, arg, sizeof(op.u)); rc = _hypercall1(int, physdev_op_compat, &op); memcpy(arg, &op.u, sizeof(op.u)); } return rc; } static inline int HYPERVISOR_grant_table_op(unsigned int cmd, void *uop, unsigned int count) { return _hypercall3(int, grant_table_op, cmd, uop, count); } static inline int HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, pte_t new_val, unsigned long flags, domid_t domid) { if (sizeof(new_val) == sizeof(long)) return _hypercall4(int, update_va_mapping_otherdomain, va, new_val.pte, flags, domid); else return _hypercall5(int, update_va_mapping_otherdomain, va, new_val.pte, new_val.pte >> 32, flags, domid); } static inline int HYPERVISOR_vm_assist(unsigned int cmd, unsigned int type) { return _hypercall2(int, vm_assist, cmd, type); } static inline int HYPERVISOR_vcpu_op(int cmd, int vcpuid, void *extra_args) { return _hypercall3(int, vcpu_op, cmd, vcpuid, extra_args); } #ifdef CONFIG_X86_64 static inline int HYPERVISOR_set_segment_base(int reg, unsigned long value) { return _hypercall2(int, set_segment_base, reg, value); } #endif static inline int HYPERVISOR_suspend(unsigned long start_info_mfn) { struct sched_shutdown r = { .reason = SHUTDOWN_suspend }; /* * For a PV guest the tools require that the start_info mfn be * present in rdx/edx when the hypercall is made. Per the * hypercall calling convention this is the third hypercall * argument, which is start_info_mfn here. */ return _hypercall3(int, sched_op, SCHEDOP_shutdown, &r, start_info_mfn); } static inline int HYPERVISOR_nmi_op(unsigned long op, unsigned long arg) { return _hypercall2(int, nmi_op, op, arg); } static inline unsigned long __must_check HYPERVISOR_hvm_op(int op, void *arg) { return _hypercall2(unsigned long, hvm_op, op, arg); } static inline int HYPERVISOR_tmem_op( struct tmem_op *op) { return _hypercall1(int, tmem_op, op); } static inline void MULTI_fpu_taskswitch(struct multicall_entry *mcl, int set) { mcl->op = __HYPERVISOR_fpu_taskswitch; mcl->args[0] = set; trace_xen_mc_entry(mcl, 1); } static inline void MULTI_update_va_mapping(struct multicall_entry *mcl, unsigned long va, pte_t new_val, unsigned long flags) { mcl->op = __HYPERVISOR_update_va_mapping; mcl->args[0] = va; if (sizeof(new_val) == sizeof(long)) { mcl->args[1] = new_val.pte; mcl->args[2] = flags; } else { mcl->args[1] = new_val.pte; mcl->args[2] = new_val.pte >> 32; mcl->args[3] = flags; } trace_xen_mc_entry(mcl, sizeof(new_val) == sizeof(long) ? 3 : 4); } static inline void MULTI_grant_table_op(struct multicall_entry *mcl, unsigned int cmd, void *uop, unsigned int count) { mcl->op = __HYPERVISOR_grant_table_op; mcl->args[0] = cmd; mcl->args[1] = (unsigned long)uop; mcl->args[2] = count; trace_xen_mc_entry(mcl, 3); } static inline void MULTI_update_va_mapping_otherdomain(struct multicall_entry *mcl, unsigned long va, pte_t new_val, unsigned long flags, domid_t domid) { mcl->op = __HYPERVISOR_update_va_mapping_otherdomain; mcl->args[0] = va; if (sizeof(new_val) == sizeof(long)) { mcl->args[1] = new_val.pte; mcl->args[2] = flags; mcl->args[3] = domid; } else { mcl->args[1] = new_val.pte; mcl->args[2] = new_val.pte >> 32; mcl->args[3] = flags; mcl->args[4] = domid; } trace_xen_mc_entry(mcl, sizeof(new_val) == sizeof(long) ? 4 : 5); } static inline void MULTI_update_descriptor(struct multicall_entry *mcl, u64 maddr, struct desc_struct desc) { mcl->op = __HYPERVISOR_update_descriptor; if (sizeof(maddr) == sizeof(long)) { mcl->args[0] = maddr; mcl->args[1] = *(unsigned long *)&desc; } else { mcl->args[0] = maddr; mcl->args[1] = maddr >> 32; mcl->args[2] = desc.a; mcl->args[3] = desc.b; } trace_xen_mc_entry(mcl, sizeof(maddr) == sizeof(long) ? 2 : 4); } static inline void MULTI_memory_op(struct multicall_entry *mcl, unsigned int cmd, void *arg) { mcl->op = __HYPERVISOR_memory_op; mcl->args[0] = cmd; mcl->args[1] = (unsigned long)arg; trace_xen_mc_entry(mcl, 2); } static inline void MULTI_mmu_update(struct multicall_entry *mcl, struct mmu_update *req, int count, int *success_count, domid_t domid) { mcl->op = __HYPERVISOR_mmu_update; mcl->args[0] = (unsigned long)req; mcl->args[1] = count; mcl->args[2] = (unsigned long)success_count; mcl->args[3] = domid; trace_xen_mc_entry(mcl, 4); } static inline void MULTI_mmuext_op(struct multicall_entry *mcl, struct mmuext_op *op, int count, int *success_count, domid_t domid) { mcl->op = __HYPERVISOR_mmuext_op; mcl->args[0] = (unsigned long)op; mcl->args[1] = count; mcl->args[2] = (unsigned long)success_count; mcl->args[3] = domid; trace_xen_mc_entry(mcl, 4); } static inline void MULTI_set_gdt(struct multicall_entry *mcl, unsigned long *frames, int entries) { mcl->op = __HYPERVISOR_set_gdt; mcl->args[0] = (unsigned long)frames; mcl->args[1] = entries; trace_xen_mc_entry(mcl, 2); } static inline void MULTI_stack_switch(struct multicall_entry *mcl, unsigned long ss, unsigned long esp) { mcl->op = __HYPERVISOR_stack_switch; mcl->args[0] = ss; mcl->args[1] = esp; trace_xen_mc_entry(mcl, 2); } #endif /* _ASM_X86_XEN_HYPERCALL_H */