/* * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c. * * Copyright (C) 2000 VA Linux Co * Copyright (C) 2000 Don Dugger * Copyright (C) 1999 Arun Sharma * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co * David Mosberger-Tang * Copyright (C) 2004 Gordon Jin * * These routines maintain argument size conversion between 32bit and 64bit * environment. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ia32priv.h" #include #include #define DEBUG 0 #if DEBUG # define DBG(fmt...) printk(KERN_DEBUG fmt) #else # define DBG(fmt...) #endif #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1))) #define OFFSET4K(a) ((a) & 0xfff) #define PAGE_START(addr) ((addr) & PAGE_MASK) #define MINSIGSTKSZ_IA32 2048 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid)) #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid)) /* * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore * while doing so. */ /* XXX make per-mm: */ static DEFINE_MUTEX(ia32_mmap_mutex); asmlinkage long sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp, struct pt_regs *regs) { long error; char *filename; unsigned long old_map_base, old_task_size, tssd; filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) return error; old_map_base = current->thread.map_base; old_task_size = current->thread.task_size; tssd = ia64_get_kr(IA64_KR_TSSD); /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */ current->thread.map_base = DEFAULT_MAP_BASE; current->thread.task_size = DEFAULT_TASK_SIZE; ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); error = compat_do_execve(filename, argv, envp, regs); putname(filename); if (error < 0) { /* oops, execve failed, switch back to old values... */ ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE); ia64_set_kr(IA64_KR_TSSD, tssd); current->thread.map_base = old_map_base; current->thread.task_size = old_task_size; } return error; } int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf) { compat_ino_t ino; int err; if ((u64) stat->size > MAX_NON_LFS || !old_valid_dev(stat->dev) || !old_valid_dev(stat->rdev)) return -EOVERFLOW; ino = stat->ino; if (sizeof(ino) < sizeof(stat->ino) && ino != stat->ino) return -EOVERFLOW; if (clear_user(ubuf, sizeof(*ubuf))) return -EFAULT; err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev); err |= __put_user(ino, &ubuf->st_ino); err |= __put_user(stat->mode, &ubuf->st_mode); err |= __put_user(stat->nlink, &ubuf->st_nlink); err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid); err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid); err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev); err |= __put_user(stat->size, &ubuf->st_size); err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime); err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec); err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime); err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec); err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime); err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec); err |= __put_user(stat->blksize, &ubuf->st_blksize); err |= __put_user(stat->blocks, &ubuf->st_blocks); return err; } #if PAGE_SHIFT > IA32_PAGE_SHIFT static int get_page_prot (struct vm_area_struct *vma, unsigned long addr) { int prot = 0; if (!vma || vma->vm_start > addr) return 0; if (vma->vm_flags & VM_READ) prot |= PROT_READ; if (vma->vm_flags & VM_WRITE) prot |= PROT_WRITE; if (vma->vm_flags & VM_EXEC) prot |= PROT_EXEC; return prot; } /* * Map a subpage by creating an anonymous page that contains the union of the old page and * the subpage. */ static unsigned long mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags, loff_t off) { void *page = NULL; struct inode *inode; unsigned long ret = 0; struct vm_area_struct *vma = find_vma(current->mm, start); int old_prot = get_page_prot(vma, start); DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n", file, start, end, prot, flags, off); /* Optimize the case where the old mmap and the new mmap are both anonymous */ if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) { if (clear_user((void __user *) start, end - start)) { ret = -EFAULT; goto out; } goto skip_mmap; } page = (void *) get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; if (old_prot) copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE); down_write(¤t->mm->mmap_sem); { ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE, flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) goto out; if (old_prot) { /* copy back the old page contents. */ if (offset_in_page(start)) copy_to_user((void __user *) PAGE_START(start), page, offset_in_page(start)); if (offset_in_page(end)) copy_to_user((void __user *) end, page + offset_in_page(end), PAGE_SIZE - offset_in_page(end)); } if (!(flags & MAP_ANONYMOUS)) { /* read the file contents */ inode = file->f_path.dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0)) { ret = -EINVAL; goto out; } } skip_mmap: if (!(prot & PROT_WRITE)) ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot); out: if (page) free_page((unsigned long) page); return ret; } /* SLAB cache for partial_page structures */ struct kmem_cache *partial_page_cachep; /* * init partial_page_list. * return 0 means kmalloc fail. */ struct partial_page_list* ia32_init_pp_list(void) { struct partial_page_list *p; if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL) return p; p->pp_head = NULL; p->ppl_rb = RB_ROOT; p->pp_hint = NULL; atomic_set(&p->pp_count, 1); return p; } /* * Search for the partial page with @start in partial page list @ppl. * If finds the partial page, return the found partial page. * Else, return 0 and provide @pprev, @rb_link, @rb_parent to * be used by later __ia32_insert_pp(). */ static struct partial_page * __ia32_find_pp(struct partial_page_list *ppl, unsigned int start, struct partial_page **pprev, struct rb_node ***rb_link, struct rb_node **rb_parent) { struct partial_page *pp; struct rb_node **__rb_link, *__rb_parent, *rb_prev; pp = ppl->pp_hint; if (pp && pp->base == start) return pp; __rb_link = &ppl->ppl_rb.rb_node; rb_prev = __rb_parent = NULL; while (*__rb_link) { __rb_parent = *__rb_link; pp = rb_entry(__rb_parent, struct partial_page, pp_rb); if (pp->base == start) { ppl->pp_hint = pp; return pp; } else if (pp->base < start) { rb_prev = __rb_parent; __rb_link = &__rb_parent->rb_right; } else { __rb_link = &__rb_parent->rb_left; } } *rb_link = __rb_link; *rb_parent = __rb_parent; *pprev = NULL; if (rb_prev) *pprev = rb_entry(rb_prev, struct partial_page, pp_rb); return NULL; } /* * insert @pp into @ppl. */ static void __ia32_insert_pp(struct partial_page_list *ppl, struct partial_page *pp, struct partial_page *prev, struct rb_node **rb_link, struct rb_node *rb_parent) { /* link list */ if (prev) { pp->next = prev->next; prev->next = pp; } else { ppl->pp_head = pp; if (rb_parent) pp->next = rb_entry(rb_parent, struct partial_page, pp_rb); else pp->next = NULL; } /* link rb */ rb_link_node(&pp->pp_rb, rb_parent, rb_link); rb_insert_color(&pp->pp_rb, &ppl->ppl_rb); ppl->pp_hint = pp; } /* * delete @pp from partial page list @ppl. */ static void __ia32_delete_pp(struct partial_page_list *ppl, struct partial_page *pp, struct partial_page *prev) { if (prev) { prev->next = pp->next; if (ppl->pp_hint == pp) ppl->pp_hint = prev; } else { ppl->pp_head = pp->next; if (ppl->pp_hint == pp) ppl->pp_hint = pp->next; } rb_erase(&pp->pp_rb, &ppl->ppl_rb); kmem_cache_free(partial_page_cachep, pp); } static struct partial_page * __pp_prev(struct partial_page *pp) { struct rb_node *prev = rb_prev(&pp->pp_rb); if (prev) return rb_entry(prev, struct partial_page, pp_rb); else return NULL; } /* * Delete partial pages with address between @start and @end. * @start and @end are page aligned. */ static void __ia32_delete_pp_range(unsigned int start, unsigned int end) { struct partial_page *pp, *prev; struct rb_node **rb_link, *rb_parent; if (start >= end) return; pp = __ia32_find_pp(current->thread.ppl, start, &prev, &rb_link, &rb_parent); if (pp) prev = __pp_prev(pp); else { if (prev) pp = prev->next; else pp = current->thread.ppl->pp_head; } while (pp && pp->base < end) { struct partial_page *tmp = pp->next; __ia32_delete_pp(current->thread.ppl, pp, prev); pp = tmp; } } /* * Set the range between @start and @end in bitmap. * @start and @end should be IA32 page aligned and in the same IA64 page. */ static int __ia32_set_pp(unsigned int start, unsigned int end, int flags) { struct partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, i; pstart = PAGE_START(start); start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; if (end_bit == 0) end_bit = PAGE_SIZE / IA32_PAGE_SIZE; pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (pp) { for (i = start_bit; i < end_bit; i++) set_bit(i, &pp->bitmap); /* * Check: if this partial page has been set to a full page, * then delete it. */ if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >= PAGE_SIZE/IA32_PAGE_SIZE) { __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp)); } return 0; } /* * MAP_FIXED may lead to overlapping mmap. * In this case, the requested mmap area may already mmaped as a full * page. So check vma before adding a new partial page. */ if (flags & MAP_FIXED) { struct vm_area_struct *vma = find_vma(current->mm, pstart); if (vma && vma->vm_start <= pstart) return 0; } /* new a partial_page */ pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL); if (!pp) return -ENOMEM; pp->base = pstart; pp->bitmap = 0; for (i=start_bit; ibitmap)); pp->next = NULL; __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent); return 0; } /* * @start and @end should be IA32 page aligned, but don't need to be in the * same IA64 page. Split @start and @end to make sure they're in the same IA64 * page, then call __ia32_set_pp(). */ static void ia32_set_pp(unsigned int start, unsigned int end, int flags) { down_write(¤t->mm->mmap_sem); if (flags & MAP_FIXED) { /* * MAP_FIXED may lead to overlapping mmap. When this happens, * a series of complete IA64 pages results in deletion of * old partial pages in that range. */ __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end)); } if (end < PAGE_ALIGN(start)) { __ia32_set_pp(start, end, flags); } else { if (offset_in_page(start)) __ia32_set_pp(start, PAGE_ALIGN(start), flags); if (offset_in_page(end)) __ia32_set_pp(PAGE_START(end), end, flags); } up_write(¤t->mm->mmap_sem); } /* * Unset the range between @start and @end in bitmap. * @start and @end should be IA32 page aligned and in the same IA64 page. * After doing that, if the bitmap is 0, then free the page and return 1, * else return 0; * If not find the partial page in the list, then * If the vma exists, then the full page is set to a partial page; * Else return -ENOMEM. */ static int __ia32_unset_pp(unsigned int start, unsigned int end) { struct partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, i; struct vm_area_struct *vma; pstart = PAGE_START(start); start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; if (end_bit == 0) end_bit = PAGE_SIZE / IA32_PAGE_SIZE; pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (pp) { for (i = start_bit; i < end_bit; i++) clear_bit(i, &pp->bitmap); if (pp->bitmap == 0) { __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp)); return 1; } return 0; } vma = find_vma(current->mm, pstart); if (!vma || vma->vm_start > pstart) { return -ENOMEM; } /* new a partial_page */ pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL); if (!pp) return -ENOMEM; pp->base = pstart; pp->bitmap = 0; for (i = 0; i < start_bit; i++) set_bit(i, &(pp->bitmap)); for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++) set_bit(i, &(pp->bitmap)); pp->next = NULL; __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent); return 0; } /* * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling * __ia32_delete_pp_range(). Unset possible partial pages by calling * __ia32_unset_pp(). * The returned value see __ia32_unset_pp(). */ static int ia32_unset_pp(unsigned int *startp, unsigned int *endp) { unsigned int start = *startp, end = *endp; int ret = 0; down_write(¤t->mm->mmap_sem); __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end)); if (end < PAGE_ALIGN(start)) { ret = __ia32_unset_pp(start, end); if (ret == 1) { *startp = PAGE_START(start); *endp = PAGE_ALIGN(end); } if (ret == 0) { /* to shortcut sys_munmap() in sys32_munmap() */ *startp = PAGE_START(start); *endp = PAGE_START(end); } } else { if (offset_in_page(start)) { ret = __ia32_unset_pp(start, PAGE_ALIGN(start)); if (ret == 1) *startp = PAGE_START(start); if (ret == 0) *startp = PAGE_ALIGN(start); if (ret < 0) goto out; } if (offset_in_page(end)) { ret = __ia32_unset_pp(PAGE_START(end), end); if (ret == 1) *endp = PAGE_ALIGN(end); if (ret == 0) *endp = PAGE_START(end); } } out: up_write(¤t->mm->mmap_sem); return ret; } /* * Compare the range between @start and @end with bitmap in partial page. * @start and @end should be IA32 page aligned and in the same IA64 page. */ static int __ia32_compare_pp(unsigned int start, unsigned int end) { struct partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, size; unsigned int first_bit, next_zero_bit; /* the first range in bitmap */ pstart = PAGE_START(start); pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (!pp) return 1; start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; size = sizeof(pp->bitmap) * 8; first_bit = find_first_bit(&pp->bitmap, size); next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit); if ((start_bit < first_bit) || (end_bit > next_zero_bit)) { /* exceeds the first range in bitmap */ return -ENOMEM; } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) { first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit); if ((next_zero_bit < first_bit) && (first_bit < size)) return 1; /* has next range */ else return 0; /* no next range */ } else return 1; } /* * @start and @end should be IA32 page aligned, but don't need to be in the * same IA64 page. Split @start and @end to make sure they're in the same IA64 * page, then call __ia32_compare_pp(). * * Take this as example: the range is the 1st and 2nd 4K page. * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011; * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111; * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or * bitmap = 00000101. */ static int ia32_compare_pp(unsigned int *startp, unsigned int *endp) { unsigned int start = *startp, end = *endp; int retval = 0; down_write(¤t->mm->mmap_sem); if (end < PAGE_ALIGN(start)) { retval = __ia32_compare_pp(start, end); if (retval == 0) { *startp = PAGE_START(start); *endp = PAGE_ALIGN(end); } } else { if (offset_in_page(start)) { retval = __ia32_compare_pp(start, PAGE_ALIGN(start)); if (retval == 0) *startp = PAGE_START(start); if (retval < 0) goto out; } if (offset_in_page(end)) { retval = __ia32_compare_pp(PAGE_START(end), end); if (retval == 0) *endp = PAGE_ALIGN(end); } } out: up_write(¤t->mm->mmap_sem); return retval; } static void __ia32_drop_pp_list(struct partial_page_list *ppl) { struct partial_page *pp = ppl->pp_head; while (pp) { struct partial_page *next = pp->next; kmem_cache_free(partial_page_cachep, pp); pp = next; } kfree(ppl); } void ia32_drop_partial_page_list(struct task_struct *task) { struct partial_page_list* ppl = task->thread.ppl; if (ppl && atomic_dec_and_test(&ppl->pp_count)) __ia32_drop_pp_list(ppl); } /* * Copy current->thread.ppl to ppl (already initialized). */ static int __ia32_copy_pp_list(struct partial_page_list *ppl) { struct partial_page *pp, *tmp, *prev; struct rb_node **rb_link, *rb_parent; ppl->pp_head = NULL; ppl->pp_hint = NULL; ppl->ppl_rb = RB_ROOT; rb_link = &ppl->ppl_rb.rb_node; rb_parent = NULL; prev = NULL; for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) { tmp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL); if (!tmp) return -ENOMEM; *tmp = *pp; __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent); prev = tmp; rb_link = &tmp->pp_rb.rb_right; rb_parent = &tmp->pp_rb; } return 0; } int ia32_copy_partial_page_list(struct task_struct *p, unsigned long clone_flags) { int retval = 0; if (clone_flags & CLONE_VM) { atomic_inc(¤t->thread.ppl->pp_count); p->thread.ppl = current->thread.ppl; } else { p->thread.ppl = ia32_init_pp_list(); if (!p->thread.ppl) return -ENOMEM; down_write(¤t->mm->mmap_sem); { retval = __ia32_copy_pp_list(p->thread.ppl); } up_write(¤t->mm->mmap_sem); } return retval; } static unsigned long emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags, loff_t off) { unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0; struct inode *inode; loff_t poff; end = start + len; pstart = PAGE_START(start); pend = PAGE_ALIGN(end); if (flags & MAP_FIXED) { ia32_set_pp((unsigned int)start, (unsigned int)end, flags); if (start > pstart) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n", current->comm, current->pid, start); ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags, off); if (IS_ERR((void *) ret)) return ret; pstart += PAGE_SIZE; if (pstart >= pend) goto out; /* done */ } if (end < pend) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n", current->comm, current->pid, end); ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags, (off + len) - offset_in_page(end)); if (IS_ERR((void *) ret)) return ret; pend -= PAGE_SIZE; if (pstart >= pend) goto out; /* done */ } } else { /* * If a start address was specified, use it if the entire rounded out area * is available. */ if (start && !pstart) fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */ tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags); if (tmp != pstart) { pstart = tmp; start = pstart + offset_in_page(off); /* make start congruent with off */ end = start + len; pend = PAGE_ALIGN(end); } } poff = off + (pstart - start); /* note: (pstart - start) may be negative */ is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0); if ((flags & MAP_SHARED) && !is_congruent) printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap " "(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off); DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend, is_congruent ? "congruent" : "not congruent", poff); down_write(¤t->mm->mmap_sem); { if (!(flags & MAP_ANONYMOUS) && is_congruent) ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff); else ret = do_mmap(NULL, pstart, pend - pstart, prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE), flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) return ret; if (!is_congruent) { /* read the file contents */ inode = file->f_path.dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff) < 0)) { sys_munmap(pstart, pend - pstart); return -EINVAL; } if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0) return -EINVAL; } if (!(flags & MAP_FIXED)) ia32_set_pp((unsigned int)start, (unsigned int)end, flags); out: return start; } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ static inline unsigned int get_prot32 (unsigned int prot) { if (prot & PROT_WRITE) /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */ prot |= PROT_READ | PROT_WRITE | PROT_EXEC; else if (prot & (PROT_READ | PROT_EXEC)) /* on x86, there is no distinction between PROT_READ and PROT_EXEC */ prot |= (PROT_READ | PROT_EXEC); return prot; } unsigned long ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags, loff_t offset) { DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n", file, addr, len, prot, flags, offset); if (file && (!file->f_op || !file->f_op->mmap)) return -ENODEV; len = IA32_PAGE_ALIGN(len); if (len == 0) return addr; if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len) { if (flags & MAP_FIXED) return -ENOMEM; else return -EINVAL; } if (OFFSET4K(offset)) return -EINVAL; prot = get_prot32(prot); #if PAGE_SHIFT > IA32_PAGE_SHIFT mutex_lock(&ia32_mmap_mutex); { addr = emulate_mmap(file, addr, len, prot, flags, offset); } mutex_unlock(&ia32_mmap_mutex); #else down_write(¤t->mm->mmap_sem); { addr = do_mmap(file, addr, len, prot, flags, offset); } up_write(¤t->mm->mmap_sem); #endif DBG("ia32_do_mmap: returning 0x%lx\n", addr); return addr; } /* * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these * system calls used a memory block for parameter passing.. */ struct mmap_arg_struct { unsigned int addr; unsigned int len; unsigned int prot; unsigned int flags; unsigned int fd; unsigned int offset; }; asmlinkage long sys32_mmap (struct mmap_arg_struct __user *arg) { struct mmap_arg_struct a; struct file *file = NULL; unsigned long addr; int flags; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (OFFSET4K(a.offset)) return -EINVAL; flags = a.flags; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(a.fd); if (!file) return -EBADF; } addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset); if (file) fput(file); return addr; } asmlinkage long sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags, unsigned int fd, unsigned int pgoff) { struct file *file = NULL; unsigned long retval; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(fd); if (!file) return -EBADF; } retval = ia32_do_mmap(file, addr, len, prot, flags, (unsigned long) pgoff << IA32_PAGE_SHIFT); if (file) fput(file); return retval; } asmlinkage long sys32_munmap (unsigned int start, unsigned int len) { unsigned int end = start + len; long ret; #if PAGE_SHIFT <= IA32_PAGE_SHIFT ret = sys_munmap(start, end - start); #else if (OFFSET4K(start)) return -EINVAL; end = IA32_PAGE_ALIGN(end); if (start >= end) return -EINVAL; ret = ia32_unset_pp(&start, &end); if (ret < 0) return ret; if (start >= end) return 0; mutex_lock(&ia32_mmap_mutex); ret = sys_munmap(start, end - start); mutex_unlock(&ia32_mmap_mutex); #endif return ret; } #if PAGE_SHIFT > IA32_PAGE_SHIFT /* * When mprotect()ing a partial page, we set the permission to the union of the old * settings and the new settings. In other words, it's only possible to make access to a * partial page less restrictive. */ static long mprotect_subpage (unsigned long address, int new_prot) { int old_prot; struct vm_area_struct *vma; if (new_prot == PROT_NONE) return 0; /* optimize case where nothing changes... */ vma = find_vma(current->mm, address); old_prot = get_page_prot(vma, address); return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot); } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ asmlinkage long sys32_mprotect (unsigned int start, unsigned int len, int prot) { unsigned int end = start + len; #if PAGE_SHIFT > IA32_PAGE_SHIFT long retval = 0; #endif prot = get_prot32(prot); #if PAGE_SHIFT <= IA32_PAGE_SHIFT return sys_mprotect(start, end - start, prot); #else if (OFFSET4K(start)) return -EINVAL; end = IA32_PAGE_ALIGN(end); if (end < start) return -EINVAL; retval = ia32_compare_pp(&start, &end); if (retval < 0) return retval; mutex_lock(&ia32_mmap_mutex); { if (offset_in_page(start)) { /* start address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(start), prot); if (retval < 0) goto out; start = PAGE_ALIGN(start); if (start >= end) goto out; /* retval is already zero... */ } if (offset_in_page(end)) { /* end address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(end), prot); if (retval < 0) goto out; end = PAGE_START(end); } retval = sys_mprotect(start, end - start, prot); } out: mutex_unlock(&ia32_mmap_mutex); return retval; #endif } asmlinkage long sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len, unsigned int flags, unsigned int new_addr) { long ret; #if PAGE_SHIFT <= IA32_PAGE_SHIFT ret = sys_mremap(addr, old_len, new_len, flags, new_addr); #else unsigned int old_end, new_end; if (OFFSET4K(addr)) return -EINVAL; old_len = IA32_PAGE_ALIGN(old_len); new_len = IA32_PAGE_ALIGN(new_len); old_end = addr + old_len; new_end = addr + new_len; if (!new_len) return -EINVAL; if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr))) return -EINVAL; if (old_len >= new_len) { ret = sys32_munmap(addr + new_len, old_len - new_len); if (ret && old_len != new_len) return ret; ret = addr; if (!(flags & MREMAP_FIXED) || (new_addr == addr)) return ret; old_len = new_len; } addr = PAGE_START(addr); old_len = PAGE_ALIGN(old_end) - addr; new_len = PAGE_ALIGN(new_end) - addr; mutex_lock(&ia32_mmap_mutex); ret = sys_mremap(addr, old_len, new_len, flags, new_addr); mutex_unlock(&ia32_mmap_mutex); if ((ret >= 0) && (old_len < new_len)) { /* mremap expanded successfully */ ia32_set_pp(old_end, new_end, flags); } #endif return ret; } asmlinkage long sys32_pipe (int __user *fd) { int retval; int fds[2]; retval = do_pipe(fds); if (retval) goto out; if (copy_to_user(fd, fds, sizeof(fds))) retval = -EFAULT; out: return retval; } static inline long get_tv32 (struct timeval *o, struct compat_timeval __user *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long put_tv32 (struct compat_timeval __user *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } asmlinkage unsigned long sys32_alarm (unsigned int seconds) { return alarm_setitimer(seconds); } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; asmlinkage long sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage long sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz) { struct timeval ktv; struct timespec kts; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; kts.tv_sec = ktv.tv_sec; kts.tv_nsec = ktv.tv_usec * 1000; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL); } struct getdents32_callback { struct compat_dirent __user *current_dir; struct compat_dirent __user *previous; int count; int error; }; struct readdir32_callback { struct old_linux32_dirent __user * dirent; int count; }; static int filldir32 (void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { struct compat_dirent __user * dirent; struct getdents32_callback * buf = (struct getdents32_callback *) __buf; int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4); u32 d_ino; buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; d_ino = ino; if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) return -EOVERFLOW; buf->error = -EFAULT; /* only used if we fail.. */ dirent = buf->previous; if (dirent) if (put_user(offset, &dirent->d_off)) return -EFAULT; dirent = buf->current_dir; buf->previous = dirent; if (put_user(d_ino, &dirent->d_ino) || put_user(reclen, &dirent->d_reclen) || copy_to_user(dirent->d_name, name, namlen) || put_user(0, dirent->d_name + namlen)) return -EFAULT; dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen); buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage long sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count) { struct file * file; struct compat_dirent __user * lastdirent; struct getdents32_callback buf; int error; error = -EFAULT; if (!access_ok(VERIFY_WRITE, dirent, count)) goto out; error = -EBADF; file = fget(fd); if (!file) goto out; buf.current_dir = dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, filldir32, &buf); if (error < 0) goto out_putf; error = buf.error; lastdirent = buf.previous; if (lastdirent) { if (put_user(file->f_pos, &lastdirent->d_off)) error = -EFAULT; else error = count - buf.count; } out_putf: fput(file); out: return error; } static int fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { struct readdir32_callback * buf = (struct readdir32_callback *) __buf; struct old_linux32_dirent __user * dirent; u32 d_ino; if (buf->count) return -EINVAL; d_ino = ino; if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) return -EOVERFLOW; buf->count++; dirent = buf->dirent; if (put_user(d_ino, &dirent->d_ino) || put_user(offset, &dirent->d_offset) || put_user(namlen, &dirent->d_namlen) || copy_to_user(dirent->d_name, name, namlen) || put_user(0, dirent->d_name + namlen)) return -EFAULT; return 0; } asmlinkage long sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count) { int error; struct file * file; struct readdir32_callback buf; error = -EBADF; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, fillonedir32, &buf); if (error >= 0) error = buf.count; fput(file); out: return error; } struct sel_arg_struct { unsigned int n; unsigned int inp; unsigned int outp; unsigned int exp; unsigned int tvp; }; asmlinkage long sys32_old_select (struct sel_arg_struct __user *arg) { struct sel_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp), compat_ptr(a.exp), compat_ptr(a.tvp)); } #define SEMOP 1 #define SEMGET 2 #define SEMCTL 3 #define SEMTIMEDOP 4 #define MSGSND 11 #define MSGRCV 12 #define MSGGET 13 #define MSGCTL 14 #define SHMAT 21 #define SHMDT 22 #define SHMGET 23 #define SHMCTL 24 asmlinkage long sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMTIMEDOP: if (fifth) return compat_sys_semtimedop(first, compat_ptr(ptr), second, compat_ptr(fifth)); /* else fall through for normal semop() */ case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ return sys_semtimedop(first, compat_ptr(ptr), second, NULL); case SEMGET: return sys_semget(first, second, third); case SEMCTL: return compat_sys_semctl(first, second, third, compat_ptr(ptr)); case MSGSND: return compat_sys_msgsnd(first, second, third, compat_ptr(ptr)); case MSGRCV: return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr)); case MSGGET: return sys_msgget((key_t) first, second); case MSGCTL: return compat_sys_msgctl(first, second, compat_ptr(ptr)); case SHMAT: return compat_sys_shmat(first, second, third, version, compat_ptr(ptr)); break; case SHMDT: return sys_shmdt(compat_ptr(ptr)); case SHMGET: return sys_shmget(first, (unsigned)second, third); case SHMCTL: return compat_sys_shmctl(first, second, compat_ptr(ptr)); default: return -ENOSYS; } return -EINVAL; } asmlinkage long compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options, struct compat_rusage *ru); asmlinkage long sys32_waitpid (int pid, unsigned int *stat_addr, int options) { return compat_sys_wait4(pid, stat_addr, options, NULL); } static unsigned int ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val) { size_t copied; unsigned int ret; copied = access_process_vm(child, addr, val, sizeof(*val), 0); return (copied != sizeof(ret)) ? -EIO : 0; } static unsigned int ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val) { if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) return -EIO; return 0; } /* * The order in which registers are stored in the ptrace regs structure */ #define PT_EBX 0 #define PT_ECX 1 #define PT_EDX 2 #define PT_ESI 3 #define PT_EDI 4 #define PT_EBP 5 #define PT_EAX 6 #define PT_DS 7 #define PT_ES 8 #define PT_FS 9 #define PT_GS 10 #define PT_ORIG_EAX 11 #define PT_EIP 12 #define PT_CS 13 #define PT_EFL 14 #define PT_UESP 15 #define PT_SS 16 static unsigned int getreg (struct task_struct *child, int regno) { struct pt_regs *child_regs; child_regs = task_pt_regs(child); switch (regno / sizeof(int)) { case PT_EBX: return child_regs->r11; case PT_ECX: return child_regs->r9; case PT_EDX: return child_regs->r10; case PT_ESI: return child_regs->r14; case PT_EDI: return child_regs->r15; case PT_EBP: return child_regs->r13; case PT_EAX: return child_regs->r8; case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */ case PT_EIP: return child_regs->cr_iip; case PT_UESP: return child_regs->r12; case PT_EFL: return child->thread.eflag; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: return __USER_DS; case PT_CS: return __USER_CS; default: printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno); break; } return 0; } static void putreg (struct task_struct *child, int regno, unsigned int value) { struct pt_regs *child_regs; child_regs = task_pt_regs(child); switch (regno / sizeof(int)) { case PT_EBX: child_regs->r11 = value; break; case PT_ECX: child_regs->r9 = value; break; case PT_EDX: child_regs->r10 = value; break; case PT_ESI: child_regs->r14 = value; break; case PT_EDI: child_regs->r15 = value; break; case PT_EBP: child_regs->r13 = value; break; case PT_EAX: child_regs->r8 = value; break; case PT_ORIG_EAX: child_regs->r1 = value; break; case PT_EIP: child_regs->cr_iip = value; break; case PT_UESP: child_regs->r12 = value; break; case PT_EFL: child->thread.eflag = value; break; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: if (value != __USER_DS) printk(KERN_ERR "ia32.putreg: attempt to set invalid segment register %d = %x\n", regno, value); break; case PT_CS: if (value != __USER_CS) printk(KERN_ERR "ia32.putreg: attempt to to set invalid segment register %d = %x\n", regno, value); break; default: printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno); break; } } static void put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { struct _fpreg_ia32 *f; char buf[32]; f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15); if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: ia64f2ia32f(f, &ptp->f8); break; case 1: ia64f2ia32f(f, &ptp->f9); break; case 2: ia64f2ia32f(f, &ptp->f10); break; case 3: ia64f2ia32f(f, &ptp->f11); break; case 4: case 5: case 6: case 7: ia64f2ia32f(f, &swp->f12 + (regno - 4)); break; } copy_to_user(reg, f, sizeof(*reg)); } static void get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: copy_from_user(&ptp->f8, reg, sizeof(*reg)); break; case 1: copy_from_user(&ptp->f9, reg, sizeof(*reg)); break; case 2: copy_from_user(&ptp->f10, reg, sizeof(*reg)); break; case 3: copy_from_user(&ptp->f11, reg, sizeof(*reg)); break; case 4: case 5: case 6: case 7: copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg)); break; } return; } int save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } static int restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int __user *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int __user *)&save->swd); __get_user(fsrhi, (unsigned int __user *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } int save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned long mxcsr=0; unsigned long num128[2]; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos); mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f); __put_user(mxcsr & 0xffff, &save->mxcsr); for (i = 0; i < 8; i++) { memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long)); memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long)); copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32)); } return 0; } static int restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; int mxcsr; unsigned long num64; unsigned long num128[2]; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int __user *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int __user *)&save->swd); __get_user(fsrhi, (unsigned int __user *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos); __get_user(mxcsr, (unsigned int __user *)&save->mxcsr); num64 = mxcsr & 0xff10; tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32); num64 = mxcsr & 0x3f; tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32); for (i = 0; i < 8; i++) { copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32)); memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long)); memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long)); } return 0; } asmlinkage long sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data) { struct task_struct *child; unsigned int value, tmp; long i, ret; lock_kernel(); if (request == PTRACE_TRACEME) { ret = ptrace_traceme(); goto out; } child = ptrace_get_task_struct(pid); if (IS_ERR(child)) { ret = PTR_ERR(child); goto out; } if (request == PTRACE_ATTACH) { ret = sys_ptrace(request, pid, addr, data); goto out_tsk; } ret = ptrace_check_attach(child, request == PTRACE_KILL); if (ret < 0) goto out_tsk; switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: /* read word at location addr */ ret = ia32_peek(child, addr, &value); if (ret == 0) ret = put_user(value, (unsigned int __user *) compat_ptr(data)); else ret = -EIO; goto out_tsk; case PTRACE_POKETEXT: case PTRACE_POKEDATA: /* write the word at location addr */ ret = ia32_poke(child, addr, data); goto out_tsk; case PTRACE_PEEKUSR: /* read word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; tmp = getreg(child, addr); if (!put_user(tmp, (unsigned int __user *) compat_ptr(data))) ret = 0; break; case PTRACE_POKEUSR: /* write word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; putreg(child, addr, data); ret = 0; break; case IA32_PTRACE_GETREGS: if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) { put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data)); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_SETREGS: if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) { get_user(tmp, (unsigned int __user *) compat_ptr(data)); putreg(child, i, tmp); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_GETFPREGS: ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_GETFPXREGS: ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_SETFPREGS: ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_SETFPXREGS: ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *) compat_ptr(data)); break; case PTRACE_GETEVENTMSG: ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data)); break; case PTRACE_SYSCALL: /* continue, stop after next syscall */ case PTRACE_CONT: /* restart after signal. */ case PTRACE_KILL: case PTRACE_SINGLESTEP: /* execute chile for one instruction */ case PTRACE_DETACH: /* detach a process */ ret = sys_ptrace(request, pid, addr, data); break; default: ret = ptrace_request(child, request, addr, data); break; } out_tsk: put_task_struct(child); out: unlock_kernel(); return ret; } typedef struct { unsigned int ss_sp; unsigned int ss_flags; unsigned int ss_size; } ia32_stack_t; asmlinkage long sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, struct pt_regs pt) { stack_t uss, uoss; ia32_stack_t buf32; int ret; mm_segment_t old_fs = get_fs(); if (uss32) { if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t))) return -EFAULT; uss.ss_sp = (void __user *) (long) buf32.ss_sp; uss.ss_flags = buf32.ss_flags; /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the check and set it to the user requested value later */ if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) { ret = -ENOMEM; goto out; } uss.ss_size = MINSIGSTKSZ; } set_fs(KERNEL_DS); ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL, (stack_t __user *) &uoss, pt.r12); current->sas_ss_size = buf32.ss_size; set_fs(old_fs); out: if (ret < 0) return(ret); if (uoss32) { buf32.ss_sp = (long __user) uoss.ss_sp; buf32.ss_flags = uoss.ss_flags; buf32.ss_size = uoss.ss_size; if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t))) return -EFAULT; } return ret; } asmlinkage int sys32_pause (void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } asmlinkage int sys32_msync (unsigned int start, unsigned int len, int flags) { unsigned int addr; if (OFFSET4K(start)) return -EINVAL; addr = PAGE_START(start); return sys_msync(addr, len + (start - addr), flags); } struct sysctl32 { unsigned int name; int nlen; unsigned int oldval; unsigned int oldlenp; unsigned int newval; unsigned int newlen; unsigned int __unused[4]; }; #ifdef CONFIG_SYSCTL_SYSCALL asmlinkage long sys32_sysctl (struct sysctl32 __user *args) { struct sysctl32 a32; mm_segment_t old_fs = get_fs (); void __user *oldvalp, *newvalp; size_t oldlen; int __user *namep; long ret; if (copy_from_user(&a32, args, sizeof(a32))) return -EFAULT; /* * We need to pre-validate these because we have to disable address checking * before calling do_sysctl() because of OLDLEN but we can't run the risk of the * user specifying bad addresses here. Well, since we're dealing with 32 bit * addresses, we KNOW that access_ok() will always succeed, so this is an * expensive NOP, but so what... */ namep = (int __user *) compat_ptr(a32.name); oldvalp = compat_ptr(a32.oldval); newvalp = compat_ptr(a32.newval); if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp))) || !access_ok(VERIFY_WRITE, namep, 0) || !access_ok(VERIFY_WRITE, oldvalp, 0) || !access_ok(VERIFY_WRITE, newvalp, 0)) return -EFAULT; set_fs(KERNEL_DS); lock_kernel(); ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen, newvalp, (size_t) a32.newlen); unlock_kernel(); set_fs(old_fs); if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp))) return -EFAULT; return ret; } #endif asmlinkage long sys32_newuname (struct new_utsname __user *name) { int ret = sys_newuname(name); if (!ret) if (copy_to_user(name->machine, "i686\0\0\0", 8)) ret = -EFAULT; return ret; } asmlinkage long sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid) { uid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c); set_fs(old_fs); if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid)) return -EFAULT; return ret; } asmlinkage long sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid) { gid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c); set_fs(old_fs); if (ret) return ret; return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid); } asmlinkage long sys32_lseek (unsigned int fd, int offset, unsigned int whence) { /* Sign-extension of "offset" is important here... */ return sys_lseek(fd, offset, whence); } static int groups16_to_user(short __user *grouplist, struct group_info *group_info) { int i; short group; for (i = 0; i < group_info->ngroups; i++) { group = (short)GROUP_AT(group_info, i); if (put_user(group, grouplist+i)) return -EFAULT; } return 0; } static int groups16_from_user(struct group_info *group_info, short __user *grouplist) { int i; short group; for (i = 0; i < group_info->ngroups; i++) { if (get_user(group, grouplist+i)) return -EFAULT; GROUP_AT(group_info, i) = (gid_t)group; } return 0; } asmlinkage long sys32_getgroups16 (int gidsetsize, short __user *grouplist) { int i; if (gidsetsize < 0) return -EINVAL; get_group_info(current->group_info); i = current->group_info->ngroups; if (gidsetsize) { if (i > gidsetsize) { i = -EINVAL; goto out; } if (groups16_to_user(grouplist, current->group_info)) { i = -EFAULT; goto out; } } out: put_group_info(current->group_info); return i; } asmlinkage long sys32_setgroups16 (int gidsetsize, short __user *grouplist) { struct group_info *group_info; int retval; if (!capable(CAP_SETGID)) return -EPERM; if ((unsigned)gidsetsize > NGROUPS_MAX) return -EINVAL; group_info = groups_alloc(gidsetsize); if (!group_info) return -ENOMEM; retval = groups16_from_user(group_info, grouplist); if (retval) { put_group_info(group_info); return retval; } retval = set_current_groups(group_info); put_group_info(group_info); return retval; } asmlinkage long sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi) { return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo); } asmlinkage long sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi) { return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo); } static int putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf) { int err; u64 hdev; if (clear_user(ubuf, sizeof(*ubuf))) return -EFAULT; hdev = huge_encode_dev(kbuf->dev); err = __put_user(hdev, (u32 __user*)&ubuf->st_dev); err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1); err |= __put_user(kbuf->ino, &ubuf->__st_ino); err |= __put_user(kbuf->ino, &ubuf->st_ino_lo); err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi); err |= __put_user(kbuf->mode, &ubuf->st_mode); err |= __put_user(kbuf->nlink, &ubuf->st_nlink); err |= __put_user(kbuf->uid, &ubuf->st_uid); err |= __put_user(kbuf->gid, &ubuf->st_gid); hdev = huge_encode_dev(kbuf->rdev); err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev); err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1); err |= __put_user(kbuf->size, &ubuf->st_size_lo); err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi); err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime); err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec); err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime); err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec); err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime); err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec); err |= __put_user(kbuf->blksize, &ubuf->st_blksize); err |= __put_user(kbuf->blocks, &ubuf->st_blocks); return err; } asmlinkage long sys32_stat64 (char __user *filename, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_stat(filename, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_lstat(filename, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_fstat(fd, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval) { mm_segment_t old_fs = get_fs(); struct timespec t; long ret; set_fs(KERNEL_DS); ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t); set_fs(old_fs); if (put_compat_timespec(&t, interval)) return -EFAULT; return ret; } asmlinkage long sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count) { mm_segment_t old_fs = get_fs(); long ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count); set_fs(old_fs); if (offset && put_user(of, offset)) return -EFAULT; return ret; } asmlinkage long sys32_personality (unsigned int personality) { long ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } asmlinkage unsigned long sys32_brk (unsigned int brk) { unsigned long ret, obrk; struct mm_struct *mm = current->mm; obrk = mm->brk; ret = sys_brk(brk); if (ret < obrk) clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret); return ret; } /* Structure for ia32 emulation on ia64 */ struct epoll_event32 { u32 events; u32 data[2]; }; asmlinkage long sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event) { mm_segment_t old_fs = get_fs(); struct epoll_event event64; int error; u32 data_halfword; if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32))) return -EFAULT; __get_user(event64.events, &event->events); __get_user(data_halfword, &event->data[0]); event64.data = data_halfword; __get_user(data_halfword, &event->data[1]); event64.data |= (u64)data_halfword << 32; set_fs(KERNEL_DS); error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64); set_fs(old_fs); return error; } asmlinkage long sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents, int timeout) { struct epoll_event *events64 = NULL; mm_segment_t old_fs = get_fs(); int numevents, size; int evt_idx; int do_free_pages = 0; if (maxevents <= 0) { return -EINVAL; } /* Verify that the area passed by the user is writeable */ if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32))) return -EFAULT; /* * Allocate space for the intermediate copy. If the space needed * is large enough to cause kmalloc to fail, then try again with * __get_free_pages. */ size = maxevents * sizeof(struct epoll_event); events64 = kmalloc(size, GFP_KERNEL); if (events64 == NULL) { events64 = (struct epoll_event *) __get_free_pages(GFP_KERNEL, get_order(size)); if (events64 == NULL) return -ENOMEM; do_free_pages = 1; } /* Do the system call */ set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/ numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64, maxevents, timeout); set_fs(old_fs); /* Don't modify userspace memory if we're returning an error */ if (numevents > 0) { /* Translate the 64-bit structures back into the 32-bit structures */ for (evt_idx = 0; evt_idx < numevents; evt_idx++) { __put_user(events64[evt_idx].events, &events[evt_idx].events); __put_user((u32)events64[evt_idx].data, &events[evt_idx].data[0]); __put_user((u32)(events64[evt_idx].data >> 32), &events[evt_idx].data[1]); } } if (do_free_pages) free_pages((unsigned long) events64, get_order(size)); else kfree(events64); return numevents; } /* * Get a yet unused TLS descriptor index. */ static int get_free_idx (void) { struct thread_struct *t = ¤t->thread; int idx; for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) if (desc_empty(t->tls_array + idx)) return idx + GDT_ENTRY_TLS_MIN; return -ESRCH; } /* * Set a given TLS descriptor: */ asmlinkage int sys32_set_thread_area (struct ia32_user_desc __user *u_info) { struct thread_struct *t = ¤t->thread; struct ia32_user_desc info; struct desc_struct *desc; int cpu, idx; if (copy_from_user(&info, u_info, sizeof(info))) return -EFAULT; idx = info.entry_number; /* * index -1 means the kernel should try to find and allocate an empty descriptor: */ if (idx == -1) { idx = get_free_idx(); if (idx < 0) return idx; if (put_user(idx, &u_info->entry_number)) return -EFAULT; } if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN; cpu = smp_processor_id(); if (LDT_empty(&info)) { desc->a = 0; desc->b = 0; } else { desc->a = LDT_entry_a(&info); desc->b = LDT_entry_b(&info); } load_TLS(t, cpu); return 0; } /* * Get the current Thread-Local Storage area: */ #define GET_BASE(desc) ( \ (((desc)->a >> 16) & 0x0000ffff) | \ (((desc)->b << 16) & 0x00ff0000) | \ ( (desc)->b & 0xff000000) ) #define GET_LIMIT(desc) ( \ ((desc)->a & 0x0ffff) | \ ((desc)->b & 0xf0000) ) #define GET_32BIT(desc) (((desc)->b >> 22) & 1) #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3) #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1) #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1) #define GET_PRESENT(desc) (((desc)->b >> 15) & 1) #define GET_USEABLE(desc) (((desc)->b >> 20) & 1) asmlinkage int sys32_get_thread_area (struct ia32_user_desc __user *u_info) { struct ia32_user_desc info; struct desc_struct *desc; int idx; if (get_user(idx, &u_info->entry_number)) return -EFAULT; if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; info.entry_number = idx; info.base_addr = GET_BASE(desc); info.limit = GET_LIMIT(desc); info.seg_32bit = GET_32BIT(desc); info.contents = GET_CONTENTS(desc); info.read_exec_only = !GET_WRITABLE(desc); info.limit_in_pages = GET_LIMIT_PAGES(desc); info.seg_not_present = !GET_PRESENT(desc); info.useable = GET_USEABLE(desc); if (copy_to_user(u_info, &info, sizeof(info))) return -EFAULT; return 0; } long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high, __u32 len_low, __u32 len_high, int advice) { return sys_fadvise64_64(fd, (((u64)offset_high)<<32) | offset_low, (((u64)len_high)<<32) | len_low, advice); } #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */ asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid) { uid_t sruid, seuid; sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid); return sys_setreuid(sruid, seuid); } asmlinkage long sys32_setresuid(compat_uid_t ruid, compat_uid_t euid, compat_uid_t suid) { uid_t sruid, seuid, ssuid; sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid); ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid); return sys_setresuid(sruid, seuid, ssuid); } asmlinkage long sys32_setregid(compat_gid_t rgid, compat_gid_t egid) { gid_t srgid, segid; srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid); return sys_setregid(srgid, segid); } asmlinkage long sys32_setresgid(compat_gid_t rgid, compat_gid_t egid, compat_gid_t sgid) { gid_t srgid, segid, ssgid; srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid); ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid); return sys_setresgid(srgid, segid, ssgid); } #endif /* NOTYET */