#include #include #include #include #include #include struct dmi_header { u8 type; u8 length; u16 handle; }; #undef DMI_DEBUG #ifdef DMI_DEBUG #define dmi_printk(x) printk x #else #define dmi_printk(x) #endif static char * __init dmi_string(struct dmi_header *dm, u8 s) { u8 *bp = ((u8 *) dm) + dm->length; if (!s) return ""; s--; while (s > 0 && *bp) { bp += strlen(bp) + 1; s--; } return bp; } /* * We have to be cautious here. We have seen BIOSes with DMI pointers * pointing to completely the wrong place for example */ static int __init dmi_table(u32 base, int len, int num, void (*decode)(struct dmi_header *)) { u8 *buf, *data; int i = 0; buf = bt_ioremap(base, len); if (buf == NULL) return -1; data = buf; /* * Stop when we see all the items the table claimed to have * OR we run off the end of the table (also happens) */ while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { struct dmi_header *dm = (struct dmi_header *)data; /* * We want to know the total length (formated area and strings) * before decoding to make sure we won't run off the table in * dmi_decode or dmi_string */ data += dm->length; while ((data - buf < len - 1) && (data[0] || data[1])) data++; if (data - buf < len - 1) decode(dm); data += 2; i++; } bt_iounmap(buf, len); return 0; } static int __init dmi_checksum(u8 *buf) { u8 sum = 0; int a; for (a = 0; a < 15; a++) sum += buf[a]; return sum == 0; } static int __init dmi_iterate(void (*decode)(struct dmi_header *)) { u8 buf[15]; char __iomem *p, *q; /* * no iounmap() for that ioremap(); it would be a no-op, but it's * so early in setup that sucker gets confused into doing what * it shouldn't if we actually call it. */ p = ioremap(0xF0000, 0x10000); if (p == NULL) return -1; for (q = p; q < p + 0x10000; q += 16) { memcpy_fromio(buf, q, 15); if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { u16 num = (buf[13] << 8) | buf[12]; u16 len = (buf[7] << 8) | buf[6]; u32 base = (buf[11] << 24) | (buf[10] << 16) | (buf[9] << 8) | buf[8]; /* * DMI version 0.0 means that the real version is taken from * the SMBIOS version, which we don't know at this point. */ if (buf[14] != 0) printk(KERN_INFO "DMI %d.%d present.\n", buf[14] >> 4, buf[14] & 0xF); else printk(KERN_INFO "DMI present.\n"); dmi_printk((KERN_INFO "%d structures occupying %d bytes.\n", num, len)); dmi_printk((KERN_INFO "DMI table at 0x%08X.\n", base)); if (dmi_table(base,len, num, decode) == 0) return 0; } } return -1; } static char *dmi_ident[DMI_STRING_MAX]; /* * Save a DMI string */ static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) { char *d = (char*)dm; char *p = dmi_string(dm, d[string]); if (p == NULL || *p == 0) return; if (dmi_ident[slot]) return; dmi_ident[slot] = alloc_bootmem(strlen(p) + 1); if(dmi_ident[slot]) strcpy(dmi_ident[slot], p); else printk(KERN_ERR "dmi_save_ident: out of memory.\n"); } /* * Process a DMI table entry. Right now all we care about are the BIOS * and machine entries. For 2.5 we should pull the smbus controller info * out of here. */ static void __init dmi_decode(struct dmi_header *dm) { u8 *data __attribute__((__unused__)) = (u8 *)dm; switch(dm->type) { case 0: dmi_printk(("BIOS Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); dmi_printk(("BIOS Version: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_BIOS_VERSION, 5); dmi_printk(("BIOS Release: %s\n", dmi_string(dm, data[8]))); dmi_save_ident(dm, DMI_BIOS_DATE, 8); break; case 1: dmi_printk(("System Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_SYS_VENDOR, 4); dmi_printk(("Product Name: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); dmi_printk(("Version: %s\n", dmi_string(dm, data[6]))); dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); dmi_printk(("Serial Number: %s\n", dmi_string(dm, data[7]))); dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); break; case 2: dmi_printk(("Board Vendor: %s\n", dmi_string(dm, data[4]))); dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); dmi_printk(("Board Name: %s\n", dmi_string(dm, data[5]))); dmi_save_ident(dm, DMI_BOARD_NAME, 5); dmi_printk(("Board Version: %s\n", dmi_string(dm, data[6]))); dmi_save_ident(dm, DMI_BOARD_VERSION, 6); break; } } void __init dmi_scan_machine(void) { if (dmi_iterate(dmi_decode)) printk(KERN_INFO "DMI not present.\n"); } /** * dmi_check_system - check system DMI data * @list: array of dmi_system_id structures to match against * * Walk the blacklist table running matching functions until someone * returns non zero or we hit the end. Callback function is called for * each successfull match. Returns the number of matches. */ int dmi_check_system(struct dmi_system_id *list) { int i, count = 0; struct dmi_system_id *d = list; while (d->ident) { for (i = 0; i < ARRAY_SIZE(d->matches); i++) { int s = d->matches[i].slot; if (s == DMI_NONE) continue; if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) continue; /* No match */ goto fail; } if (d->callback && d->callback(d)) break; count++; fail: d++; } return count; } EXPORT_SYMBOL(dmi_check_system); /** * dmi_get_system_info - return DMI data value * @field: data index (see enum dmi_filed) * * Returns one DMI data value, can be used to perform * complex DMI data checks. */ char *dmi_get_system_info(int field) { return dmi_ident[field]; } EXPORT_SYMBOL(dmi_get_system_info);