/* dma-alloc.c: consistent DMA memory allocation * * Derived from arch/ppc/mm/cachemap.c * * PowerPC version derived from arch/arm/mm/consistent.c * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) * * linux/arch/arm/mm/consistent.c * * Copyright (C) 2000 Russell King * * Consistent memory allocators. Used for DMA devices that want to * share uncached memory with the processor core. The function return * is the virtual address and 'dma_handle' is the physical address. * Mostly stolen from the ARM port, with some changes for PowerPC. * -- Dan * Modified for 36-bit support. -Matt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int map_page(unsigned long va, unsigned long pa, pgprot_t prot) { pgd_t *pge; pud_t *pue; pmd_t *pme; pte_t *pte; int err = -ENOMEM; /* Use upper 10 bits of VA to index the first level map */ pge = pgd_offset_k(va); pue = pud_offset(pge, va); pme = pmd_offset(pue, va); /* Use middle 10 bits of VA to index the second-level map */ pte = pte_alloc_kernel(pme, va); if (pte != 0) { err = 0; set_pte(pte, mk_pte_phys(pa & PAGE_MASK, prot)); } return err; } /* * This function will allocate the requested contiguous pages and * map them into the kernel's vmalloc() space. This is done so we * get unique mapping for these pages, outside of the kernel's 1:1 * virtual:physical mapping. This is necessary so we can cover large * portions of the kernel with single large page TLB entries, and * still get unique uncached pages for consistent DMA. */ void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle) { struct vm_struct *area; unsigned long page, va, pa; void *ret; int order, err, i; if (in_interrupt()) BUG(); /* only allocate page size areas */ size = PAGE_ALIGN(size); order = get_order(size); page = __get_free_pages(gfp, order); if (!page) { BUG(); return NULL; } /* allocate some common virtual space to map the new pages */ area = get_vm_area(size, VM_ALLOC); if (area == 0) { free_pages(page, order); return NULL; } va = VMALLOC_VMADDR(area->addr); ret = (void *) va; /* this gives us the real physical address of the first page */ *dma_handle = pa = virt_to_bus((void *) page); /* set refcount=1 on all pages in an order>0 allocation so that vfree() will actually free * all pages that were allocated. */ if (order > 0) { struct page *rpage = virt_to_page(page); for (i = 1; i < (1 << order); i++) set_page_count(rpage + i, 1); } err = 0; for (i = 0; i < size && err == 0; i += PAGE_SIZE) err = map_page(va + i, pa + i, PAGE_KERNEL_NOCACHE); if (err) { vfree((void *) va); return NULL; } /* we need to ensure that there are no cachelines in use, or worse dirty in this area * - can't do until after virtual address mappings are created */ frv_cache_invalidate(va, va + size); return ret; } /* * free page(s) as defined by the above mapping. */ void consistent_free(void *vaddr) { if (in_interrupt()) BUG(); vfree(vaddr); } /* * make an area consistent. */ void consistent_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long) vaddr; unsigned long end = start + size; switch (direction) { case PCI_DMA_NONE: BUG(); case PCI_DMA_FROMDEVICE: /* invalidate only */ frv_cache_invalidate(start, end); break; case PCI_DMA_TODEVICE: /* writeback only */ frv_dcache_writeback(start, end); break; case PCI_DMA_BIDIRECTIONAL: /* writeback and invalidate */ frv_dcache_writeback(start, end); break; } } /* * consistent_sync_page make a page are consistent. identical * to consistent_sync, but takes a struct page instead of a virtual address */ void consistent_sync_page(struct page *page, unsigned long offset, size_t size, int direction) { void *start; start = page_address(page) + offset; consistent_sync(start, size, direction); }