Age | Commit message (Collapse) | Author | Files | Lines |
|
Upstream commit 23a01138efe216f8084cfaa74b0b90dd4b097441
This fixes a race where a cpu may re-load a tlb from a stale tsb right
after it has been flushed by a remote function call.
I still see some instability when stressing the system with parallel
kernel builds while creating memory pressure by writing to
/proc/sys/vm/nr_hugepages, but this patch improves the stability
significantly.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Upstream commit 771a37ff4d80b80db3b0df3e7696f14b298c67b7
The Machine Description (MD) property "address-congruence-offset" is
optional. According to the MD specification the value is assumed 0UL when
not present. This caused early boot failure on T5.
Signed-off-by: Bob Picco <bob.picco@oracle.com>
CC: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Upstream commit 961246b4ed8da3bcf4ee1eb9147f341013553e3c
Commit e4c6bfd2d79d063017ab19a18915f0bc759f32d9 ("mm: rearrange
vm_area_struct for fewer cache misses") changed the layout of the
vm_area_struct structure, it broke several SPARC32 assembly routines
which used numerical constants for accessing the vm_mm field.
This patch defines the VMA_VM_MM constant to replace the immediate values.
Signed-off-by: Olivier DANET <odanet@caramail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c5f927a6f62196226915f12194c9d0df4e2210d7 upstream.
With this change, we no longer lose the innermost entry in the user-mode
part of the call chain. See also the x86 port, which includes the ip.
It's possible to partially work around this problem by post-processing
the data to use the PERF_SAMPLE_IP value, but this works only if the CPU
wasn't in the kernel when the sample was taken.
Signed-off-by: Jed Davis <jld@mozilla.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0b0c002c340e78173789f8afaa508070d838cf3d upstream.
... because the "clock_event_device framework" already accounts for idle
time through the "event_handler" function pointer in
xen_timer_interrupt().
The patch is intended as the completion of [1]. It should fix the double
idle times seen in PV guests' /proc/stat [2]. It should be orthogonal to
stolen time accounting (the removed code seems to be isolated).
The approach may be completely misguided.
[1] https://lkml.org/lkml/2011/10/6/10
[2] http://lists.xensource.com/archives/html/xen-devel/2010-08/msg01068.html
John took the time to retest this patch on top of v3.10 and reported:
"idle time is correctly incremented for pv and hvm for the normal
case, nohz=off and nohz=idle." so lets put this patch in.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: John Haxby <john.haxby@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63384fd0b1509acf522a8a8fcede09087eedb7df upstream.
Commit 1bc3974 (ARM: 7755/1: handle user space mapped pages in
flush_kernel_dcache_page) moved the implementation of
flush_kernel_dcache_page() into mm/flush.c but did not implement it
on noMMU ARM.
Signed-off-by: Simon Baatz <gmbnomis@gmail.com>
Acked-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1bc39742aab09248169ef9d3727c9def3528b3f3 upstream.
Commit f8b63c1 made flush_kernel_dcache_page a no-op assuming that
the pages it needs to handle are kernel mapped only. However, for
example when doing direct I/O, pages with user space mappings may
occur.
Thus, continue to do lazy flushing if there are no user space
mappings. Otherwise, flush the kernel cache lines directly.
Signed-off-by: Simon Baatz <gmbnomis@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 764bcbc5a6d7a2f3e75c9f0e4caa984e2926e346 upstream.
__kvm_set_xcr function does the CPL check when set xcr. __kvm_set_xcr is
called in two flows, one is invoked by guest, call stack shown as below,
handle_xsetbv(or xsetbv_interception)
kvm_set_xcr
__kvm_set_xcr
the other one is invoked by host, for example during system reset:
kvm_arch_vcpu_ioctl
kvm_vcpu_ioctl_x86_set_xcrs
__kvm_set_xcr
The former does need the CPL check, but the latter does not.
Signed-off-by: Zhang Haoyu <haoyu.zhang@huawei.com>
[Tweaks to commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3cb3f839d306443f3d1e79b0bde1a2ad2c12b555 upstream.
gcc 4.7.x is emitting calls to __ffsdi2 where previously
it used to inline the appropriate ctz instructions.
While this needs to be fixed in gcc, it's also easy to avoid
having it cause build failures when building with those
compilers by exporting __ffsdi2 to modules.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 230b3034793247f61e6a0b08c44cf415f6d92981 upstream.
When replaying interrupts (as a result of the interrupt occurring
while soft-disabled), in the case of the decrementer, we are exclusively
testing for a pending timer target. However we also use decrementer
interrupts to trigger the new "irq_work", which in this case would
be missed.
This change the logic to force a replay in both cases of a timer
boundary reached and a decrementer interrupt having actually occurred
while disabled. The former test is still useful to catch cases where
a CPU having been hard-disabled for a long time completely misses the
interrupt due to a decrementer rollover.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0e37739b1c96d65e6433998454985de994383019 upstream.
It's possible for us to crash when running with ftrace enabled, eg:
Bad kernel stack pointer bffffd12 at c00000000000a454
cpu 0x3: Vector: 300 (Data Access) at [c00000000ffe3d40]
pc: c00000000000a454: resume_kernel+0x34/0x60
lr: c00000000000335c: performance_monitor_common+0x15c/0x180
sp: bffffd12
msr: 8000000000001032
dar: bffffd12
dsisr: 42000000
If we look at current's stack (paca->__current->stack) we see it is
equal to c0000002ecab0000. Our stack is 16K, and comparing to
paca->kstack (c0000002ecab3e30) we can see that we have overflowed our
kernel stack. This leads to us writing over our struct thread_info, and
in this case we have corrupted thread_info->flags and set
_TIF_EMULATE_STACK_STORE.
Dumping the stack we see:
3:mon> t c0000002ecab0000
[c0000002ecab0000] c00000000002131c .performance_monitor_exception+0x5c/0x70
[c0000002ecab0080] c00000000000335c performance_monitor_common+0x15c/0x180
--- Exception: f01 (Performance Monitor) at c0000000000fb2ec .trace_hardirqs_off+0x1c/0x30
[c0000002ecab0370] c00000000016fdb0 .trace_graph_entry+0xb0/0x280 (unreliable)
[c0000002ecab0410] c00000000003d038 .prepare_ftrace_return+0x98/0x130
[c0000002ecab04b0] c00000000000a920 .ftrace_graph_caller+0x14/0x28
[c0000002ecab0520] c0000000000d6b58 .idle_cpu+0x18/0x90
[c0000002ecab05a0] c00000000000a934 .return_to_handler+0x0/0x34
[c0000002ecab0620] c00000000001e660 .timer_interrupt+0x160/0x300
[c0000002ecab06d0] c0000000000025dc decrementer_common+0x15c/0x180
--- Exception: 901 (Decrementer) at c0000000000104d4 .arch_local_irq_restore+0x74/0xa0
[c0000002ecab09c0] c0000000000fe044 .trace_hardirqs_on+0x14/0x30 (unreliable)
[c0000002ecab0fb0] c00000000016fe3c .trace_graph_entry+0x13c/0x280
[c0000002ecab1050] c00000000003d038 .prepare_ftrace_return+0x98/0x130
[c0000002ecab10f0] c00000000000a920 .ftrace_graph_caller+0x14/0x28
[c0000002ecab1160] c0000000000161f0 .__ppc64_runlatch_on+0x10/0x40
[c0000002ecab11d0] c00000000000a934 .return_to_handler+0x0/0x34
--- Exception: 901 (Decrementer) at c0000000000104d4 .arch_local_irq_restore+0x74/0xa0
... and so on
__ppc64_runlatch_on() is called from RUNLATCH_ON in the exception entry
path. At that point the irq state is not consistent, ie. interrupts are
hard disabled (by the exception entry), but the paca soft-enabled flag
may be out of sync.
This leads to the local_irq_restore() in trace_graph_entry() actually
enabling interrupts, which we do not want. Because we have not yet
reprogrammed the decrementer we immediately take another decrementer
exception, and recurse.
The fix is twofold. Firstly make sure we call DISABLE_INTS before
calling RUNLATCH_ON. The badly named DISABLE_INTS actually reconciles
the irq state in the paca with the hardware, making it safe again to
call local_irq_save/restore().
Although that should be sufficient to fix the bug, we also mark the
runlatch routines as notrace. They are called very early in the
exception entry and we are asking for trouble tracing them. They are
also fairly uninteresting and tracing them just adds unnecessary
overhead.
[ This regression was introduced by fe1952fc0afb9a2e4c79f103c08aef5d13db1873
"powerpc: Rework runlatch code" by myself --BenH
]
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8a22d19dd238ede87aa0ac4f7dbea8da039b9c1 upstream.
Fixes a typo in register clearing code. Thanks to PaX Team for fixing
this originally, and James Troup for pointing it out.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20130605184718.GA8396@www.outflux.net
Cc: PaX Team <pageexec@freemail.hu>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b8b3de224f194005ad87ede6fd022fcc2bef3b1a upstream.
RTAS token "ibm,get-config-addr-info" or ibm,get-config-addr-info2"
are used to retrieve the PE address according to PCI address, which
made up of domain/bus/slot/function. If we don't have those 2 tokens,
the domain/bus/slot/function would be used as the address for EEH
RTAS operations. Some older f/w might not have those 2 tokens and
that blocks the EEH functionality to be initialized. It was introduced
by commit e2af155c ("powerpc/eeh: pseries platform EEH initialization").
The patch skips the check on those 2 tokens so we can bring up EEH
functionality successfully. And domain/bus/slot/function will be
used as address for EEH RTAS operations.
Reported-by: Robert Knight <knight@princeton.edu>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Tested-by: Robert Knight <knight@princeton.edu>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9271b0b4b2044c6db06051fe60bc58cdd4f17c7c upstream.
The latest GCC 4.8 does some more checking on type attributes that
break the build for ARCH=um -> fill them in. Specifically, the
"asmlinkage" attributes is now tested for consistency.
Signed-off-by: Martin Pelikan <pelikan@storkhole.cz>
Link: http://lkml.kernel.org/r/1339269731-10772-1-git-send-email-pelikan@storkhole.cz
Acked-by: Richard Weinberger <richard@nod.at>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Bernhard M. Wiedemann <bwiedemann@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit df66834a43c461de2565c45d815288ba1c0def37 upstream.
The present code does not wait for the SCC to finish resetting itself
before trying to initialise the device. The result is that the SCC
interrupt sources become enabled (if they weren't already). This leads to
an early boot crash (unexpected interrupt) given CONFIG_EARLY_PRINTK. Fix
this by adding a delay. A successful reset disables the interrupt sources.
Also, after the reset for channel A setup, the SCC then gets a second
reset for channel B setup which leaves channel A uninitialised again. Fix
this by performing the reset only once.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 99e11334dcb846f9b76fb808196c7f47aa83abb3 upstream.
Enable KW_PCIE1 on QNAP TS-11x/TS-21x devices as newer revisions
(rev 1.3) have a USB 3.0 chip from Etron on PCIe port 1. Thanks
to Marek Vasut for identifying this issue!
Signed-off-by: Martin Michlmayr <tbm@cyrius.com>
Tested-by: Marek Vasut <marex@denx.de>
Acked-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2b8b2797142c7951e635c6eec5d1705ee9bc45c5 upstream.
When platform data were moved from arch/arm/mach-mv78xx0/common.c to
arch/arm/plat-orion/common.c with the commit "7e3819d ARM: orion:
Consolidate ethernet platform data", there were few typo made on
gigabit Ethernet interface ge10 and ge11. This commit writes back
their initial value, which allows to use this interfaces again.
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Acked-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e68c636d88db3fda74e664ecb1a213ae0d50a7d8 upstream.
Caught by static code analysis by David.
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 120496ac2d2d60aee68d3123a68169502a85f4b5 upstream.
This patch brings online all threads which are present but not online
prior to migration/hibernation. After migration/hibernation those
threads are taken back offline.
During migration/hibernation all online CPUs must call H_JOIN, this is
required by the hypervisor. Without this patch, threads that are offline
(H_CEDE'd) will not be woken to make the H_JOIN call and the OS will be
deadlocked (all threads either JOIN'd or CEDE'd).
Signed-off-by: Robert Jennings <rcj@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7f1fc268c47491fd5e63548f6415fc8604e13003 upstream.
If a user did:
echo 0 > /sys/devices/system/cpu/cpu1/online
echo 1 > /sys/devices/system/cpu/cpu1/online
we would (this a build with DEBUG enabled) get to:
smpboot: ++++++++++++++++++++=_---CPU UP 1
.. snip..
smpboot: Stack at about ffff880074c0ff44
smpboot: CPU1: has booted.
and hang. The RCU mechanism would kick in an try to IPI the CPU1
but the IPIs (and all other interrupts) would never arrive at the
CPU1. At first glance at least. A bit digging in the hypervisor
trace shows that (using xenanalyze):
[vla] d4v1 vec 243 injecting
0.043163027 --|x d4v1 intr_window vec 243 src 5(vector) intr f3
] 0.043163639 --|x d4v1 vmentry cycles 1468
] 0.043164913 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254
0.043164913 --|x d4v1 inj_virq vec 243 real
[vla] d4v1 vec 243 injecting
0.043164913 --|x d4v1 intr_window vec 243 src 5(vector) intr f3
] 0.043165526 --|x d4v1 vmentry cycles 1472
] 0.043166800 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254
0.043166800 --|x d4v1 inj_virq vec 243 real
[vla] d4v1 vec 243 injecting
there is a pending event (subsequent debugging shows it is the IPI
from the VCPU0 when smpboot.c on VCPU1 has done
"set_cpu_online(smp_processor_id(), true)") and the guest VCPU1 is
interrupted with the callback IPI (0xf3 aka 243) which ends up calling
__xen_evtchn_do_upcall.
The __xen_evtchn_do_upcall seems to do *something* but not acknowledge
the pending events. And the moment the guest does a 'cli' (that is the
ffffffff81673254 in the log above) the hypervisor is invoked again to
inject the IPI (0xf3) to tell the guest it has pending interrupts.
This repeats itself forever.
The culprit was the per_cpu(xen_vcpu, cpu) pointer. At the bootup
we set each per_cpu(xen_vcpu, cpu) to point to the
shared_info->vcpu_info[vcpu] but later on use the VCPUOP_register_vcpu_info
to register per-CPU structures (xen_vcpu_setup).
This is used to allow events for more than 32 VCPUs and for performance
optimizations reasons.
When the user performs the VCPU hotplug we end up calling the
the xen_vcpu_setup once more. We make the hypercall which returns
-EINVAL as it does not allow multiple registration calls (and
already has re-assigned where the events are being set). We pick
the fallback case and set per_cpu(xen_vcpu, cpu) to point to the
shared_info->vcpu_info[vcpu] (which is a good fallback during bootup).
However the hypervisor is still setting events in the register
per-cpu structure (per_cpu(xen_vcpu_info, cpu)).
As such when the events are set by the hypervisor (such as timer one),
and when we iterate in __xen_evtchn_do_upcall we end up reading stale
events from the shared_info->vcpu_info[vcpu] instead of the
per_cpu(xen_vcpu_info, cpu) structures. Hence we never acknowledge the
events that the hypervisor has set and the hypervisor keeps on reminding
us to ack the events which we never do.
The fix is simple. Don't on the second time when xen_vcpu_setup is
called over-write the per_cpu(xen_vcpu, cpu) if it points to
per_cpu(xen_vcpu_info).
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e65f131a14726e5f1b880a528271a52428e5b3a5 upstream.
Commit 9fdca9df (spi: omap2-mcspi: convert to module_platform_driver)
broke the SPI display/panel driver probe on RX-51/N900. The exact cause is
not fully understood, but it seems to be related to the probe order. SPI
communication to the panel driver (spi1.2) fails unless the touchscreen
(spi1.0) has been probed/initialized before. When the omap2-mcspi driver
was converted to a platform driver, it resulted in that the devices are
probed immediately after the board registers them in the order they are
listed in the board file.
Fix the issue by moving the touchscreen before the panel in the SPI
device list.
The patch fixes the following failure:
[ 1.260955] acx565akm spi1.2: invalid display ID
[ 1.265899] panel-acx565akm display0: acx_panel_probe panel detect error
[ 1.273071] omapdss CORE error: driver probe failed: -19
Tested-by: Sebastian Reichel <sre@debian.org>
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Cc: Pali Rohár <pali.rohar@gmail.com>
Cc: Joni Lapilainen <joni.lapilainen@gmail.com>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Felipe Balbi <balbi@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8d76c49e9ffeee839bc0b7a3278a23f99101263e upstream.
The invalid guest state emulation loop does not check halt_request
which causes 100% cpu loop while guest is in halt and in invalid
state, but more serious issue is that this leaves halt_request set, so
random instruction emulated by vm86 #GP exit can be interpreted
as halt which causes guest hang. Fix both problems by handling
halt_request in emulation loop.
Reported-by: Tomas Papan <tomas.papan@gmail.com>
Tested-by: Tomas Papan <tomas.papan@gmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Patch for -stable. Function find_early_table_space removed upstream.
Fixes panic in alloc_low_page due to pgt_buf overflow during
init_memory_mapping.
find_early_table_space sizes pgt_buf based upon the size of the
memory being mapped, but it does not take into account the alignment
of the memory. When the region being mapped spans a 512GB (PGDIR_SIZE)
alignment, a panic from alloc_low_pages occurs.
kernel_physical_mapping_init takes into account PGDIR_SIZE alignment.
This causes an extra call to alloc_low_page to be made. This extra call
isn't accounted for by find_early_table_space and causes a kernel panic.
Change is to take into account PGDIR_SIZE alignment in find_early_table_space.
Signed-off-by: Jerry Hoemann <jerry.hoemann@hp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7cc23cd6c0c7d7f4bee057607e7ce01568925717 upstream.
We should always have proper privileges when requesting kernel
data.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20130503121256.230745028@chello.nl
[ Fix build error reported by fengguang.wu@intel.com, propagate error code back. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/n/tip-v0x9ky3ahzr6nm3c6ilwrili@git.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6e15eb3ba6c0249c9e8c783517d131b47db995ca upstream.
The LBR 'from' adddress is under full userspace control; ensure
we validate it before reading from it.
Note: is_module_text_address() can potentially be quite
expensive; for those running into that with high overhead
in modules optimize it using an RCU backed rb-tree.
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20130503121256.158211806@chello.nl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/n/tip-mk8i82ffzax01cnqo829iy1q@git.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7122beeee7bc1757682049780179d7c216dd1c83 upstream.
The following commit breaks numa distance setup for old powerpc
systems that use form0 encoding in device tree.
commit 41eab6f88f24124df89e38067b3766b7bef06ddb
powerpc/numa: Use form 1 affinity to setup node distance
Device tree node /rtas/ibm,associativity-reference-points would
index into /cpus/PowerPCxxxx/ibm,associativity based on form0 or
form1 encoding detected by ibm,architecture-vec-5 property.
All modern systems use form1 and current kernel code is correct.
However, on older systems with form0 encoding, the numa distance
will get hard coded as LOCAL_DISTANCE for all nodes. This causes
task scheduling anomaly since scheduler will skip building numa
level domain (topmost domain with all cpus) if all numa distances
are same. (value of 'level' in sched_init_numa() will remain 0)
Prior to the above commit:
((from) == (to) ? LOCAL_DISTANCE : REMOTE_DISTANCE)
Restoring compatible behavior with this patch for old powerpc systems
with device tree where numa distance are encoded as form0.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 73d2fb758e678c93bc76d40876c2359f0729b0ef upstream.
POWER8 allows read and write of the DSCR in userspace. We added
kernel emulation so applications could always use the instructions
regardless of the CPU type.
Unfortunately there are two SPRs for the DSCR and we only added
emulation for the privileged one. Add code to match the non
privileged one.
A simple test was created to verify the fix:
http://ozlabs.org/~anton/junkcode/user_dscr_test.c
Without the patch we get a SIGILL and it passes with the patch.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f7b0e1055574ce06ab53391263b4e205bf38daf3 upstream.
With the current implementation, kstat_cpu(cpu).irqs_sum is also
increased in case of irq_mis_count increment.
So there is no need to count irq_mis_count in arch_irq_stat,
otherwise irq_mis_count will be counted twice in the sum of
/proc/stat.
Reported-by: Liu Chuansheng <chuansheng.liu@intel.com>
Signed-off-by: Li Fei <fei.li@intel.com>
Acked-by: Liu Chuansheng <chuansheng.liu@intel.com>
Cc: tomoki.sekiyama.qu@hitachi.com
Cc: joe@perches.com
Link: http://lkml.kernel.org/r/1366980611.32469.7.camel@fli24-HP-Compaq-8100-Elite-CMT-PC
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 660696d1d16a71e15549ce1bf74953be1592bcd3 upstream.
Source operand for one byte mov[zs]x is decoded incorrectly if it is in
high byte register. Fix that.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 91cf54feecf815bec0b6a8d6d9dbd0e219f2f2cc upstream.
Fix regression introduced by commit 796211b7953 ("mmc: atmel-mci: add
pdc support and runtime capabilities detection") which removed the need
for CONFIG_MMC_ATMELMCI_DMA but kept the Kconfig-entry as well as the
compile guards around dma_release_channel() in remove(). Consequently,
DMA is always enabled (if supported), but the DMA-channel is not
released on module unload unless the DMA-config option is selected.
Remove the no longer used CONFIG_MMC_ATMELMCI_DMA option completely.
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Acked-by: Ludovic Desroches <ludovic.desroches@atmel.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit de53e9caa4c6149ef4a78c2f83d7f5b655848767 upstream.
The Linux Kernel contains some inline assembly source code which has
wrong asm register constraints in arch/ia64/kvm/vtlb.c.
I observed this on Kernel 3.2.35 but it is also true on the most
recent Kernel 3.9-rc1.
File arch/ia64/kvm/vtlb.c:
u64 guest_vhpt_lookup(u64 iha, u64 *pte)
{
u64 ret;
struct thash_data *data;
data = __vtr_lookup(current_vcpu, iha, D_TLB);
if (data != NULL)
thash_vhpt_insert(current_vcpu, data->page_flags,
data->itir, iha, D_TLB);
asm volatile (
"rsm psr.ic|psr.i;;"
"srlz.d;;"
"ld8.s r9=[%1];;"
"tnat.nz p6,p7=r9;;"
"(p6) mov %0=1;"
"(p6) mov r9=r0;"
"(p7) extr.u r9=r9,0,53;;"
"(p7) mov %0=r0;"
"(p7) st8 [%2]=r9;;"
"ssm psr.ic;;"
"srlz.d;;"
"ssm psr.i;;"
"srlz.d;;"
: "=r"(ret) : "r"(iha), "r"(pte):"memory");
return ret;
}
The list of output registers is
: "=r"(ret) : "r"(iha), "r"(pte):"memory");
The constraint "=r" means that the GCC has to maintain that these vars
are in registers and contain valid info when the program flow leaves
the assembly block (output registers).
But "=r" also means that GCC can put them in registers that are used
as input registers. Input registers are iha, pte on the example.
If the predicate p7 is true, the 8th assembly instruction
"(p7) mov %0=r0;"
is the first one which writes to a register which is maintained by the
register constraints; it sets %0. %0 means the first register operand;
it is ret here.
This instruction might overwrite the %2 register (pte) which is needed
by the next instruction:
"(p7) st8 [%2]=r9;;"
Whether it really happens depends on how GCC decides what registers it
uses and how it optimizes the code.
The attached patch fixes the register operand constraints in
arch/ia64/kvm/vtlb.c.
The register constraints should be
: "=&r"(ret) : "r"(iha), "r"(pte):"memory");
The & means that GCC must not use any of the input registers to place
this output register in.
This is Debian bug#702639
(http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=702639).
The patch is applicable on Kernel 3.9-rc1, 3.2.35 and many other versions.
Signed-off-by: Stephan Schreiber <info@fs-driver.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 136f39ddc53db3bcee2befbe323a56d4fbf06da8 upstream.
The Linux Kernel contains some inline assembly source code which has
wrong asm register constraints in arch/ia64/include/asm/futex.h.
I observed this on Kernel 3.2.23 but it is also true on the most
recent Kernel 3.9-rc1.
File arch/ia64/include/asm/futex.h:
static inline int
futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr,
u32 oldval, u32 newval)
{
if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
return -EFAULT;
{
register unsigned long r8 __asm ("r8");
unsigned long prev;
__asm__ __volatile__(
" mf;; \n"
" mov %0=r0 \n"
" mov ar.ccv=%4;; \n"
"[1:] cmpxchg4.acq %1=[%2],%3,ar.ccv \n"
" .xdata4 \"__ex_table\", 1b-., 2f-. \n"
"[2:]"
: "=r" (r8), "=r" (prev)
: "r" (uaddr), "r" (newval),
"rO" ((long) (unsigned) oldval)
: "memory");
*uval = prev;
return r8;
}
}
The list of output registers is
: "=r" (r8), "=r" (prev)
The constraint "=r" means that the GCC has to maintain that these vars
are in registers and contain valid info when the program flow leaves
the assembly block (output registers).
But "=r" also means that GCC can put them in registers that are used
as input registers. Input registers are uaddr, newval, oldval on the
example.
The second assembly instruction
" mov %0=r0 \n"
is the first one which writes to a register; it sets %0 to 0. %0 means
the first register operand; it is r8 here. (The r0 is read-only and
always 0 on the Itanium; it can be used if an immediate zero value is
needed.)
This instruction might overwrite one of the other registers which are
still needed.
Whether it really happens depends on how GCC decides what registers it
uses and how it optimizes the code.
The objdump utility can give us disassembly.
The futex_atomic_cmpxchg_inatomic() function is inline, so we have to
look for a module that uses the funtion. This is the
cmpxchg_futex_value_locked() function in
kernel/futex.c:
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
u32 uval, u32 newval)
{
int ret;
pagefault_disable();
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
pagefault_enable();
return ret;
}
Now the disassembly. At first from the Kernel package 3.2.23 which has
been compiled with GCC 4.4, remeber this Kernel seemed to work:
objdump -d linux-3.2.23/debian/build/build_ia64_none_mckinley/kernel/futex.o
0000000000000230 <cmpxchg_futex_value_locked>:
230: 0b 18 80 1b 18 21 [MMI] adds r3=3168,r13;;
236: 80 40 0d 00 42 00 adds r8=40,r3
23c: 00 00 04 00 nop.i 0x0;;
240: 0b 50 00 10 10 10 [MMI] ld4 r10=[r8];;
246: 90 08 28 00 42 00 adds r9=1,r10
24c: 00 00 04 00 nop.i 0x0;;
250: 09 00 00 00 01 00 [MMI] nop.m 0x0
256: 00 48 20 20 23 00 st4 [r8]=r9
25c: 00 00 04 00 nop.i 0x0;;
260: 08 10 80 06 00 21 [MMI] adds r2=32,r3
266: 00 00 00 02 00 00 nop.m 0x0
26c: 02 08 f1 52 extr.u r16=r33,0,61
270: 05 40 88 00 08 e0 [MLX] addp4 r8=r34,r0
276: ff ff 0f 00 00 e0 movl r15=0xfffffffbfff;;
27c: f1 f7 ff 65
280: 09 70 00 04 18 10 [MMI] ld8 r14=[r2]
286: 00 00 00 02 00 c0 nop.m 0x0
28c: f0 80 1c d0 cmp.ltu p6,p7=r15,r16;;
290: 08 40 fc 1d 09 3b [MMI] cmp.eq p8,p9=-1,r14
296: 00 00 00 02 00 40 nop.m 0x0
29c: e1 08 2d d0 cmp.ltu p10,p11=r14,r33
2a0: 56 01 10 00 40 10 [BBB] (p10) br.cond.spnt.few 2e0
<cmpxchg_futex_value_locked+0xb0>
2a6: 02 08 00 80 21 03 (p08) br.cond.dpnt.few 2b0
<cmpxchg_futex_value_locked+0x80>
2ac: 40 00 00 41 (p06) br.cond.spnt.few 2e0
<cmpxchg_futex_value_locked+0xb0>
2b0: 0a 00 00 00 22 00 [MMI] mf;;
2b6: 80 00 00 00 42 00 mov r8=r0
2bc: 00 00 04 00 nop.i 0x0
2c0: 0b 00 20 40 2a 04 [MMI] mov.m ar.ccv=r8;;
2c6: 10 1a 85 22 20 00 cmpxchg4.acq r33=[r33],r35,ar.ccv
2cc: 00 00 04 00 nop.i 0x0;;
2d0: 10 00 84 40 90 11 [MIB] st4 [r32]=r33
2d6: 00 00 00 02 00 00 nop.i 0x0
2dc: 20 00 00 40 br.few 2f0
<cmpxchg_futex_value_locked+0xc0>
2e0: 09 40 c8 f9 ff 27 [MMI] mov r8=-14
2e6: 00 00 00 02 00 00 nop.m 0x0
2ec: 00 00 04 00 nop.i 0x0;;
2f0: 0b 58 20 1a 19 21 [MMI] adds r11=3208,r13;;
2f6: 20 01 2c 20 20 00 ld4 r18=[r11]
2fc: 00 00 04 00 nop.i 0x0;;
300: 0b 88 fc 25 3f 23 [MMI] adds r17=-1,r18;;
306: 00 88 2c 20 23 00 st4 [r11]=r17
30c: 00 00 04 00 nop.i 0x0;;
310: 11 00 00 00 01 00 [MIB] nop.m 0x0
316: 00 00 00 02 00 80 nop.i 0x0
31c: 08 00 84 00 br.ret.sptk.many b0;;
The lines
2b0: 0a 00 00 00 22 00 [MMI] mf;;
2b6: 80 00 00 00 42 00 mov r8=r0
2bc: 00 00 04 00 nop.i 0x0
2c0: 0b 00 20 40 2a 04 [MMI] mov.m ar.ccv=r8;;
2c6: 10 1a 85 22 20 00 cmpxchg4.acq r33=[r33],r35,ar.ccv
2cc: 00 00 04 00 nop.i 0x0;;
are the instructions of the assembly block.
The line
2b6: 80 00 00 00 42 00 mov r8=r0
sets the r8 register to 0 and after that
2c0: 0b 00 20 40 2a 04 [MMI] mov.m ar.ccv=r8;;
prepares the 'oldvalue' for the cmpxchg but it takes it from r8. This
is wrong.
What happened here is what I explained above: An input register is
overwritten which is still needed.
The register operand constraints in futex.h are wrong.
(The problem doesn't occur when the Kernel is compiled with GCC 4.6.)
The attached patch fixes the register operand constraints in futex.h.
The code after patching of it:
static inline int
futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr,
u32 oldval, u32 newval)
{
if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
return -EFAULT;
{
register unsigned long r8 __asm ("r8") = 0;
unsigned long prev;
__asm__ __volatile__(
" mf;; \n"
" mov ar.ccv=%4;; \n"
"[1:] cmpxchg4.acq %1=[%2],%3,ar.ccv \n"
" .xdata4 \"__ex_table\", 1b-., 2f-. \n"
"[2:]"
: "+r" (r8), "=&r" (prev)
: "r" (uaddr), "r" (newval),
"rO" ((long) (unsigned) oldval)
: "memory");
*uval = prev;
return r8;
}
}
I also initialized the 'r8' var with the C programming language.
The _asm qualifier on the definition of the 'r8' var forces GCC to use
the r8 processor register for it.
I don't believe that we should use inline assembly for zeroing out a
local variable.
The constraint is
"+r" (r8)
what means that it is both an input register and an output register.
Note that the page fault handler will modify the r8 register which
will be the return value of the function.
The real fix is
"=&r" (prev)
The & means that GCC must not use any of the input registers to place
this output register in.
Patched the Kernel 3.2.23 and compiled it with GCC4.4:
0000000000000230 <cmpxchg_futex_value_locked>:
230: 0b 18 80 1b 18 21 [MMI] adds r3=3168,r13;;
236: 80 40 0d 00 42 00 adds r8=40,r3
23c: 00 00 04 00 nop.i 0x0;;
240: 0b 50 00 10 10 10 [MMI] ld4 r10=[r8];;
246: 90 08 28 00 42 00 adds r9=1,r10
24c: 00 00 04 00 nop.i 0x0;;
250: 09 00 00 00 01 00 [MMI] nop.m 0x0
256: 00 48 20 20 23 00 st4 [r8]=r9
25c: 00 00 04 00 nop.i 0x0;;
260: 08 10 80 06 00 21 [MMI] adds r2=32,r3
266: 20 12 01 10 40 00 addp4 r34=r34,r0
26c: 02 08 f1 52 extr.u r16=r33,0,61
270: 05 40 00 00 00 e1 [MLX] mov r8=r0
276: ff ff 0f 00 00 e0 movl r15=0xfffffffbfff;;
27c: f1 f7 ff 65
280: 09 70 00 04 18 10 [MMI] ld8 r14=[r2]
286: 00 00 00 02 00 c0 nop.m 0x0
28c: f0 80 1c d0 cmp.ltu p6,p7=r15,r16;;
290: 08 40 fc 1d 09 3b [MMI] cmp.eq p8,p9=-1,r14
296: 00 00 00 02 00 40 nop.m 0x0
29c: e1 08 2d d0 cmp.ltu p10,p11=r14,r33
2a0: 56 01 10 00 40 10 [BBB] (p10) br.cond.spnt.few 2e0
<cmpxchg_futex_value_locked+0xb0>
2a6: 02 08 00 80 21 03 (p08) br.cond.dpnt.few 2b0
<cmpxchg_futex_value_locked+0x80>
2ac: 40 00 00 41 (p06) br.cond.spnt.few 2e0
<cmpxchg_futex_value_locked+0xb0>
2b0: 0b 00 00 00 22 00 [MMI] mf;;
2b6: 00 10 81 54 08 00 mov.m ar.ccv=r34
2bc: 00 00 04 00 nop.i 0x0;;
2c0: 09 58 8c 42 11 10 [MMI] cmpxchg4.acq r11=[r33],r35,ar.ccv
2c6: 00 00 00 02 00 00 nop.m 0x0
2cc: 00 00 04 00 nop.i 0x0;;
2d0: 10 00 2c 40 90 11 [MIB] st4 [r32]=r11
2d6: 00 00 00 02 00 00 nop.i 0x0
2dc: 20 00 00 40 br.few 2f0
<cmpxchg_futex_value_locked+0xc0>
2e0: 09 40 c8 f9 ff 27 [MMI] mov r8=-14
2e6: 00 00 00 02 00 00 nop.m 0x0
2ec: 00 00 04 00 nop.i 0x0;;
2f0: 0b 88 20 1a 19 21 [MMI] adds r17=3208,r13;;
2f6: 30 01 44 20 20 00 ld4 r19=[r17]
2fc: 00 00 04 00 nop.i 0x0;;
300: 0b 90 fc 27 3f 23 [MMI] adds r18=-1,r19;;
306: 00 90 44 20 23 00 st4 [r17]=r18
30c: 00 00 04 00 nop.i 0x0;;
310: 11 00 00 00 01 00 [MIB] nop.m 0x0
316: 00 00 00 02 00 80 nop.i 0x0
31c: 08 00 84 00 br.ret.sptk.many b0;;
Much better.
There is a
270: 05 40 00 00 00 e1 [MLX] mov r8=r0
which was generated by C code r8 = 0. Below
2b6: 00 10 81 54 08 00 mov.m ar.ccv=r34
what means that oldval is no longer overwritten.
This is Debian bug#702641
(http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=702641).
The patch is applicable on Kernel 3.9-rc1, 3.2.23 and many other versions.
Signed-off-by: Stephan Schreiber <info@fs-driver.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d303e9e98fce56cdb3c6f2ac92f626fc2bd51c77 upstream.
Back 2010 during a revamp of the irq code some initializations
were moved from ia64_mca_init() to ia64_mca_late_init() in
commit c75f2aa13f5b268aba369b5dc566088b5194377c
Cannot use register_percpu_irq() from ia64_mca_init()
But this was hideously wrong. First of all these initializations
are now down far too late. Specifically after all the other cpus
have been brought up and initialized their own CMC vectors from
smp_callin(). Also ia64_mca_late_init() may be called from any cpu
so the line:
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
is generally not executed on the BSP, and so the CMC vector isn't
setup at all on that processor.
Make use of the arch_early_irq_init() hook to get this code executed
at just the right moment: not too early, not too late.
Reported-by: Fred Hartnett <fred.hartnett@hp.com>
Tested-by: Fred Hartnett <fred.hartnett@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 104ad3b32d7a71941c8ab2dee78eea38e8a23309 upstream.
ARM processors with LPAE enabled use 3 levels of page tables, with an
entry in the top level (pgd) covering 1GB of virtual space. Because of
the branch relocation limitations on ARM, the loadable modules are
mapped 16MB below PAGE_OFFSET, making the corresponding 1GB pgd shared
between kernel modules and user space.
If free_pgtables() is called with the default ceiling 0,
free_pgd_range() (and subsequently called functions) also frees the page
table shared between user space and kernel modules (which is normally
handled by the ARM-specific pgd_free() function). This patch changes
defines the ARM USER_PGTABLES_CEILING to TASK_SIZE when CONFIG_ARM_LPAE
is enabled.
Note that the pgd_free() function already checks the presence of the
shared pmd page allocated by pgd_alloc() and frees it, though with
ceiling 0 this wasn't necessary.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7918c92ae9638eb8a6ec18e2b4a0de84557cccc8 upstream.
When we online the CPU, we get this splat:
smpboot: Booting Node 0 Processor 1 APIC 0x2
installing Xen timer for CPU 1
BUG: sleeping function called from invalid context at /home/konrad/ssd/konrad/linux/mm/slab.c:3179
in_atomic(): 1, irqs_disabled(): 0, pid: 0, name: swapper/1
Pid: 0, comm: swapper/1 Not tainted 3.9.0-rc6upstream-00001-g3884fad #1
Call Trace:
[<ffffffff810c1fea>] __might_sleep+0xda/0x100
[<ffffffff81194617>] __kmalloc_track_caller+0x1e7/0x2c0
[<ffffffff81303758>] ? kasprintf+0x38/0x40
[<ffffffff813036eb>] kvasprintf+0x5b/0x90
[<ffffffff81303758>] kasprintf+0x38/0x40
[<ffffffff81044510>] xen_setup_timer+0x30/0xb0
[<ffffffff810445af>] xen_hvm_setup_cpu_clockevents+0x1f/0x30
[<ffffffff81666d0a>] start_secondary+0x19c/0x1a8
The solution to that is use kasprintf in the CPU hotplug path
that 'online's the CPU. That is, do it in in xen_hvm_cpu_notify,
and remove the call to in xen_hvm_setup_cpu_clockevents.
Unfortunatly the later is not a good idea as the bootup path
does not use xen_hvm_cpu_notify so we would end up never allocating
timer%d interrupt lines when booting. As such add the check for
atomic() to continue.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6747e83235caecd30b186d1282e4eba7679f81b7 upstream.
In commit 85fe402 (fs: do not assign default i_ino in new_inode), the
initialisation of i_ino was removed from new_inode() and pushed down
into the callers. However spufs_new_inode() was not updated.
This exhibits as no files appearing in /spu, because all our dirents
have a zero inode, which readdir() seems to dislike.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 29ce3c5073057991217916abc25628e906911757 upstream.
In __after_prom_start we copy the kernel down to zero in two calls to
copy_and_flush. After the first call (copy from 0 to copy_to_here:)
we jump to the newly copied code soon after.
Unfortunately there's no isync between the copy of this code and the
jump to it. Hence it's possible that stale instructions could still be
in the icache or pipeline before we branch to it.
We've seen this on real machines and it's results in no console output
after:
calling quiesce...
returning from prom_init
The below adds an isync to ensure that the copy and flushing has
completed before any branching to the new instructions occurs.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e7619459d47a673af3433208a42f583af920e9db upstream.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commits f36391d2790d04993f48da6a45810033a2cdf847 and
f0af97070acbad5d6a361f485828223a4faaa0ee upstream. ]
As reported by Dave Kleikamp, when we emit cross calls to do batched
TLB flush processing we have a race because we do not synchronize on
the sibling cpus completing the cross call.
So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.)
and either flushes are missed or flushes will flush the wrong
addresses.
Fix this by using generic infrastructure to synchonize on the
completion of the cross call.
This first required getting the flush_tlb_pending() call out from
switch_to() which operates with locks held and interrupts disabled.
The problem is that smp_call_function_many() cannot be invoked with
IRQs disabled and this is explicitly checked for with WARN_ON_ONCE().
We get the batch processing outside of locked IRQ disabled sections by
using some ideas from the powerpc port. Namely, we only batch inside
of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a
region, we flush TLBs synchronously.
1) Get rid of xcall_flush_tlb_pending and per-cpu type
implementations.
2) Do TLB batch cross calls instead via:
smp_call_function_many()
tlb_pending_func()
__flush_tlb_pending()
3) Batch only in lazy mmu sequences:
a) Add 'active' member to struct tlb_batch
b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
c) Set 'active' in arch_enter_lazy_mmu_mode()
d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode()
e) Check 'active' in tlb_batch_add_one() and do a synchronous
flush if it's clear.
4) Add infrastructure for synchronous TLB page flushes.
a) Implement __flush_tlb_page and per-cpu variants, patch
as needed.
b) Likewise for xcall_flush_tlb_page.
c) Implement smp_flush_tlb_page() to invoke the cross-call.
d) Wire up global_flush_tlb_page() to the right routine based
upon CONFIG_SMP
5) It turns out that singleton batches are very common, 2 out of every
3 batch flushes have only a single entry in them.
The batch flush waiting is very expensive, both because of the poll
on sibling cpu completeion, as well as because passing the tlb batch
pointer to the sibling cpus invokes a shared memory dereference.
Therefore, in flush_tlb_pending(), if there is only one entry in
the batch perform a completely asynchronous global_flush_tlb_page()
instead.
Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f1923820c447e986a9da0fc6bf60c1dccdf0408e upstream.
The valid mask for both offcore_response_0 and
offcore_response_1 was wrong for SNB/SNB-EP,
IVB/IVB-EP. It was possible to write to
reserved bit and cause a GP fault crashing
the kernel.
This patch fixes the problem by correctly marking the
reserved bits in the valid mask for all the processors
mentioned above.
A distinction between desktop and server parts is introduced
because bits 24-30 are only available on the server parts.
This version of the patch is just a rebase to perf/urgent tree
and should apply to older kernels as well.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: ak@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cb2d8b342aa084d1f3ac29966245dec9163677fb upstream.
Events may be created with attr->disabled == 1 and attr->enable_on_exec
== 1, which confuses the group validation code because events with the
PERF_EVENT_STATE_OFF are not considered candidates for scheduling, which
may lead to failure at group scheduling time.
This patch fixes the validation check for ARM, so that events in the
OFF state are still considered when enable_on_exec is true.
Reported-by: Sudeep KarkadaNagesha <Sudeep.KarkadaNagesha@arm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cd272d1ea71583170e95dde02c76166c7f9017e6 upstream.
On Feroceon the L2 cache becomes non-coherent with the CPU
when the L1 caches are disabled. Thus the L2 needs to be invalidated
after both L1 caches are disabled.
On kexec before the starting the code for relocation the kernel,
the L1 caches are disabled in cpu_froc_fin (cpu_v7_proc_fin for Feroceon),
but after L2 cache is never invalidated, because inv_all is not set
in cache-feroceon-l2.c.
So kernel relocation and decompression may has (and usually has) errors.
Setting the function enables L2 invalidation and fixes the issue.
Signed-off-by: Illia Ragozin <illia.ragozin@grapecom.com>
Acked-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8f964525a121f2ff2df948dac908dcc65be21b5b upstream.
This patch adds support for kvm_gfn_to_hva_cache_init functions for
reads and writes that will cross a page. If the range falls within
the same memslot, then this will be a fast operation. If the range
is split between two memslots, then the slower kvm_read_guest and
kvm_write_guest are used.
Tested: Test against kvm_clock unit tests.
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
(CVE-2013-1797)
commit 0b79459b482e85cb7426aa7da683a9f2c97aeae1 upstream.
There is a potential use after free issue with the handling of
MSR_KVM_SYSTEM_TIME. If the guest specifies a GPA in a movable or removable
memory such as frame buffers then KVM might continue to write to that
address even after it's removed via KVM_SET_USER_MEMORY_REGION. KVM pins
the page in memory so it's unlikely to cause an issue, but if the user
space component re-purposes the memory previously used for the guest, then
the guest will be able to corrupt that memory.
Tested: Tested against kvmclock unit test
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
(CVE-2013-1796)
commit c300aa64ddf57d9c5d9c898a64b36877345dd4a9 upstream.
If the guest sets the GPA of the time_page so that the request to update the
time straddles a page then KVM will write onto an incorrect page. The
write is done byusing kmap atomic to get a pointer to the page for the time
structure and then performing a memcpy to that page starting at an offset
that the guest controls. Well behaved guests always provide a 32-byte aligned
address, however a malicious guest could use this to corrupt host kernel
memory.
Tested: Tested against kvmclock unit test.
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b6c7aabd923a17af993c5a5d5d7995f0b27c000a upstream.
Let's do the changes properly and fix the same problem everywhere, not
just for one case.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 511ba86e1d386f671084b5d0e6f110bb30b8eeb2 upstream.
Invoking arch_flush_lazy_mmu_mode() results in calls to
preempt_enable()/disable() which may have performance impact.
Since lazy MMU is not used on bare metal we can patch away
arch_flush_lazy_mmu_mode() so that it is never called in such
environment.
[ hpa: the previous patch "Fix vmalloc_fault oops during lazy MMU
updates" may cause a minor performance regression on
bare metal. This patch resolves that performance regression. It is
somewhat unclear to me if this is a good -stable candidate. ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1364045796-10720-2-git-send-email-konrad.wilk@oracle.com
Tested-by: Josh Boyer <jwboyer@redhat.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1160c2779b826c6f5c08e5cc542de58fd1f667d5 upstream.
In paravirtualized x86_64 kernels, vmalloc_fault may cause an oops
when lazy MMU updates are enabled, because set_pgd effects are being
deferred.
One instance of this problem is during process mm cleanup with memory
cgroups enabled. The chain of events is as follows:
- zap_pte_range enables lazy MMU updates
- zap_pte_range eventually calls mem_cgroup_charge_statistics,
which accesses the vmalloc'd mem_cgroup per-cpu stat area
- vmalloc_fault is triggered which tries to sync the corresponding
PGD entry with set_pgd, but the update is deferred
- vmalloc_fault oopses due to a mismatch in the PUD entries
The OOPs usually looks as so:
------------[ cut here ]------------
kernel BUG at arch/x86/mm/fault.c:396!
invalid opcode: 0000 [#1] SMP
.. snip ..
CPU 1
Pid: 10866, comm: httpd Not tainted 3.6.10-4.fc18.x86_64 #1
RIP: e030:[<ffffffff816271bf>] [<ffffffff816271bf>] vmalloc_fault+0x11f/0x208
.. snip ..
Call Trace:
[<ffffffff81627759>] do_page_fault+0x399/0x4b0
[<ffffffff81004f4c>] ? xen_mc_extend_args+0xec/0x110
[<ffffffff81624065>] page_fault+0x25/0x30
[<ffffffff81184d03>] ? mem_cgroup_charge_statistics.isra.13+0x13/0x50
[<ffffffff81186f78>] __mem_cgroup_uncharge_common+0xd8/0x350
[<ffffffff8118aac7>] mem_cgroup_uncharge_page+0x57/0x60
[<ffffffff8115fbc0>] page_remove_rmap+0xe0/0x150
[<ffffffff8115311a>] ? vm_normal_page+0x1a/0x80
[<ffffffff81153e61>] unmap_single_vma+0x531/0x870
[<ffffffff81154962>] unmap_vmas+0x52/0xa0
[<ffffffff81007442>] ? pte_mfn_to_pfn+0x72/0x100
[<ffffffff8115c8f8>] exit_mmap+0x98/0x170
[<ffffffff810050d9>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81059ce3>] mmput+0x83/0xf0
[<ffffffff810624c4>] exit_mm+0x104/0x130
[<ffffffff8106264a>] do_exit+0x15a/0x8c0
[<ffffffff810630ff>] do_group_exit+0x3f/0xa0
[<ffffffff81063177>] sys_exit_group+0x17/0x20
[<ffffffff8162bae9>] system_call_fastpath+0x16/0x1b
Calling arch_flush_lazy_mmu_mode immediately after set_pgd makes the
changes visible to the consistency checks.
RedHat-Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=914737
Tested-by: Josh Boyer <jwboyer@redhat.com>
Reported-and-Tested-by: Krishna Raman <kraman@redhat.com>
Signed-off-by: Samu Kallio <samu.kallio@aberdeencloud.com>
Link: http://lkml.kernel.org/r/1364045796-10720-1-git-send-email-konrad.wilk@oracle.com
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 918708245e92941df16a634dc201b407d12bcd91 upstream.
eboot.o and efi_stub_$(BITS).o didn't get added to "targets", and hence
their .cmd files don't get included by the build machinery, leading to
the files always getting rebuilt.
Rather than adding the two files individually, take the opportunity and
add $(VMLINUX_OBJS) to "targets" instead, thus allowing the assignment
at the top of the file to be shrunk quite a bit.
At the same time, remove a pointless flags override line - the variable
assigned to was misspelled anyway, and the options added are
meaningless for assembly sources.
[ hpa: the patch is not minimal, but I am taking it for -urgent anyway
since the excess impact of the patch seems to be small enough. ]
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/515C5D2502000078000CA6AD@nat28.tlf.novell.com
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8b4b9f27e57584f3d90e0bb84cf800ad81cfe3a1 upstream.
Commit fca460f95e928bae373daa8295877b6905bc62b8 simplified the x32
implementation by creating a syscall bitmask, equal to 0x40000000, that
could be applied to x32 syscalls such that the masked syscall number
would be the same as a x86_64 syscall. While that patch was a nice
way to simplify the code, it went a bit too far by adding the mask to
syscall_get_nr(); returning the masked syscall numbers can cause
confusion with callers that expect syscall numbers matching the x32
ABI, e.g. unmasked syscall numbers.
This patch fixes this by simply removing the mask from syscall_get_nr()
while preserving the other changes from the original commit. While
there are several syscall_get_nr() callers in the kernel, most simply
check that the syscall number is greater than zero, in this case this
patch will have no effect. Of those remaining callers, they appear
to be few, seccomp and ftrace, and from my testing of seccomp without
this patch the original commit definitely breaks things; the seccomp
filter does not correctly filter the syscalls due to the difference in
syscall numbers in the BPF filter and the value from syscall_get_nr().
Applying this patch restores the seccomp BPF filter functionality on
x32.
I've tested this patch with the seccomp BPF filters as well as ftrace
and everything looks reasonable to me; needless to say general usage
seemed fine as well.
Signed-off-by: Paul Moore <pmoore@redhat.com>
Link: http://lkml.kernel.org/r/20130215172143.12549.10292.stgit@localhost
Cc: Will Drewry <wad@chromium.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|