Age | Commit message (Collapse) | Author | Files | Lines |
|
If mounting with nodatasum option, we won't csum file data for
general write or direct-io write, and this rule should also be
applied when writing compressed files.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Memory areas [ptr, ptr+total_len] and [name, name+total_len]
may overlap, so it's wrong to use memcpy().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
In __btrfs_free_extent we will print the leaf if we fail to find the extent we
wanted, but the problem is if we get an error we won't have a leaf so often this
leads to a NULL pointer dereference and we lose the error that actually
occurred. So only print the leaf if ret > 0, which means we didn't find the
item we were looking for but we didn't error either. This way the error is
preserved.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This is fairly trivial - btrfs_set_root_node() - always returns zero so we
can just make it void. All callers ignore the return code now anyway. I
also made sure to check that none of the functions that
btrfs_set_root_node() calls returns an error that we might have needed to
catch and pass back.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Here I have a two SSD-partitions btrfs, and they are defaultly set to
"data=raid0, metadata=raid1", then I try to fill my btrfs partition
till "No space left on device", via "dd if=/dev/zero of=/mnt/btrfs/tmp".
I get an oops panic from kernel BUG at fs/btrfs/extent-tree.c:5199!, which
refers to find_free_extent's
BUG_ON(index != get_block_group_index(block_group));
In SSD mode, in order to find enough space to alloc, we may check the
block_group cache which has been checked sometime before, but the index is not
updated, where it hits the BUG_ON.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Acked-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The access for ro in btrfs_block_group_cache should be protected
because of the racy lock in relocation.
Signed-off-by: Wu Bo <wu.bo@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The set/clear bit and the extent split/merge hooks only ever return 0.
Changing them to return void simplifies the error handling cases later.
This patch changes the hook prototypes, the single implementation of each,
and the functions that call them to return void instead.
Since all four of these hooks execute under a spinlock, they're necessarily
simple.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
We passed the wrong value to btrfs_force_ra(). Fix this by changing
the argument of btrfs_force_ra() from last_index to nr_page.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When btrfs_unlink_inode() and btrfs_orphan_add() in btrfs_unlink()
are error, the error code is returned to the caller instead of
BUG_ON().
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Don't need to check the return value of __btrfs_add_inode_defrag(),
since it will always return 0.
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/btrfs-error-handling into for-linus
|
|
|
|
The btrfs transaction code will return any errors that come from
reserve_metadata_bytes. We need to make sure we don't return funny
things like 1 or EAGAIN.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Now that we are using regular file crcs for the free space cache,
we can deadlock if we try to read the free_space_inode while we are
updating the crc tree.
This commit fixes things by using the commit_root to read the crcs. This is
safe because we the free space cache file would already be loaded if
that block group had been changed in the current transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
For metadata buffers that don't straddle pages (all of them), btrfs
can safely use the page uptodate bits and extent_buffer uptodate bit
instead of needing to use the extent_state tree.
This greatly reduces contention on the state tree lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Before the reader/writer locks, btrfs_next_leaf needed to keep
the path blocking to avoid making lockdep upset.
Now that btrfs_next_leaf only takes read locks, this isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch was originally from Tejun Heo. lockdep complains about the btrfs
locking because we sometimes take btree locks from two different trees at the
same time. The current classes are based only on level in the btree, which
isn't enough information for lockdep to figure out if the lock is safe.
This patch makes a class for each type of tree, and lumps all the FS trees that
actually have files and directories into the same class.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The btrfs metadata btree is the source of significant
lock contention, especially in the root node. This
commit changes our locking to use a reader/writer
lock.
The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking. Atomics
count the number of blocking readers or writers at any
given time.
It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.
In read heavy workloads this is dramatically faster. In write
heavy workloads we're still faster because of less contention
on the root node lock.
We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Hit this nice little deadlock. What happens is this
__btrfs_end_transaction with throttle set, --use_count so it equals 0
btrfs_commit_transaction
<somebody else actually manages to start the commit>
btrfs_end_transaction --use_count so now its -1 <== BAD
we just return and wait on the transaction
This is bad because we just return after our use_count is -1 and don't let go
of our num_writer count on the transaction, so the guy committing the
transaction just sits there forever. Fix this by inc'ing our use_count if we're
going to call commit_transaction so that if we call btrfs_end_transaction it's
valid. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The extent_buffers have a very complex interface where
we use HIGHMEM for metadata and try to cache a kmap mapping
to access the memory.
The next commit adds reader/writer locks, and concurrent use
of this kmap cache would make it even more complex.
This commit drops the ability to use HIGHMEM with extent buffers,
and rips out all of the related code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When we balanced the chunks across the devices, BUG_ON() in
__finish_chunk_alloc() was triggered.
------------[ cut here ]------------
kernel BUG at fs/btrfs/volumes.c:2568!
[SNIP]
Call Trace:
[<ffffffffa049525e>] btrfs_alloc_chunk+0x8e/0xa0 [btrfs]
[<ffffffffa04546b0>] do_chunk_alloc+0x330/0x3a0 [btrfs]
[<ffffffffa045c654>] btrfs_reserve_extent+0xb4/0x1f0 [btrfs]
[<ffffffffa045c86b>] btrfs_alloc_free_block+0xdb/0x350 [btrfs]
[<ffffffffa048a8d8>] ? read_extent_buffer+0xd8/0x1d0 [btrfs]
[<ffffffffa04476fd>] __btrfs_cow_block+0x14d/0x5e0 [btrfs]
[<ffffffffa044660d>] ? read_block_for_search+0x14d/0x4d0 [btrfs]
[<ffffffffa0447c9b>] btrfs_cow_block+0x10b/0x240 [btrfs]
[<ffffffffa044dd5e>] btrfs_search_slot+0x49e/0x7a0 [btrfs]
[<ffffffffa044f07d>] btrfs_insert_empty_items+0x8d/0xf0 [btrfs]
[<ffffffffa045e973>] insert_with_overflow+0x43/0x110 [btrfs]
[<ffffffffa045eb0d>] btrfs_insert_dir_item+0xcd/0x1f0 [btrfs]
[<ffffffffa0489bd0>] ? map_extent_buffer+0xb0/0xc0 [btrfs]
[<ffffffff812276ad>] ? rb_insert_color+0x9d/0x160
[<ffffffffa046cc40>] ? inode_tree_add+0xf0/0x150 [btrfs]
[<ffffffffa0474801>] btrfs_add_link+0xc1/0x1c0 [btrfs]
[<ffffffff811dacac>] ? security_inode_init_security+0x1c/0x30
[<ffffffffa04a28aa>] ? btrfs_init_acl+0x4a/0x180 [btrfs]
[<ffffffffa047492f>] btrfs_add_nondir+0x2f/0x70 [btrfs]
[<ffffffffa046af16>] ? btrfs_init_inode_security+0x46/0x60 [btrfs]
[<ffffffffa0474ac0>] btrfs_create+0x150/0x1d0 [btrfs]
[<ffffffff81159c63>] ? generic_permission+0x23/0xb0
[<ffffffff8115b415>] vfs_create+0xa5/0xc0
[<ffffffff8115ce6e>] do_last+0x5fe/0x880
[<ffffffff8115dc0d>] path_openat+0xcd/0x3d0
[<ffffffff8115e029>] do_filp_open+0x49/0xa0
[<ffffffff8116a965>] ? alloc_fd+0x95/0x160
[<ffffffff8114f0c7>] do_sys_open+0x107/0x1e0
[<ffffffff810bcc3f>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff8114f1e0>] sys_open+0x20/0x30
[<ffffffff81484ec2>] system_call_fastpath+0x16/0x1b
[SNIP]
RIP [<ffffffffa049444a>] __finish_chunk_alloc+0x20a/0x220 [btrfs]
The reason is:
Task1 Space balance task
do_chunk_alloc()
__finish_chunk_alloc()
update device info
in the chunk tree
alloc system metadata block
relocate system metadata block group
set system metadata block group
readonly, This block group is the
only one that can allocate space. So
there is no free space that can be
allocated now.
find no space and don't try
to alloc new chunk, and then
return ENOSPC
BUG_ON() in __finish_chunk_alloc()
was triggered.
Fix this bug by allocating a new system metadata chunk before relocating the
old one if we find there is no free space which can be allocated after setting
the old block group to be read-only.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Everybody else does this, we need to do it too. If we're syncing, we need to
tag the pages we're going to write for writeback so we don't end up writing the
same stuff over and over again if somebody is constantly redirtying our file.
This will keep us from having latencies with heavy sync workloads. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
So I had this brilliant idea to use atomic counters for outstanding and reserved
extents, but this turned out to be a bad idea. Consider this where we have 1
outstanding extent and 1 reserved extent
Reserver Releaser
atomic_dec(outstanding) now 0
atomic_read(outstanding)+1 get 1
atomic_read(reserved) get 1
don't actually reserve anything because
they are the same
atomic_cmpxchg(reserved, 1, 0)
atomic_inc(outstanding)
atomic_add(0, reserved)
free reserved space for 1 extent
Then the reserver now has no actual space reserved for it, and when it goes to
finish the ordered IO it won't have enough space to do it's allocation and you
get those lovely warnings.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Kill the check to see if we have 512mb of reserved space in delalloc and
shrink_delalloc if we do. This causes unexpected latencies and we have other
logic to see if we need to throttle. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to
GFP_HIGHUSER_MOVABLE. So instead use find_or_create_page in all cases where we
need GFP_NOFS so we don't deadlock. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
A user reported a deadlock when copying a bunch of files. This is because they
were low on memory and kthreadd got hung up trying to migrate pages for an
allocation when starting the caching kthread. The page was locked by the person
starting the caching kthread. To fix this we just need to use the async thread
stuff so that the threads are already created and we don't have to worry about
deadlocks. Thanks,
Reported-by: Roman Mamedov <rm@romanrm.ru>
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
In addition to properly handling allocation failure from btrfs_alloc_path, I
also fixed up the kzalloc error handling code immediately below it.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
I also removed the BUG_ON from error return of find_next_chunk in
init_first_rw_device(). It turns out that the only caller of
init_first_rw_device() also BUGS on any nonzero return so no actual behavior
change has occurred here.
do_chunk_alloc() also needed an update since it calls btrfs_alloc_chunk()
which can now return -ENOMEM. Instead of setting space_info->full on any
error from btrfs_alloc_chunk() I catch and return every error value _except_
-ENOSPC. Thanks goes to Tsutomu Itoh for pointing that issue out.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb:
sparc,kgdbts: fix compile regression with kgdb test suite
|
|
Commit 63ab25ebbc (kgdbts: unify/generalize gdb breakpoint adjustment)
introduced a compile regression on sparc.
kgdbts.c: In function 'check_and_rewind_pc':
kgdbts.c:307: error: implicit declaration of function 'instruction_pointer_set'
Simply add the correct macro definition for instruction pointer on the
Sparc architecture.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Acked-by: David S. Miller <davem@davemloft.net>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6:
CIFS: Fix wrong length in cifs_iovec_read
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Make Dell Latitude E6420 use reboot=pci
x86: Make Dell Latitude E5420 use reboot=pci
|
|
Yet another variant of the Dell Latitude series which requires
reboot=pci.
From the E5420 bug report by Daniel J Blueman:
> The E6420 is affected also (same platform, different casing and
> features), which provides an external confirmation of the issue; I can
> submit a patch for that later or include it if you prefer:
> http://linux.koolsolutions.com/2009/08/04/howto-fix-linux-hangfreeze-during-reboots-and-restarts/
Reported-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: <stable@kernel.org>
|
|
Rebooting on the Dell E5420 often hangs with the keyboard or ACPI
methods, but is reliable via the PCI method.
[ hpa: this was deferred because we believed for a long time that the
recent reshuffling of the boot priorities in commit
660e34cebf0a11d54f2d5dd8838607452355f321 fixed this platform.
Unfortunately that turned out to be incorrect. ]
Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
Link: http://lkml.kernel.org/r/1305248699-2347-1-git-send-email-daniel.blueman@gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: <stable@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/keithp/linux-2.6
* 'drm-intel-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/keithp/linux-2.6:
drm/i915: Fix unfenced alignment on pre-G33 hardware
drm/i915: Add quirk to disable SSC on Lenovo U160 LVDS
|
|
It seems to hurt performance in real life. Yes, the inode will be used
later, but the conditional doesn't seem to predict all that well
(negative dentries are not uncommon) and it looks like the cost of
prefetching is simply higher than depending on the cache doing the right
thing.
As usual.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The compiler, at least for ix86 and m68k, validly warns that the
comparison:
next <= (loff_t)-1
is always true (and it's always true also for x86-64 and probably all
other arches - as long as pgoff_t isn't wider than loff_t). The
intention appears to be to avoid wrapping of "next", so rather than
eliminating the pointless comparison, fix the loop to indeed get exited
when "next" would otherwise wrap.
On m68k the following warning is observed:
fs/fscache/page.c: In function '__fscache_uncache_all_inode_pages':
fs/fscache/page.c:979: warning: comparison is always false due to limited range of data type
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Suresh Jayaraman <sjayaraman@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Pavel Shilovsky <piastryyy@gmail.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
signal: align __lock_task_sighand() irq disabling and RCU
softirq,rcu: Inform RCU of irq_exit() activity
sched: Add irq_{enter,exit}() to scheduler_ipi()
rcu: protect __rcu_read_unlock() against scheduler-using irq handlers
rcu: Streamline code produced by __rcu_read_unlock()
rcu: Fix RCU_BOOST race handling current->rcu_read_unlock_special
rcu: decrease rcu_report_exp_rnp coupling with scheduler
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Avoid creating superfluous NUMA domains on non-NUMA systems
sched: Allow for overlapping sched_domain spans
sched: Break out cpu_power from the sched_group structure
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86. reboot: Make Dell Latitude E6320 use reboot=pci
x86, doc only: Correct real-mode kernel header offset for init_size
x86: Disable AMD_NUMA for 32bit for now
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu into core/urgent
|
|
The __lock_task_sighand() function calls rcu_read_lock() with interrupts
and preemption enabled, but later calls rcu_read_unlock() with interrupts
disabled. It is therefore possible that this RCU read-side critical
section will be preempted and later RCU priority boosted, which means that
rcu_read_unlock() will call rt_mutex_unlock() in order to deboost itself, but
with interrupts disabled. This results in lockdep splats, so this commit
nests the RCU read-side critical section within the interrupt-disabled
region of code. This prevents the RCU read-side critical section from
being preempted, and thus prevents the attempt to deboost with interrupts
disabled.
It is quite possible that a better long-term fix is to make rt_mutex_unlock()
disable irqs when acquiring the rt_mutex structure's ->wait_lock.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level. This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level. This situation
can result in failures as follows:
$task IRQ SoftIRQ
rcu_read_lock()
/* do stuff */
<preempt> |= UNLOCK_BLOCKED
rcu_read_unlock()
--t->rcu_read_lock_nesting
irq_enter();
/* do stuff, don't use RCU */
irq_exit();
sub_preempt_count(IRQ_EXIT_OFFSET);
invoke_softirq()
ttwu();
spin_lock_irq(&pi->lock)
rcu_read_lock();
/* do stuff */
rcu_read_unlock();
rcu_read_unlock_special()
rcu_report_exp_rnp()
ttwu()
spin_lock_irq(&pi->lock) /* deadlock */
rcu_read_unlock_special(t);
Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.
Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.
[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
until after the special handling would make the thing more robust
in the face of interrupts as well. And there is a separate patch
for that. ]
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
Ensure scheduler_ipi() calls irq_{enter,exit} when it does some actual
work. Traditionally we never did any actual work from the resched IPI
and all magic happened in the return from interrupt path.
Now that we do do some work, we need to ensure irq_{enter,exit} are
called so that we don't confuse things.
This affects things like timekeeping, NO_HZ and RCU, basically
everything with a hook in irq_enter/exit.
Explicit examples of things going wrong are:
sched_clock_cpu() -- has a callback when leaving NO_HZ state to take
a new reading from GTOD and TSC. Without this
callback, time is stuck in the past.
RCU -- needs in_irq() to work in order to avoid some nasty deadlocks
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
The addition of RCU read-side critical sections within runqueue and
priority-inheritance lock critical sections introduced some deadlock
cycles, for example, involving interrupts from __rcu_read_unlock()
where the interrupt handlers call wake_up(). This situation can cause
the instance of __rcu_read_unlock() invoked from interrupt to do some
of the processing that would otherwise have been carried out by the
task-level instance of __rcu_read_unlock(). When the interrupt-level
instance of __rcu_read_unlock() is called with a scheduler lock held
from interrupt-entry/exit situations where in_irq() returns false,
deadlock can result.
This commit resolves these deadlocks by using negative values of
the per-task ->rcu_read_lock_nesting counter to indicate that an
instance of __rcu_read_unlock() is in flight, which in turn prevents
instances from interrupt handlers from doing any special processing.
This patch is inspired by Steven Rostedt's earlier patch that similarly
made __rcu_read_unlock() guard against interrupt-mediated recursion
(see https://lkml.org/lkml/2011/7/15/326), but this commit refines
Steven's approach to avoid the need for preemption disabling on the
__rcu_read_unlock() fastpath and to also avoid the need for manipulating
a separate per-CPU variable.
This patch avoids need for preempt_disable() by instead using negative
values of the per-task ->rcu_read_lock_nesting counter. Note that nested
rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will
never see ->rcu_read_lock_nesting go to zero, and will therefore never
invoke rcu_read_unlock_special(), thus preventing them from seeing the
RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special.
This patch also adds a check for ->rcu_read_unlock_special being negative
in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS
bit from being set should a scheduling-clock interrupt occur while
__rcu_read_unlock() is exiting from an outermost RCU read-side critical
section.
Of course, __rcu_read_unlock() can be preempted during the time that
->rcu_read_lock_nesting is negative. This could result in the setting
of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it,
and would also result it this task being queued on the corresponding
rcu_node structure's blkd_tasks list. Therefore, some later RCU read-side
critical section would enter rcu_read_unlock_special() to clean up --
which could result in deadlock if that critical section happened to be in
the scheduler where the runqueue or priority-inheritance locks were held.
This situation is dealt with by making rcu_preempt_note_context_switch()
check for negative ->rcu_read_lock_nesting, thus refraining from
queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are
already exiting from the outermost RCU read-side critical section (in
other words, we really are no longer actually in that RCU read-side
critical section). In addition, rcu_preempt_note_context_switch()
invokes rcu_read_unlock_special() to carry out the cleanup in this case,
which clears out the ->rcu_read_unlock_special bits and dequeues the task
(if necessary), in turn avoiding needless delay of the current RCU grace
period and needless RCU priority boosting.
It is still illegal to call rcu_read_unlock() while holding a scheduler
lock if the prior RCU read-side critical section has ever had either
preemption or irqs enabled. However, the common use case is legal,
namely where then entire RCU read-side critical section executes with
irqs disabled, for example, when the scheduler lock is held across the
entire lifetime of the RCU read-side critical section.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
When creating sched_domains, stop when we've covered the entire
target span instead of continuing to create domains, only to
later find they're redundant and throw them away again.
This avoids single node systems from touching funny NUMA
sched_domain creation code and reduces the risks of the new
SD_OVERLAP code.
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Anton Blanchard <anton@samba.org>
Cc: mahesh@linux.vnet.ibm.com
Cc: benh@kernel.crashing.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/1311180177.29152.57.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Allow for sched_domain spans that overlap by giving such domains their
own sched_group list instead of sharing the sched_groups amongst
each-other.
This is needed for machines with more than 16 nodes, because
sched_domain_node_span() will generate a node mask from the
16 nearest nodes without regard if these masks have any overlap.
Currently sched_domains have a sched_group that maps to their child
sched_domain span, and since there is no overlap we share the
sched_group between the sched_domains of the various CPUs. If however
there is overlap, we would need to link the sched_group list in
different ways for each cpu, and hence sharing isn't possible.
In order to solve this, allocate private sched_groups for each CPU's
sched_domain but have the sched_groups share a sched_group_power
structure such that we can uniquely track the power.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
In order to prepare for non-unique sched_groups per domain, we need to
carry the cpu_power elsewhere, so put a level of indirection in.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-qkho2byuhe4482fuknss40ad@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|