diff options
Diffstat (limited to 'fs/ext4/inode.c')
-rw-r--r-- | fs/ext4/inode.c | 586 |
1 files changed, 509 insertions, 77 deletions
diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c index 064746fad58..2c8caa51add 100644 --- a/fs/ext4/inode.c +++ b/fs/ext4/inode.c @@ -37,6 +37,7 @@ #include <linux/namei.h> #include <linux/uio.h> #include <linux/bio.h> +#include <linux/workqueue.h> #include "ext4_jbd2.h" #include "xattr.h" @@ -192,7 +193,7 @@ static int try_to_extend_transaction(handle_t *handle, struct inode *inode) * so before we call here everything must be consistently dirtied against * this transaction. */ - int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, +int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, int nblocks) { int ret; @@ -208,6 +209,7 @@ static int try_to_extend_transaction(handle_t *handle, struct inode *inode) up_write(&EXT4_I(inode)->i_data_sem); ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); down_write(&EXT4_I(inode)->i_data_sem); + ext4_discard_preallocations(inode); return ret; } @@ -1145,6 +1147,64 @@ static int check_block_validity(struct inode *inode, const char *msg, } /* + * Return the number of contiguous dirty pages in a given inode + * starting at page frame idx. + */ +static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, + unsigned int max_pages) +{ + struct address_space *mapping = inode->i_mapping; + pgoff_t index; + struct pagevec pvec; + pgoff_t num = 0; + int i, nr_pages, done = 0; + + if (max_pages == 0) + return 0; + pagevec_init(&pvec, 0); + while (!done) { + index = idx; + nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, + PAGECACHE_TAG_DIRTY, + (pgoff_t)PAGEVEC_SIZE); + if (nr_pages == 0) + break; + for (i = 0; i < nr_pages; i++) { + struct page *page = pvec.pages[i]; + struct buffer_head *bh, *head; + + lock_page(page); + if (unlikely(page->mapping != mapping) || + !PageDirty(page) || + PageWriteback(page) || + page->index != idx) { + done = 1; + unlock_page(page); + break; + } + if (page_has_buffers(page)) { + bh = head = page_buffers(page); + do { + if (!buffer_delay(bh) && + !buffer_unwritten(bh)) + done = 1; + bh = bh->b_this_page; + } while (!done && (bh != head)); + } + unlock_page(page); + if (done) + break; + idx++; + num++; + if (num >= max_pages) + break; + } + pagevec_release(&pvec); + } + return num; +} + +/* * The ext4_get_blocks() function tries to look up the requested blocks, * and returns if the blocks are already mapped. * @@ -1175,6 +1235,9 @@ int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, clear_buffer_mapped(bh); clear_buffer_unwritten(bh); + ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," + "logical block %lu\n", inode->i_ino, flags, max_blocks, + (unsigned long)block); /* * Try to see if we can get the block without requesting a new * file system block. @@ -1796,11 +1859,11 @@ repeat: if (ext4_claim_free_blocks(sbi, total)) { spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); + vfs_dq_release_reservation_block(inode, total); if (ext4_should_retry_alloc(inode->i_sb, &retries)) { yield(); goto repeat; } - vfs_dq_release_reservation_block(inode, total); return -ENOSPC; } EXT4_I(inode)->i_reserved_data_blocks += nrblocks; @@ -2092,18 +2155,18 @@ static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, static void ext4_print_free_blocks(struct inode *inode) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); - printk(KERN_EMERG "Total free blocks count %lld\n", - ext4_count_free_blocks(inode->i_sb)); - printk(KERN_EMERG "Free/Dirty block details\n"); - printk(KERN_EMERG "free_blocks=%lld\n", - (long long)percpu_counter_sum(&sbi->s_freeblocks_counter)); - printk(KERN_EMERG "dirty_blocks=%lld\n", - (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter)); - printk(KERN_EMERG "Block reservation details\n"); - printk(KERN_EMERG "i_reserved_data_blocks=%u\n", - EXT4_I(inode)->i_reserved_data_blocks); - printk(KERN_EMERG "i_reserved_meta_blocks=%u\n", - EXT4_I(inode)->i_reserved_meta_blocks); + printk(KERN_CRIT "Total free blocks count %lld\n", + ext4_count_free_blocks(inode->i_sb)); + printk(KERN_CRIT "Free/Dirty block details\n"); + printk(KERN_CRIT "free_blocks=%lld\n", + (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); + printk(KERN_CRIT "dirty_blocks=%lld\n", + (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); + printk(KERN_CRIT "Block reservation details\n"); + printk(KERN_CRIT "i_reserved_data_blocks=%u\n", + EXT4_I(inode)->i_reserved_data_blocks); + printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", + EXT4_I(inode)->i_reserved_meta_blocks); return; } @@ -2189,14 +2252,14 @@ static int mpage_da_map_blocks(struct mpage_da_data *mpd) * writepage and writepages will again try to write * the same. */ - printk(KERN_EMERG "%s block allocation failed for inode %lu " - "at logical offset %llu with max blocks " - "%zd with error %d\n", - __func__, mpd->inode->i_ino, - (unsigned long long)next, - mpd->b_size >> mpd->inode->i_blkbits, err); - printk(KERN_EMERG "This should not happen.!! " - "Data will be lost\n"); + ext4_msg(mpd->inode->i_sb, KERN_CRIT, + "delayed block allocation failed for inode %lu at " + "logical offset %llu with max blocks %zd with " + "error %d\n", mpd->inode->i_ino, + (unsigned long long) next, + mpd->b_size >> mpd->inode->i_blkbits, err); + printk(KERN_CRIT "This should not happen!! " + "Data will be lost\n"); if (err == -ENOSPC) { ext4_print_free_blocks(mpd->inode); } @@ -2743,8 +2806,10 @@ static int ext4_da_writepages(struct address_space *mapping, int no_nrwrite_index_update; int pages_written = 0; long pages_skipped; + unsigned int max_pages; int range_cyclic, cycled = 1, io_done = 0; - int needed_blocks, ret = 0, nr_to_writebump = 0; + int needed_blocks, ret = 0; + long desired_nr_to_write, nr_to_writebump = 0; loff_t range_start = wbc->range_start; struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); @@ -2771,16 +2836,6 @@ static int ext4_da_writepages(struct address_space *mapping, if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) return -EROFS; - /* - * Make sure nr_to_write is >= sbi->s_mb_stream_request - * This make sure small files blocks are allocated in - * single attempt. This ensure that small files - * get less fragmented. - */ - if (wbc->nr_to_write < sbi->s_mb_stream_request) { - nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; - wbc->nr_to_write = sbi->s_mb_stream_request; - } if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; @@ -2795,6 +2850,36 @@ static int ext4_da_writepages(struct address_space *mapping, } else index = wbc->range_start >> PAGE_CACHE_SHIFT; + /* + * This works around two forms of stupidity. The first is in + * the writeback code, which caps the maximum number of pages + * written to be 1024 pages. This is wrong on multiple + * levels; different architectues have a different page size, + * which changes the maximum amount of data which gets + * written. Secondly, 4 megabytes is way too small. XFS + * forces this value to be 16 megabytes by multiplying + * nr_to_write parameter by four, and then relies on its + * allocator to allocate larger extents to make them + * contiguous. Unfortunately this brings us to the second + * stupidity, which is that ext4's mballoc code only allocates + * at most 2048 blocks. So we force contiguous writes up to + * the number of dirty blocks in the inode, or + * sbi->max_writeback_mb_bump whichever is smaller. + */ + max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); + if (!range_cyclic && range_whole) + desired_nr_to_write = wbc->nr_to_write * 8; + else + desired_nr_to_write = ext4_num_dirty_pages(inode, index, + max_pages); + if (desired_nr_to_write > max_pages) + desired_nr_to_write = max_pages; + + if (wbc->nr_to_write < desired_nr_to_write) { + nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; + wbc->nr_to_write = desired_nr_to_write; + } + mpd.wbc = wbc; mpd.inode = mapping->host; @@ -2822,10 +2907,9 @@ retry: handle = ext4_journal_start(inode, needed_blocks); if (IS_ERR(handle)) { ret = PTR_ERR(handle); - printk(KERN_CRIT "%s: jbd2_start: " + ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " "%ld pages, ino %lu; err %d\n", __func__, wbc->nr_to_write, inode->i_ino, ret); - dump_stack(); goto out_writepages; } @@ -2897,9 +2981,10 @@ retry: goto retry; } if (pages_skipped != wbc->pages_skipped) - printk(KERN_EMERG "This should not happen leaving %s " - "with nr_to_write = %ld ret = %d\n", - __func__, wbc->nr_to_write, ret); + ext4_msg(inode->i_sb, KERN_CRIT, + "This should not happen leaving %s " + "with nr_to_write = %ld ret = %d\n", + __func__, wbc->nr_to_write, ret); /* Update index */ index += pages_written; @@ -2914,7 +2999,8 @@ retry: out_writepages: if (!no_nrwrite_index_update) wbc->no_nrwrite_index_update = 0; - wbc->nr_to_write -= nr_to_writebump; + if (wbc->nr_to_write > nr_to_writebump) + wbc->nr_to_write -= nr_to_writebump; wbc->range_start = range_start; trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); return ret; @@ -3272,6 +3358,8 @@ static int ext4_releasepage(struct page *page, gfp_t wait) } /* + * O_DIRECT for ext3 (or indirect map) based files + * * If the O_DIRECT write will extend the file then add this inode to the * orphan list. So recovery will truncate it back to the original size * if the machine crashes during the write. @@ -3280,7 +3368,7 @@ static int ext4_releasepage(struct page *page, gfp_t wait) * crashes then stale disk data _may_ be exposed inside the file. But current * VFS code falls back into buffered path in that case so we are safe. */ -static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, +static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { @@ -3291,6 +3379,7 @@ static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, ssize_t ret; int orphan = 0; size_t count = iov_length(iov, nr_segs); + int retries = 0; if (rw == WRITE) { loff_t final_size = offset + count; @@ -3313,9 +3402,12 @@ static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, } } +retry: ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, offset, nr_segs, ext4_get_block, NULL); + if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) + goto retry; if (orphan) { int err; @@ -3354,6 +3446,364 @@ out: return ret; } +static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock, + struct buffer_head *bh_result, int create) +{ + handle_t *handle = NULL; + int ret = 0; + unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; + int dio_credits; + + ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n", + inode->i_ino, create); + /* + * DIO VFS code passes create = 0 flag for write to + * the middle of file. It does this to avoid block + * allocation for holes, to prevent expose stale data + * out when there is parallel buffered read (which does + * not hold the i_mutex lock) while direct IO write has + * not completed. DIO request on holes finally falls back + * to buffered IO for this reason. + * + * For ext4 extent based file, since we support fallocate, + * new allocated extent as uninitialized, for holes, we + * could fallocate blocks for holes, thus parallel + * buffered IO read will zero out the page when read on + * a hole while parallel DIO write to the hole has not completed. + * + * when we come here, we know it's a direct IO write to + * to the middle of file (<i_size) + * so it's safe to override the create flag from VFS. + */ + create = EXT4_GET_BLOCKS_DIO_CREATE_EXT; + + if (max_blocks > DIO_MAX_BLOCKS) + max_blocks = DIO_MAX_BLOCKS; + dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); + handle = ext4_journal_start(inode, dio_credits); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto out; + } + ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, + create); + if (ret > 0) { + bh_result->b_size = (ret << inode->i_blkbits); + ret = 0; + } + ext4_journal_stop(handle); +out: + return ret; +} + +static void ext4_free_io_end(ext4_io_end_t *io) +{ + BUG_ON(!io); + iput(io->inode); + kfree(io); +} +static void dump_aio_dio_list(struct inode * inode) +{ +#ifdef EXT4_DEBUG + struct list_head *cur, *before, *after; + ext4_io_end_t *io, *io0, *io1; + + if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ + ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino); + return; + } + + ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino); + list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){ + cur = &io->list; + before = cur->prev; + io0 = container_of(before, ext4_io_end_t, list); + after = cur->next; + io1 = container_of(after, ext4_io_end_t, list); + + ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", + io, inode->i_ino, io0, io1); + } +#endif +} + +/* + * check a range of space and convert unwritten extents to written. + */ +static int ext4_end_aio_dio_nolock(ext4_io_end_t *io) +{ + struct inode *inode = io->inode; + loff_t offset = io->offset; + size_t size = io->size; + int ret = 0; + + ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p," + "list->prev 0x%p\n", + io, inode->i_ino, io->list.next, io->list.prev); + + if (list_empty(&io->list)) + return ret; + + if (io->flag != DIO_AIO_UNWRITTEN) + return ret; + + if (offset + size <= i_size_read(inode)) + ret = ext4_convert_unwritten_extents(inode, offset, size); + + if (ret < 0) { + printk(KERN_EMERG "%s: failed to convert unwritten" + "extents to written extents, error is %d" + " io is still on inode %lu aio dio list\n", + __func__, ret, inode->i_ino); + return ret; + } + + /* clear the DIO AIO unwritten flag */ + io->flag = 0; + return ret; +} +/* + * work on completed aio dio IO, to convert unwritten extents to extents + */ +static void ext4_end_aio_dio_work(struct work_struct *work) +{ + ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); + struct inode *inode = io->inode; + int ret = 0; + + mutex_lock(&inode->i_mutex); + ret = ext4_end_aio_dio_nolock(io); + if (ret >= 0) { + if (!list_empty(&io->list)) + list_del_init(&io->list); + ext4_free_io_end(io); + } + mutex_unlock(&inode->i_mutex); +} +/* + * This function is called from ext4_sync_file(). + * + * When AIO DIO IO is completed, the work to convert unwritten + * extents to written is queued on workqueue but may not get immediately + * scheduled. When fsync is called, we need to ensure the + * conversion is complete before fsync returns. + * The inode keeps track of a list of completed AIO from DIO path + * that might needs to do the conversion. This function walks through + * the list and convert the related unwritten extents to written. + */ +int flush_aio_dio_completed_IO(struct inode *inode) +{ + ext4_io_end_t *io; + int ret = 0; + int ret2 = 0; + + if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)) + return ret; + + dump_aio_dio_list(inode); + while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ + io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next, + ext4_io_end_t, list); + /* + * Calling ext4_end_aio_dio_nolock() to convert completed + * IO to written. + * + * When ext4_sync_file() is called, run_queue() may already + * about to flush the work corresponding to this io structure. + * It will be upset if it founds the io structure related + * to the work-to-be schedule is freed. + * + * Thus we need to keep the io structure still valid here after + * convertion finished. The io structure has a flag to + * avoid double converting from both fsync and background work + * queue work. + */ + ret = ext4_end_aio_dio_nolock(io); + if (ret < 0) + ret2 = ret; + else + list_del_init(&io->list); + } + return (ret2 < 0) ? ret2 : 0; +} + +static ext4_io_end_t *ext4_init_io_end (struct inode *inode) +{ + ext4_io_end_t *io = NULL; + + io = kmalloc(sizeof(*io), GFP_NOFS); + + if (io) { + igrab(inode); + io->inode = inode; + io->flag = 0; + io->offset = 0; + io->size = 0; + io->error = 0; + INIT_WORK(&io->work, ext4_end_aio_dio_work); + INIT_LIST_HEAD(&io->list); + } + + return io; +} + +static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, + ssize_t size, void *private) +{ + ext4_io_end_t *io_end = iocb->private; + struct workqueue_struct *wq; + + /* if not async direct IO or dio with 0 bytes write, just return */ + if (!io_end || !size) + return; + + ext_debug("ext4_end_io_dio(): io_end 0x%p" + "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", + iocb->private, io_end->inode->i_ino, iocb, offset, + size); + + /* if not aio dio with unwritten extents, just free io and return */ + if (io_end->flag != DIO_AIO_UNWRITTEN){ + ext4_free_io_end(io_end); + iocb->private = NULL; + return; + } + + io_end->offset = offset; + io_end->size = size; + wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; + + /* queue the work to convert unwritten extents to written */ + queue_work(wq, &io_end->work); + + /* Add the io_end to per-inode completed aio dio list*/ + list_add_tail(&io_end->list, + &EXT4_I(io_end->inode)->i_aio_dio_complete_list); + iocb->private = NULL; +} +/* + * For ext4 extent files, ext4 will do direct-io write to holes, + * preallocated extents, and those write extend the file, no need to + * fall back to buffered IO. + * + * For holes, we fallocate those blocks, mark them as unintialized + * If those blocks were preallocated, we mark sure they are splited, but + * still keep the range to write as unintialized. + * + * The unwrritten extents will be converted to written when DIO is completed. + * For async direct IO, since the IO may still pending when return, we + * set up an end_io call back function, which will do the convertion + * when async direct IO completed. + * + * If the O_DIRECT write will extend the file then add this inode to the + * orphan list. So recovery will truncate it back to the original size + * if the machine crashes during the write. + * + */ +static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, + const struct iovec *iov, loff_t offset, + unsigned long nr_segs) +{ + struct file *file = iocb->ki_filp; + struct inode *inode = file->f_mapping->host; + ssize_t ret; + size_t count = iov_length(iov, nr_segs); + + loff_t final_size = offset + count; + if (rw == WRITE && final_size <= inode->i_size) { + /* + * We could direct write to holes and fallocate. + * + * Allocated blocks to fill the hole are marked as uninitialized + * to prevent paralel buffered read to expose the stale data + * before DIO complete the data IO. + * + * As to previously fallocated extents, ext4 get_block + * will just simply mark the buffer mapped but still + * keep the extents uninitialized. + * + * for non AIO case, we will convert those unwritten extents + * to written after return back from blockdev_direct_IO. + * + * for async DIO, the conversion needs to be defered when + * the IO is completed. The ext4 end_io callback function + * will be called to take care of the conversion work. + * Here for async case, we allocate an io_end structure to + * hook to the iocb. + */ + iocb->private = NULL; + EXT4_I(inode)->cur_aio_dio = NULL; + if (!is_sync_kiocb(iocb)) { + iocb->private = ext4_init_io_end(inode); + if (!iocb->private) + return -ENOMEM; + /* + * we save the io structure for current async + * direct IO, so that later ext4_get_blocks() + * could flag the io structure whether there + * is a unwritten extents needs to be converted + * when IO is completed. + */ + EXT4_I(inode)->cur_aio_dio = iocb->private; + } + + ret = blockdev_direct_IO(rw, iocb, inode, + inode->i_sb->s_bdev, iov, + offset, nr_segs, + ext4_get_block_dio_write, + ext4_end_io_dio); + if (iocb->private) + EXT4_I(inode)->cur_aio_dio = NULL; + /* + * The io_end structure takes a reference to the inode, + * that structure needs to be destroyed and the + * reference to the inode need to be dropped, when IO is + * complete, even with 0 byte write, or failed. + * + * In the successful AIO DIO case, the io_end structure will be + * desctroyed and the reference to the inode will be dropped + * after the end_io call back function is called. + * + * In the case there is 0 byte write, or error case, since + * VFS direct IO won't invoke the end_io call back function, + * we need to free the end_io structure here. + */ + if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { + ext4_free_io_end(iocb->private); + iocb->private = NULL; + } else if (ret > 0 && (EXT4_I(inode)->i_state & + EXT4_STATE_DIO_UNWRITTEN)) { + int err; + /* + * for non AIO case, since the IO is already + * completed, we could do the convertion right here + */ + err = ext4_convert_unwritten_extents(inode, + offset, ret); + if (err < 0) + ret = err; + EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN; + } + return ret; + } + + /* for write the the end of file case, we fall back to old way */ + return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); +} + +static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, + const struct iovec *iov, loff_t offset, + unsigned long nr_segs) +{ + struct file *file = iocb->ki_filp; + struct inode *inode = file->f_mapping->host; + + if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) + return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); + + return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); +} + /* * Pages can be marked dirty completely asynchronously from ext4's journalling * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do @@ -4551,8 +5001,7 @@ static int ext4_inode_blocks_set(handle_t *handle, */ static int ext4_do_update_inode(handle_t *handle, struct inode *inode, - struct ext4_iloc *iloc, - int do_sync) + struct ext4_iloc *iloc) { struct ext4_inode *raw_inode = ext4_raw_inode(iloc); struct ext4_inode_info *ei = EXT4_I(inode); @@ -4653,22 +5102,10 @@ static int ext4_do_update_inode(handle_t *handle, raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); } - /* - * If we're not using a journal and we were called from - * ext4_write_inode() to sync the inode (making do_sync true), - * we can just use sync_dirty_buffer() directly to do our dirty - * work. Testing s_journal here is a bit redundant but it's - * worth it to avoid potential future trouble. - */ - if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) { - BUFFER_TRACE(bh, "call sync_dirty_buffer"); - sync_dirty_buffer(bh); - } else { - BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); - rc = ext4_handle_dirty_metadata(handle, inode, bh); - if (!err) - err = rc; - } + BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); + rc = ext4_handle_dirty_metadata(handle, inode, bh); + if (!err) + err = rc; ei->i_state &= ~EXT4_STATE_NEW; out_brelse: @@ -4736,8 +5173,16 @@ int ext4_write_inode(struct inode *inode, int wait) err = ext4_get_inode_loc(inode, &iloc); if (err) return err; - err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE, - inode, &iloc, wait); + if (wait) + sync_dirty_buffer(iloc.bh); + if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { + ext4_error(inode->i_sb, __func__, + "IO error syncing inode, " + "inode=%lu, block=%llu", + inode->i_ino, + (unsigned long long)iloc.bh->b_blocknr); + err = -EIO; + } } return err; } @@ -5033,7 +5478,7 @@ int ext4_mark_iloc_dirty(handle_t *handle, get_bh(iloc->bh); /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ - err = ext4_do_update_inode(handle, inode, iloc, 0); + err = ext4_do_update_inode(handle, inode, iloc); put_bh(iloc->bh); return err; } @@ -5177,27 +5622,14 @@ int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) */ void ext4_dirty_inode(struct inode *inode) { - handle_t *current_handle = ext4_journal_current_handle(); handle_t *handle; - if (!ext4_handle_valid(current_handle)) { - ext4_mark_inode_dirty(current_handle, inode); - return; - } - handle = ext4_journal_start(inode, 2); if (IS_ERR(handle)) goto out; - if (current_handle && - current_handle->h_transaction != handle->h_transaction) { - /* This task has a transaction open against a different fs */ - printk(KERN_EMERG "%s: transactions do not match!\n", - __func__); - } else { - jbd_debug(5, "marking dirty. outer handle=%p\n", - current_handle); - ext4_mark_inode_dirty(handle, inode); - } + + ext4_mark_inode_dirty(handle, inode); + ext4_journal_stop(handle); out: return; |