diff options
Diffstat (limited to 'Documentation/hwmon')
30 files changed, 1007 insertions, 147 deletions
diff --git a/Documentation/hwmon/abituguru b/Documentation/hwmon/abituguru index 87ffa0f5ec7..5eb3b9d5f0d 100644 --- a/Documentation/hwmon/abituguru +++ b/Documentation/hwmon/abituguru @@ -30,7 +30,7 @@ Supported chips: bank1_types=1,1,0,0,0,0,0,2,0,0,0,0,2,0,0,1 You may also need to specify the fan_sensors option for these boards fan_sensors=5 - 2) There is a seperate abituguru3 driver for these motherboards, + 2) There is a separate abituguru3 driver for these motherboards, the abituguru (without the 3 !) driver will not work on these motherboards (and visa versa)! diff --git a/Documentation/hwmon/adm1026 b/Documentation/hwmon/adm1026 index f4327db2307..d8fabe0c23a 100644 --- a/Documentation/hwmon/adm1026 +++ b/Documentation/hwmon/adm1026 @@ -6,7 +6,7 @@ Supported chips: Prefix: 'adm1026' Addresses scanned: I2C 0x2c, 0x2d, 0x2e Datasheet: Publicly available at the Analog Devices website - http://www.analog.com/en/prod/0,,766_825_ADM1026,00.html + http://www.onsemi.com/PowerSolutions/product.do?id=ADM1026 Authors: Philip Pokorny <ppokorny@penguincomputing.com> for Penguin Computing diff --git a/Documentation/hwmon/adt7411 b/Documentation/hwmon/adt7411 new file mode 100644 index 00000000000..1632960f974 --- /dev/null +++ b/Documentation/hwmon/adt7411 @@ -0,0 +1,42 @@ +Kernel driver adt7411 +===================== + +Supported chips: + * Analog Devices ADT7411 + Prefix: 'adt7411' + Addresses scanned: 0x48, 0x4a, 0x4b + Datasheet: Publicly available at the Analog Devices website + +Author: Wolfram Sang (based on adt7470 by Darrick J. Wong) + +Description +----------- + +This driver implements support for the Analog Devices ADT7411 chip. There may +be other chips that implement this interface. + +The ADT7411 can use an I2C/SMBus compatible 2-wire interface or an +SPI-compatible 4-wire interface. It provides a 10-bit analog to digital +converter which measures 1 temperature, vdd and 8 input voltages. It has an +internal temperature sensor, but an external one can also be connected (one +loses 2 inputs then). There are high- and low-limit registers for all inputs. + +Check the datasheet for details. + +sysfs-Interface +--------------- + +in0_input - vdd voltage input +in[1-8]_input - analog 1-8 input +temp1_input - temperature input + +Besides standard interfaces, this driver adds (0 = off, 1 = on): + + adc_ref_vdd - Use vdd as reference instead of 2.25 V + fast_sampling - Sample at 22.5 kHz instead of 1.4 kHz, but drop filters + no_average - Turn off averaging over 16 samples + +Notes +----- + +SPI, external temperature sensor and limit registers are not supported yet. diff --git a/Documentation/hwmon/adt7473 b/Documentation/hwmon/adt7473 deleted file mode 100644 index 446612bd1fb..00000000000 --- a/Documentation/hwmon/adt7473 +++ /dev/null @@ -1,74 +0,0 @@ -Kernel driver adt7473 -====================== - -Supported chips: - * Analog Devices ADT7473 - Prefix: 'adt7473' - Addresses scanned: I2C 0x2C, 0x2D, 0x2E - Datasheet: Publicly available at the Analog Devices website - -Author: Darrick J. Wong - -This driver is depreacted, please use the adt7475 driver instead. - -Description ------------ - -This driver implements support for the Analog Devices ADT7473 chip family. - -The ADT7473 uses the 2-wire interface compatible with the SMBUS 2.0 -specification. Using an analog to digital converter it measures three (3) -temperatures and two (2) voltages. It has four (4) 16-bit counters for -measuring fan speed. There are three (3) PWM outputs that can be used -to control fan speed. - -A sophisticated control system for the PWM outputs is designed into the -ADT7473 that allows fan speed to be adjusted automatically based on any of the -three temperature sensors. Each PWM output is individually adjustable and -programmable. Once configured, the ADT7473 will adjust the PWM outputs in -response to the measured temperatures without further host intervention. -This feature can also be disabled for manual control of the PWM's. - -Each of the measured inputs (voltage, temperature, fan speed) has -corresponding high/low limit values. The ADT7473 will signal an ALARM if -any measured value exceeds either limit. - -The ADT7473 samples all inputs continuously. The driver will not read -the registers more often than once every other second. Further, -configuration data is only read once per minute. - -Special Features ----------------- - -The ADT7473 have a 10-bit ADC and can therefore measure temperatures -with 0.25 degC resolution. Temperature readings can be configured either -for twos complement format or "Offset 64" format, wherein 63 is subtracted -from the raw value to get the temperature value. - -The Analog Devices datasheet is very detailed and describes a procedure for -determining an optimal configuration for the automatic PWM control. - -Configuration Notes -------------------- - -Besides standard interfaces driver adds the following: - -* PWM Control - -* pwm#_auto_point1_pwm and temp#_auto_point1_temp and -* pwm#_auto_point2_pwm and temp#_auto_point2_temp - - -point1: Set the pwm speed at a lower temperature bound. -point2: Set the pwm speed at a higher temperature bound. - -The ADT7473 will scale the pwm between the lower and higher pwm speed when -the temperature is between the two temperature boundaries. PWM values range -from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the -temperature sensor associated with the PWM control exceeds temp#_max. - -Notes ------ - -The NVIDIA binary driver presents an ADT7473 chip via an on-card i2c bus. -Unfortunately, they fail to set the i2c adapter class, so this driver may -fail to find the chip until the nvidia driver is patched. diff --git a/Documentation/hwmon/asc7621 b/Documentation/hwmon/asc7621 new file mode 100644 index 00000000000..7287be7e1f2 --- /dev/null +++ b/Documentation/hwmon/asc7621 @@ -0,0 +1,296 @@ +Kernel driver asc7621 +================== + +Supported chips: + Andigilog aSC7621 and aSC7621a + Prefix: 'asc7621' + Addresses scanned: I2C 0x2c, 0x2d, 0x2e + Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf + +Author: + George Joseph + +Description provided by Dave Pivin @ Andigilog: + +Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as +Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has +added PECI and a 4th thermal zone. The Andigilog aSC7611 is the +Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in +volume production, shipping to Intel and their subs. + +We have enhanced both parts relative to the governing Intel +specification. First enhancement is temperature reading resolution. We +have used registers below 20h for vendor-specific functions in addition +to those in the Intel-specified vendor range. + +Our conversion process produces a result that is reported as two bytes. +The fan speed control uses this finer value to produce a "step-less" fan +PWM output. These two bytes are "read-locked" to guarantee that once a +high or low byte is read, the other byte is locked-in until after the +next read of any register. So to get an atomic reading, read high or low +byte, then the very next read should be the opposite byte. Our data +sheet says 10-bits of resolution, although you may find the lower bits +are active, they are not necessarily reliable or useful externally. We +chose not to mask them. + +We employ significant filtering that is user tunable as described in the +data sheet. Our temperature reports and fan PWM outputs are very smooth +when compared to the competition, in addition to the higher resolution +temperature reports. The smoother PWM output does not require user +intervention. + +We offer GPIO features on the former VID pins. These are open-drain +outputs or inputs and may be used as general purpose I/O or as alarm +outputs that are based on temperature limits. These are in 19h and 1Ah. + +We offer flexible mapping of temperature readings to thermal zones. Any +temperature may be mapped to any zone, which has a default assignment +that follows Intel's specs. + +Since there is a fan to zone assignment that allows for the "hotter" of +a set of zones to control the PWM of an individual fan, but there is no +indication to the user, we have added an indicator that shows which zone +is currently controlling the PWM for a given fan. This is in register +00h. + +Both remote diode temperature readings may be given an offset value such +that the reported reading as well as the temperature used to determine +PWM may be offset for system calibration purposes. + +PECI Extended configuration allows for having more than two domains per +PECI address and also provides an enabling function for each PECI +address. One could use our flexible zone assignment to have a zone +assigned to up to 4 PECI addresses. This is not possible in the default +Intel configuration. This would be useful in multi-CPU systems with +individual fans on each that would benefit from individual fan control. +This is in register 0Eh. + +The tachometer measurement system is flexible and able to adapt to many +fan types. We can also support pulse-stretched PWM so that 3-wire fans +may be used. These characteristics are in registers 04h to 07h. + +Finally, we have added a tach disable function that turns off the tach +measurement system for individual tachs in order to save power. That is +in register 75h. + +-- +aSC7621 Product Description + +The aSC7621 has a two wire digital interface compatible with SMBus 2.0. +Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode +connected transistors as well as its own die. Support for Platform +Environmental Control Interface (PECI) is included. + +Using temperature information from these four zones, an automatic fan speed +control algorithm is employed to minimize acoustic impact while achieving +recommended CPU temperature under varying operational loads. + +To set fan speed, the aSC7621 has three independent pulse width modulation +(PWM) outputs that are controlled by one, or a combination of three, +temperature zones. Both high- and low-frequency PWM ranges are supported. + +The aSC7621 also includes a digital filter that can be invoked to smooth +temperature readings for better control of fan speed and minimum acoustic +impact. + +The aSC7621 has tachometer inputs to measure fan speed on up to four fans. +Limit and status registers for all measured values are included to alert +the system host that any measurements are outside of programmed limits +via status registers. + +System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are +monitored efficiently with internal scaling resistors. + +Features +- Supports PECI interface and monitors internal and remote thermal diodes +- 2-wire, SMBus 2.0 compliant, serial interface +- 10-bit ADC +- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies +- Programmable autonomous fan control based on temperature readings +- Noise filtering of temperature reading for fan speed control +- 0.25C digital temperature sensor resolution +- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan + tachometer inputs +- Enhanced measured temperature to Temperature Zone assignment. +- Provides high and low PWM frequency ranges +- 3 GPIO pins for custom use +- 24-Lead QSOP package + +Configuration Notes +=================== + +Except where noted below, the sysfs entries created by this driver follow +the standards defined in "sysfs-interface". + +temp1_source + 0 (default) peci_legacy = 0, Remote 1 Temperature + peci_legacy = 1, PECI Processor Temperature 0 + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + +temp2_source + 0 (default) Internal Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + +temp3_source + 0 (default) Remote 2 Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + +temp4_source + 0 (default) peci_legacy = 0, PECI Processor Temperature 0 + peci_legacy = 1, Remote 1 Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + +temp[1-4]_smoothing_enable +temp[1-4]_smoothing_time + Smooths spikes in temp readings caused by noise. + Valid values in milliseconds are: + 35000 + 17600 + 11800 + 7000 + 4400 + 3000 + 1600 + 800 + +temp[1-4]_crit + When the corresponding zone temperature reaches this value, + ALL pwm outputs will got to 100%. + +temp[5-8]_input +temp[5-8]_enable + The aSC7621 can also read temperatures provided by the processor + via the PECI bus. Usually these are "core" temps and are relative + to the point where the automatic thermal control circuit starts + throttling. This means that these are usually negative numbers. + +pwm[1-3]_enable + 0 Fan off. + 1 Fan on manual control. + 2 Fan on automatic control and will run at the minimum pwm + if the temperature for the zone is below the minimum. + 3 Fan on automatic control but will be off if the temperature + for the zone is below the minimum. + 4-254 Ignored. + 255 Fan on full. + +pwm[1-3]_auto_channels + Bitmap as described in sysctl-interface with the following + exceptions... + Only the following combination of zones (and their corresponding masks) + are valid: + 1 + 2 + 3 + 2,3 + 1,2,3 + 4 + 1,2,3,4 + + Special values: + 0 Disabled. + 16 Fan on manual control. + 31 Fan on full. + + +pwm[1-3]_invert + When set, inverts the meaning of pwm[1-3]. + i.e. when pwm = 0, the fan will be on full and + when pwm = 255 the fan will be off. + +pwm[1-3]_freq + PWM frequency in Hz + Valid values in Hz are: + + 10 + 15 + 23 + 30 (default) + 38 + 47 + 62 + 94 + 23000 + 24000 + 25000 + 26000 + 27000 + 28000 + 29000 + 30000 + + Setting any other value will be ignored. + +peci_enable + Enables or disables PECI + +peci_avg + Input filter average time. + + 0 0 Sec. (no Smoothing) (default) + 1 0.25 Sec. + 2 0.5 Sec. + 3 1.0 Sec. + 4 2.0 Sec. + 5 4.0 Sec. + 6 8.0 Sec. + 7 0.0 Sec. + +peci_legacy + + 0 Standard Mode (default) + Remote Diode 1 reading is associated with + Temperature Zone 1, PECI is associated with + Zone 4 + + 1 Legacy Mode + PECI is associated with Temperature Zone 1, + Remote Diode 1 is associated with Zone 4 + +peci_diode + Diode filter + + 0 0.25 Sec. + 1 1.1 Sec. + 2 2.4 Sec. (default) + 3 3.4 Sec. + 4 5.0 Sec. + 5 6.8 Sec. + 6 10.2 Sec. + 7 16.4 Sec. + +peci_4domain + Four domain enable + + 0 1 or 2 Domains for enabled processors (default) + 1 3 or 4 Domains for enabled processors + +peci_domain + Domain + + 0 Processor contains a single domain (0) (default) + 1 Processor contains two domains (0,1) diff --git a/Documentation/hwmon/coretemp b/Documentation/hwmon/coretemp index 92267b62db5..25568f84480 100644 --- a/Documentation/hwmon/coretemp +++ b/Documentation/hwmon/coretemp @@ -21,8 +21,8 @@ Temperature is measured in degrees Celsius and measurement resolution is 1 degree C. Valid temperatures are from 0 to TjMax degrees C, because the actual value of temperature register is in fact a delta from TjMax. -Temperature known as TjMax is the maximum junction temperature of processor. -Intel defines this temperature as 85C or 100C. At this temperature, protection +Temperature known as TjMax is the maximum junction temperature of processor, +which depends on the CPU model. See table below. At this temperature, protection mechanism will perform actions to forcibly cool down the processor. Alarm may be raised, if the temperature grows enough (more than TjMax) to trigger the Out-Of-Spec bit. Following table summarizes the exported sysfs files: @@ -38,3 +38,104 @@ temp1_label - Contains string "Core X", where X is processor The TjMax temperature is set to 85 degrees C if undocumented model specific register (UMSR) 0xee has bit 30 set. If not the TjMax is 100 degrees C as (sometimes) documented in processor datasheet. + +Appendix A. Known TjMax lists (TBD): +Some information comes from ark.intel.com + +Process Processor TjMax(C) + +32nm Core i3/i5/i7 Processors + i7 660UM/640/620, 640LM/620, 620M, 610E 105 + i5 540UM/520/430, 540M/520/450/430 105 + i3 330E, 370M/350/330 90 rPGA, 105 BGA + i3 330UM 105 + +32nm Core i7 Extreme Processors + 980X 100 + +32nm Celeron Processors + U3400 105 + P4505/P4500 90 + +45nm Xeon Processors 5400 Quad-Core + X5492, X5482, X5472, X5470, X5460, X5450 85 + E5472, E5462, E5450/40/30/20/10/05 85 + L5408 95 + L5430, L5420, L5410 70 + +45nm Xeon Processors 5200 Dual-Core + X5282, X5272, X5270, X5260 90 + E5240 90 + E5205, E5220 70, 90 + L5240 70 + L5238, L5215 95 + +45nm Atom Processors + D525/510/425/410 100 + Z560/550/540/530P/530/520PT/520/515/510PT/510P 90 + Z510/500 90 + N475/470/455/450 100 + N280/270 90 + 330/230 125 + +45nm Core2 Processors + Solo ULV SU3500/3300 100 + T9900/9800/9600/9550/9500/9400/9300/8300/8100 105 + T6670/6500/6400 105 + T6600 90 + SU9600/9400/9300 105 + SP9600/9400 105 + SL9600/9400/9380/9300 105 + P9700/9600/9500/8800/8700/8600/8400/7570 105 + P7550/7450 90 + +45nm Core2 Quad Processors + Q9100/9000 100 + +45nm Core2 Extreme Processors + X9100/9000 105 + QX9300 100 + +45nm Core i3/i5/i7 Processors + i7 940XM/920 100 + i7 840QM/820/740/720 100 + +45nm Celeron Processors + SU2300 100 + 900 105 + +65nm Core2 Duo Processors + Solo U2200, U2100 100 + U7700/7600/7500 100 + T7800/7700/7600/7500/7400/7300/7250/7200/7100 100 + T5870/5670/5600/5550/5500/5470/5450/5300/5270 100 + T5250 100 + T5800/5750/5200 85 + L7700/7500/7400/7300/7200 100 + +65nm Core2 Extreme Processors + X7900/7800 100 + +65nm Core Duo Processors + U2500/2400 100 + T2700/2600/2450/2400/2350/2300E/2300/2250/2050 100 + L2500/2400/2300 100 + +65nm Core Solo Processors + U1500/1400/1300 100 + T1400/1350/1300/1250 100 + +65nm Xeon Processors 5000 Quad-Core + X5000 90-95 + E5000 80 + L5000 70 + L5318 95 + +65nm Xeon Processors 5000 Dual-Core + 5080, 5063, 5060, 5050, 5030 80-90 + 5160, 5150, 5148, 5140, 5130, 5120, 5110 80 + L5138 100 + +65nm Celeron Processors + T1700/1600 100 + 560/550/540/530 100 diff --git a/Documentation/hwmon/dme1737 b/Documentation/hwmon/dme1737 index 001d2e70bc1..fc5df7654d6 100644 --- a/Documentation/hwmon/dme1737 +++ b/Documentation/hwmon/dme1737 @@ -9,11 +9,15 @@ Supported chips: * SMSC SCH3112, SCH3114, SCH3116 Prefix: 'sch311x' Addresses scanned: none, address read from Super-I/O config space - Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf + Datasheet: Available on the Internet * SMSC SCH5027 Prefix: 'sch5027' Addresses scanned: I2C 0x2c, 0x2d, 0x2e Datasheet: Provided by SMSC upon request and under NDA + * SMSC SCH5127 + Prefix: 'sch5127' + Addresses scanned: none, address read from Super-I/O config space + Datasheet: Provided by SMSC upon request and under NDA Authors: Juerg Haefliger <juergh@gmail.com> @@ -36,8 +40,8 @@ Description ----------- This driver implements support for the hardware monitoring capabilities of the -SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC -SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors +SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, SCH311x, +and SCH5127 Super-I/O chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and @@ -48,14 +52,14 @@ Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on the configuration of the chip. The driver will detect which features are present during initialization and create the sysfs attributes accordingly. -For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and -pwm[5-6] don't exist. +For the SCH311x and SCH5127, fan[1-3] and pwm[1-3] are always present and +fan[4-6] and pwm[5-6] don't exist. The hardware monitoring features of the DME1737, A8000, and SCH5027 are only -accessible via SMBus, while the SCH311x only provides access via the ISA bus. -The driver will therefore register itself as an I2C client driver if it detects -a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x -chip. +accessible via SMBus, while the SCH311x and SCH5127 only provide access via +the ISA bus. The driver will therefore register itself as an I2C client driver +if it detects a DME1737, A8000, or SCH5027 and as a platform driver if it +detects a SCH311x or SCH5127 chip. Voltage Monitoring @@ -76,7 +80,7 @@ DME1737, A8000: in6: Vbat (+3.0V) 0V - 4.38V SCH311x: - in0: +2.5V 0V - 6.64V + in0: +2.5V 0V - 3.32V in1: Vccp (processor core) 0V - 2V in2: VCC (internal +3.3V) 0V - 4.38V in3: +5V 0V - 6.64V @@ -93,6 +97,15 @@ SCH5027: in5: VTR (+3.3V standby) 0V - 4.38V in6: Vbat (+3.0V) 0V - 4.38V +SCH5127: + in0: +2.5 0V - 3.32V + in1: Vccp (processor core) 0V - 3V + in2: VCC (internal +3.3V) 0V - 4.38V + in3: V2_IN 0V - 1.5V + in4: V1_IN 0V - 1.5V + in5: VTR (+3.3V standby) 0V - 4.38V + in6: Vbat (+3.0V) 0V - 4.38V + Each voltage input has associated min and max limits which trigger an alarm when crossed. @@ -293,3 +306,21 @@ pwm[1-3]_auto_point1_pwm RW Auto PWM pwm point. Auto_point1 is the pwm[1-3]_auto_point2_pwm RO Auto PWM pwm point. Auto_point2 is the full-speed duty-cycle which is hard- wired to 255 (100% duty-cycle). + +Chip Differences +---------------- + +Feature dme1737 sch311x sch5027 sch5127 +------------------------------------------------------- +temp[1-3]_offset yes yes +vid yes +zone3 yes yes yes +zone[1-3]_hyst yes yes +pwm min/off yes yes +fan3 opt yes opt yes +pwm3 opt yes opt yes +fan4 opt opt +fan5 opt opt +pwm5 opt opt +fan6 opt opt +pwm6 opt opt diff --git a/Documentation/hwmon/emc2103 b/Documentation/hwmon/emc2103 new file mode 100644 index 00000000000..a12b2c12714 --- /dev/null +++ b/Documentation/hwmon/emc2103 @@ -0,0 +1,33 @@ +Kernel driver emc2103 +====================== + +Supported chips: + * SMSC EMC2103 + Addresses scanned: I2C 0x2e + Prefix: 'emc2103' + Datasheet: Not public + +Authors: + Steve Glendinning <steve.glendinning@smsc.com> + +Description +----------- + +The Standard Microsystems Corporation (SMSC) EMC2103 chips +contain up to 4 temperature sensors and a single fan controller. + +Fan rotation speeds are reported in RPM (rotations per minute). An alarm is +triggered if the rotation speed has dropped below a programmable limit. Fan +readings can be divided by a programmable divider (1, 2, 4 or 8) to give +the readings more range or accuracy. Not all RPM values can accurately be +represented, so some rounding is done. With a divider of 1, the lowest +representable value is 480 RPM. + +This driver supports RPM based control, to use this a fan target +should be written to fan1_target and pwm1_enable should be set to 3. + +The 2103-2 and 2103-4 variants have a third temperature sensor, which can +be connected to two anti-parallel diodes. These values can be read +as temp3 and temp4. If only one diode is attached to this channel, temp4 +will show as "fault". The module parameter "apd=0" can be used to suppress +this 4th channel when anti-parallel diodes are not fitted. diff --git a/Documentation/hwmon/g760a b/Documentation/hwmon/g760a index e032eeb7562..cfc89453706 100644 --- a/Documentation/hwmon/g760a +++ b/Documentation/hwmon/g760a @@ -5,7 +5,7 @@ Supported chips: * Global Mixed-mode Technology Inc. G760A Prefix: 'g760a' Datasheet: Publicly available at the GMT website - http://www.gmt.com.tw/datasheet/g760a.pdf + http://www.gmt.com.tw/product/datasheet/EDS-760A.pdf Author: Herbert Valerio Riedel <hvr@gnu.org> diff --git a/Documentation/hwmon/gl518sm b/Documentation/hwmon/gl518sm index 229f8b78918..26f9f3c02dc 100644 --- a/Documentation/hwmon/gl518sm +++ b/Documentation/hwmon/gl518sm @@ -5,11 +5,10 @@ Supported chips: * Genesys Logic GL518SM release 0x00 Prefix: 'gl518sm' Addresses scanned: I2C 0x2c and 0x2d - Datasheet: http://www.genesyslogic.com/pdf * Genesys Logic GL518SM release 0x80 Prefix: 'gl518sm' Addresses scanned: I2C 0x2c and 0x2d - Datasheet: http://www.genesyslogic.com/pdf + Datasheet: http://www.genesyslogic.com/ Authors: Frodo Looijaard <frodol@dds.nl>, diff --git a/Documentation/hwmon/hpfall.c b/Documentation/hwmon/hpfall.c index 681ec22b9d0..a4a8fc5d05d 100644 --- a/Documentation/hwmon/hpfall.c +++ b/Documentation/hwmon/hpfall.c @@ -1,7 +1,7 @@ /* Disk protection for HP machines. * * Copyright 2008 Eric Piel - * Copyright 2009 Pavel Machek <pavel@suse.cz> + * Copyright 2009 Pavel Machek <pavel@ucw.cz> * * GPLv2. */ diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87 index f9ba96c0ac4..8d08bf0d38e 100644 --- a/Documentation/hwmon/it87 +++ b/Documentation/hwmon/it87 @@ -5,31 +5,23 @@ Supported chips: * IT8705F Prefix: 'it87' Addresses scanned: from Super I/O config space (8 I/O ports) - Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf + Datasheet: Once publicly available at the ITE website, but no longer * IT8712F Prefix: 'it8712' Addresses scanned: from Super I/O config space (8 I/O ports) - Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf - http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf - http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf + Datasheet: Once publicly available at the ITE website, but no longer * IT8716F/IT8726F Prefix: 'it8716' Addresses scanned: from Super I/O config space (8 I/O ports) - Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/product_info/file/pc/IT8716F_V0.3.ZIP - http://www.ite.com.tw/product_info/file/pc/IT8726F_V0.3.pdf + Datasheet: Once publicly available at the ITE website, but no longer * IT8718F Prefix: 'it8718' Addresses scanned: from Super I/O config space (8 I/O ports) - Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/product_info/file/pc/IT8718F_V0.2.zip - http://www.ite.com.tw/product_info/file/pc/IT8718F_V0%203_(for%20C%20version).zip + Datasheet: Once publicly available at the ITE website, but no longer * IT8720F Prefix: 'it8720' Addresses scanned: from Super I/O config space (8 I/O ports) - Datasheet: Not yet publicly available. + Datasheet: Not publicly available * SiS950 [clone of IT8705F] Prefix: 'it87' Addresses scanned: from Super I/O config space (8 I/O ports) @@ -136,6 +128,10 @@ registers are read whenever any data is read (unless it is less than 1.5 seconds since the last update). This means that you can easily miss once-only alarms. +Out-of-limit readings can also result in beeping, if the chip is properly +wired and configured. Beeping can be enabled or disabled per sensor type +(temperatures, voltages and fans.) + The IT87xx only updates its values each 1.5 seconds; reading it more often will do no harm, but will return 'old' values. @@ -150,11 +146,38 @@ Fan speed control ----------------- The fan speed control features are limited to manual PWM mode. Automatic -"Smart Guardian" mode control handling is not implemented. However -if you want to go for "manual mode" just write 1 to pwmN_enable. +"Smart Guardian" mode control handling is only implemented for older chips +(see below.) However if you want to go for "manual mode" just write 1 to +pwmN_enable. If you are only able to control the fan speed with very small PWM values, try lowering the PWM base frequency (pwm1_freq). Depending on the fan, it may give you a somewhat greater control range. The same frequency is used to drive all fan outputs, which is why pwm2_freq and pwm3_freq are read-only. + + +Automatic fan speed control (old interface) +------------------------------------------- + +The driver supports the old interface to automatic fan speed control +which is implemented by IT8705F chips up to revision F and IT8712F +chips up to revision G. + +This interface implements 4 temperature vs. PWM output trip points. +The PWM output of trip point 4 is always the maximum value (fan running +at full speed) while the PWM output of the other 3 trip points can be +freely chosen. The temperature of all 4 trip points can be freely chosen. +Additionally, trip point 1 has an hysteresis temperature attached, to +prevent fast switching between fan on and off. + +The chip automatically computes the PWM output value based on the input +temperature, based on this simple rule: if the temperature value is +between trip point N and trip point N+1 then the PWM output value is +the one of trip point N. The automatic control mode is less flexible +than the manual control mode, but it reacts faster, is more robust and +doesn't use CPU cycles. + +Trip points must be set properly before switching to automatic fan speed +control mode. The driver will perform basic integrity checks before +actually switching to automatic control mode. diff --git a/Documentation/hwmon/jc42 b/Documentation/hwmon/jc42 new file mode 100644 index 00000000000..0e76ef12e4c --- /dev/null +++ b/Documentation/hwmon/jc42 @@ -0,0 +1,97 @@ +Kernel driver jc42 +================== + +Supported chips: + * Analog Devices ADT7408 + Prefix: 'adt7408' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://www.analog.com/static/imported-files/data_sheets/ADT7408.pdf + * IDT TSE2002B3, TS3000B3 + Prefix: 'tse2002b3', 'ts3000b3' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://www.idt.com/products/getdoc.cfm?docid=18715691 + http://www.idt.com/products/getdoc.cfm?docid=18715692 + * Maxim MAX6604 + Prefix: 'max6604' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://datasheets.maxim-ic.com/en/ds/MAX6604.pdf + * Microchip MCP9805, MCP98242, MCP98243, MCP9843 + Prefixes: 'mcp9805', 'mcp98242', 'mcp98243', 'mcp9843' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://ww1.microchip.com/downloads/en/DeviceDoc/21977b.pdf + http://ww1.microchip.com/downloads/en/DeviceDoc/21996a.pdf + http://ww1.microchip.com/downloads/en/DeviceDoc/22153c.pdf + * NXP Semiconductors SE97, SE97B + Prefix: 'se97' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://www.nxp.com/documents/data_sheet/SE97.pdf + http://www.nxp.com/documents/data_sheet/SE97B.pdf + * NXP Semiconductors SE98 + Prefix: 'se98' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://www.nxp.com/documents/data_sheet/SE98.pdf + * ON Semiconductor CAT34TS02, CAT6095 + Prefix: 'cat34ts02', 'cat6095' + Addresses scanned: I2C 0x18 - 0x1f + Datasheet: + http://www.onsemi.com/pub_link/Collateral/CAT34TS02-D.PDF + http://www.onsemi.com/pub/Collateral/CAT6095-D.PDF + * ST Microelectronics STTS424, STTS424E02 + Prefix: 'stts424' + Addresses scanned: I2C 0x18 - 0x1f + Datasheets: + http://www.st.com/stonline/products/literature/ds/13447/stts424.pdf + http://www.st.com/stonline/products/literature/ds/13448/stts424e02.pdf + * JEDEC JC 42.4 compliant temperature sensor chips + Prefix: 'jc42' + Addresses scanned: I2C 0x18 - 0x1f + Datasheet: - + +Author: + Guenter Roeck <guenter.roeck@ericsson.com> + + +Description +----------- + +This driver implements support for JEDEC JC 42.4 compliant temperature sensors. +The driver auto-detects the chips listed above, but can be manually instantiated +to support other JC 42.4 compliant chips. + +Example: the following will load the driver for a generic JC 42.4 compliant +temperature sensor at address 0x18 on I2C bus #1: + +# modprobe jc42 +# echo jc42 0x18 > /sys/bus/i2c/devices/i2c-1/new_device + +A JC 42.4 compliant chip supports a single temperature sensor. Minimum, maximum, +and critical temperature can be configured. There are alarms for high, low, +and critical thresholds. + +There is also an hysteresis to control the thresholds for resetting alarms. +Per JC 42.4 specification, the hysteresis threshold can be configured to 0, 1.5, +3.0, and 6.0 degrees C. Configured hysteresis values will be rounded to those +limits. The chip supports only a single register to configure the hysteresis, +which applies to all limits. This register can be written by writing into +temp1_crit_hyst. Other hysteresis attributes are read-only. + +Sysfs entries +------------- + +temp1_input Temperature (RO) +temp1_min Minimum temperature (RW) +temp1_max Maximum temperature (RW) +temp1_crit Critical high temperature (RW) + +temp1_crit_hyst Critical hysteresis temperature (RW) +temp1_max_hyst Maximum hysteresis temperature (RO) + +temp1_min_alarm Temperature low alarm +temp1_max_alarm Temperature high alarm +temp1_crit_alarm Temperature critical alarm diff --git a/Documentation/hwmon/k8temp b/Documentation/hwmon/k8temp index 0005c716614..716dc24c723 100644 --- a/Documentation/hwmon/k8temp +++ b/Documentation/hwmon/k8temp @@ -5,7 +5,7 @@ Supported chips: * AMD Athlon64/FX or Opteron CPUs Prefix: 'k8temp' Addresses scanned: PCI space - Datasheet: http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf + Datasheet: http://support.amd.com/us/Processor_TechDocs/32559.pdf Author: Rudolf Marek Contact: Rudolf Marek <r.marek@assembler.cz> diff --git a/Documentation/hwmon/lm63 b/Documentation/hwmon/lm63 index 31660bf9797..b9843eab1af 100644 --- a/Documentation/hwmon/lm63 +++ b/Documentation/hwmon/lm63 @@ -7,6 +7,11 @@ Supported chips: Addresses scanned: I2C 0x4c Datasheet: Publicly available at the National Semiconductor website http://www.national.com/pf/LM/LM63.html + * National Semiconductor LM64 + Prefix: 'lm64' + Addresses scanned: I2C 0x18 and 0x4e + Datasheet: Publicly available at the National Semiconductor website + http://www.national.com/pf/LM/LM64.html Author: Jean Delvare <khali@linux-fr.org> @@ -55,3 +60,5 @@ The lm63 driver will not update its values more frequently than every second; reading them more often will do no harm, but will return 'old' values. +The LM64 is effectively an LM63 with GPIO lines. The driver does not +support these GPIO lines at present. diff --git a/Documentation/hwmon/lm85 b/Documentation/hwmon/lm85 index a13680871bc..b98e0e0d191 100644 --- a/Documentation/hwmon/lm85 +++ b/Documentation/hwmon/lm85 @@ -9,15 +9,15 @@ Supported chips: * Analog Devices ADM1027 Prefix: 'adm1027' Addresses scanned: I2C 0x2c, 0x2d, 0x2e - Datasheet: http://www.analog.com/en/prod/0,,766_825_ADM1027,00.html + Datasheet: http://www.onsemi.com/PowerSolutions/product.do?id=ADM1027 * Analog Devices ADT7463 Prefix: 'adt7463' Addresses scanned: I2C 0x2c, 0x2d, 0x2e - Datasheet: http://www.analog.com/en/prod/0,,766_825_ADT7463,00.html + Datasheet: http://www.onsemi.com/PowerSolutions/product.do?id=ADT7463 * SMSC EMC6D100, SMSC EMC6D101 Prefix: 'emc6d100' Addresses scanned: I2C 0x2c, 0x2d, 0x2e - Datasheet: http://www.smsc.com/main/tools/discontinued/6d100.pdf + Datasheet: http://www.smsc.com/media/Downloads_Public/discontinued/6d100.pdf * SMSC EMC6D102 Prefix: 'emc6d102' Addresses scanned: I2C 0x2c, 0x2d, 0x2e @@ -157,7 +157,7 @@ temperature configuration points: There are three PWM outputs. The LM85 datasheet suggests that the pwm3 output control both fan3 and fan4. Each PWM can be individually -configured and assigned to a zone for it's control value. Each PWM can be +configured and assigned to a zone for its control value. Each PWM can be configured individually according to the following options. * pwm#_auto_pwm_min - this specifies the PWM value for temp#_auto_temp_off diff --git a/Documentation/hwmon/lm90 b/Documentation/hwmon/lm90 index 93d8e3d5515..6a03dd4bcc9 100644 --- a/Documentation/hwmon/lm90 +++ b/Documentation/hwmon/lm90 @@ -84,6 +84,10 @@ Supported chips: Addresses scanned: I2C 0x4c Datasheet: Publicly available at the Maxim website http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500 + * Winbond/Nuvoton W83L771AWG/ASG + Prefix: 'w83l771' + Addresses scanned: I2C 0x4c + Datasheet: Not publicly available, can be requested from Nuvoton Author: Jean Delvare <khali@linux-fr.org> @@ -147,6 +151,12 @@ MAX6680 and MAX6681: * Selectable address * Remote sensor type selection +W83L771AWG/ASG + * The AWG and ASG variants only differ in package format. + * Filter and alert configuration register at 0xBF + * Diode ideality factor configuration (remote sensor) at 0xE3 + * Moving average (depending on conversion rate) + All temperature values are given in degrees Celsius. Resolution is 1.0 degree for the local temperature, 0.125 degree for the remote temperature, except for the MAX6657, MAX6658 and MAX6659 which have a @@ -163,6 +173,18 @@ The lm90 driver will not update its values more frequently than every other second; reading them more often will do no harm, but will return 'old' values. +SMBus Alert Support +------------------- + +This driver has basic support for SMBus alert. When an alert is received, +the status register is read and the faulty temperature channel is logged. + +The Analog Devices chips (ADM1032 and ADT7461) do not implement the SMBus +alert protocol properly so additional care is needed: the ALERT output is +disabled when an alert is received, and is re-enabled only when the alarm +is gone. Otherwise the chip would block alerts from other chips in the bus +as long as the alarm is active. + PEC Support ----------- diff --git a/Documentation/hwmon/ltc4245 b/Documentation/hwmon/ltc4245 index 02838a47d86..b478b086496 100644 --- a/Documentation/hwmon/ltc4245 +++ b/Documentation/hwmon/ltc4245 @@ -72,11 +72,31 @@ in6_min_alarm 5v output undervoltage alarm in7_min_alarm 3v output undervoltage alarm in8_min_alarm Vee (-12v) output undervoltage alarm -in9_input GPIO #1 voltage data -in10_input GPIO #2 voltage data -in11_input GPIO #3 voltage data +in9_input GPIO voltage data (see note 1) +in10_input GPIO voltage data (see note 1) +in11_input GPIO voltage data (see note 1) power1_input 12v power usage (mW) power2_input 5v power usage (mW) power3_input 3v power usage (mW) power4_input Vee (-12v) power usage (mW) + + +Note 1 +------ + +If you have NOT configured the driver to sample all GPIO pins as analog +voltages, then the in10_input and in11_input sysfs attributes will not be +created. The driver will sample the GPIO pin that is currently connected to the +ADC as an analog voltage, and report the value in in9_input. + +If you have configured the driver to sample all GPIO pins as analog voltages, +then they will be sampled in round-robin fashion. If userspace reads too +slowly, -EAGAIN will be returned when you read the sysfs attribute containing +the sensor reading. + +The LTC4245 chip can be configured to sample all GPIO pins with two methods: +1) platform data -- see include/linux/i2c/ltc4245.h +2) OF device tree -- add the "ltc4245,use-extra-gpios" property to each chip + +The default mode of operation is to sample a single GPIO pin. diff --git a/Documentation/hwmon/pc87427 b/Documentation/hwmon/pc87427 index db5cc1227a8..8fdd08c9e48 100644 --- a/Documentation/hwmon/pc87427 +++ b/Documentation/hwmon/pc87427 @@ -18,10 +18,11 @@ Description The National Semiconductor Super I/O chip includes complete hardware monitoring capabilities. It can monitor up to 18 voltages, 8 fans and -6 temperature sensors. Only the fans are supported at the moment. +6 temperature sensors. Only the fans and temperatures are supported at +the moment, voltages aren't. -This chip also has fan controlling features, which are not yet supported -by this driver either. +This chip also has fan controlling features (up to 4 PWM outputs), +which are partly supported by this driver. The driver assumes that no more than one chip is present, which seems reasonable. @@ -36,3 +37,23 @@ signal. Speeds down to 83 RPM can be measured. An alarm is triggered if the rotation speed drops below a programmable limit. Another alarm is triggered if the speed is too low to be measured (including stalled or missing fan). + + +Fan Speed Control +----------------- + +Fan speed can be controlled by PWM outputs. There are 4 possible modes: +always off, always on, manual and automatic. The latter isn't supported +by the driver: you can only return to that mode if it was the original +setting, and the configuration interface is missing. + + +Temperature Monitoring +---------------------- + +The PC87427 relies on external sensors (following the SensorPath +standard), so the resolution and range depend on the type of sensor +connected. The integer part can be 8-bit or 9-bit, and can be signed or +not. I couldn't find a way to figure out the external sensor data +temperature format, so user-space adjustment (typically by a factor 2) +may be required. diff --git a/Documentation/hwmon/pkgtemp b/Documentation/hwmon/pkgtemp new file mode 100644 index 00000000000..c8e1fb0fadd --- /dev/null +++ b/Documentation/hwmon/pkgtemp @@ -0,0 +1,36 @@ +Kernel driver pkgtemp +====================== + +Supported chips: + * Intel family + Prefix: 'pkgtemp' + CPUID: + Datasheet: Intel 64 and IA-32 Architectures Software Developer's Manual + Volume 3A: System Programming Guide + +Author: Fenghua Yu + +Description +----------- + +This driver permits reading package level temperature sensor embedded inside +Intel CPU package. The sensors can be in core, uncore, memory controller, or +other components in a package. The feature is first implemented in Intel Sandy +Bridge platform. + +Temperature is measured in degrees Celsius and measurement resolution is +1 degree C. Valid temperatures are from 0 to TjMax degrees C, because the actual +value of temperature register is in fact a delta from TjMax. + +Temperature known as TjMax is the maximum junction temperature of package. +We get this from MSR_IA32_TEMPERATURE_TARGET. If the MSR is not accessible, +we define TjMax as 100 degrees Celsius. At this temperature, protection +mechanism will perform actions to forcibly cool down the package. Alarm +may be raised, if the temperature grows enough (more than TjMax) to trigger +the Out-Of-Spec bit. Following table summarizes the exported sysfs files: + +temp1_input - Package temperature (in millidegrees Celsius). +temp1_max - All cooling devices should be turned on. +temp1_crit - Maximum junction temperature (in millidegrees Celsius). +temp1_crit_alarm - Set when Out-of-spec bit is set, never clears. + Correct CPU operation is no longer guaranteed. diff --git a/Documentation/hwmon/smm665 b/Documentation/hwmon/smm665 new file mode 100644 index 00000000000..3820fc9ca52 --- /dev/null +++ b/Documentation/hwmon/smm665 @@ -0,0 +1,157 @@ +Kernel driver smm665 +==================== + +Supported chips: + * Summit Microelectronics SMM465 + Prefix: 'smm465' + Addresses scanned: - + Datasheet: + http://www.summitmicro.com/prod_select/summary/SMM465/SMM465DS.pdf + * Summit Microelectronics SMM665, SMM665B + Prefix: 'smm665' + Addresses scanned: - + Datasheet: + http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf + * Summit Microelectronics SMM665C + Prefix: 'smm665c' + Addresses scanned: - + Datasheet: + http://www.summitmicro.com/prod_select/summary/SMM665C/SMM665C_2125.pdf + * Summit Microelectronics SMM764 + Prefix: 'smm764' + Addresses scanned: - + Datasheet: + http://www.summitmicro.com/prod_select/summary/SMM764/SMM764_2098.pdf + * Summit Microelectronics SMM766, SMM766B + Prefix: 'smm766' + Addresses scanned: - + Datasheets: + http://www.summitmicro.com/prod_select/summary/SMM766/SMM766_2086.pdf + http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf + +Author: Guenter Roeck <guenter.roeck@ericsson.com> + + +Module Parameters +----------------- + +* vref: int + Default: 1250 (mV) + Reference voltage on VREF_ADC pin in mV. It should not be necessary to set + this parameter unless a non-default reference voltage is used. + + +Description +----------- + +[From datasheet] The SMM665 is an Active DC Output power supply Controller +that monitors, margins and cascade sequences power. The part monitors six +power supply channels as well as VDD, 12V input, two general-purpose analog +inputs and an internal temperature sensor using a 10-bit ADC. + +Each monitored channel has its own high and low limits, plus a critical +limit. + +Support for SMM465, SMM764, and SMM766 has been implemented but is untested. + + +Usage Notes +----------- + +This driver does not probe for devices, since there is no register which +can be safely used to identify the chip. You will have to instantiate +the devices explicitly. When instantiating the device, you have to specify +its configuration register address. + +Example: the following will load the driver for an SMM665 at address 0x57 +on I2C bus #1: +$ modprobe smm665 +$ echo smm665 0x57 > /sys/bus/i2c/devices/i2c-1/new_device + + +Sysfs entries +------------- + +This driver uses the values in the datasheet to convert ADC register values +into the values specified in the sysfs-interface document. All attributes are +read only. + +Min, max, lcrit, and crit values are used by the chip to trigger external signals +and/or other activity. Triggered signals can include HEALTHY, RST, Power Off, +or Fault depending on the chip configuration. The driver reports values as lcrit +or crit if exceeding the limits triggers RST, Power Off, or Fault, and as min or +max otherwise. For details please see the SMM665 datasheet. + +For SMM465 and SMM764, values for Channel E and F are reported but undefined. + +in1_input 12V input voltage (mV) +in2_input 3.3V (VDD) input voltage (mV) +in3_input Channel A voltage (mV) +in4_input Channel B voltage (mV) +in5_input Channel C voltage (mV) +in6_input Channel D voltage (mV) +in7_input Channel E voltage (mV) +in8_input Channel F voltage (mV) +in9_input AIN1 voltage (mV) +in10_input AIN2 voltage (mV) + +in1_min 12v input minimum voltage (mV) +in2_min 3.3V (VDD) input minimum voltage (mV) +in3_min Channel A minimum voltage (mV) +in4_min Channel B minimum voltage (mV) +in5_min Channel C minimum voltage (mV) +in6_min Channel D minimum voltage (mV) +in7_min Channel E minimum voltage (mV) +in8_min Channel F minimum voltage (mV) +in9_min AIN1 minimum voltage (mV) +in10_min AIN2 minimum voltage (mV) + +in1_max 12v input maximum voltage (mV) +in2_max 3.3V (VDD) input maximum voltage (mV) +in3_max Channel A maximum voltage (mV) +in4_max Channel B maximum voltage (mV) +in5_max Channel C maximum voltage (mV) +in6_max Channel D maximum voltage (mV) +in7_max Channel E maximum voltage (mV) +in8_max Channel F maximum voltage (mV) +in9_max AIN1 maximum voltage (mV) +in10_max AIN2 maximum voltage (mV) + +in1_lcrit 12v input critical minimum voltage (mV) +in2_lcrit 3.3V (VDD) input critical minimum voltage (mV) +in3_lcrit Channel A critical minimum voltage (mV) +in4_lcrit Channel B critical minimum voltage (mV) +in5_lcrit Channel C critical minimum voltage (mV) +in6_lcrit Channel D critical minimum voltage (mV) +in7_lcrit Channel E critical minimum voltage (mV) +in8_lcrit Channel F critical minimum voltage (mV) +in9_lcrit AIN1 critical minimum voltage (mV) +in10_lcrit AIN2 critical minimum voltage (mV) + +in1_crit 12v input critical maximum voltage (mV) +in2_crit 3.3V (VDD) input critical maximum voltage (mV) +in3_crit Channel A critical maximum voltage (mV) +in4_crit Channel B critical maximum voltage (mV) +in5_crit Channel C critical maximum voltage (mV) +in6_crit Channel D critical maximum voltage (mV) +in7_crit Channel E critical maximum voltage (mV) +in8_crit Channel F critical maximum voltage (mV) +in9_crit AIN1 critical maximum voltage (mV) +in10_crit AIN2 critical maximum voltage (mV) + +in1_crit_alarm 12v input critical alarm +in2_crit_alarm 3.3V (VDD) input critical alarm +in3_crit_alarm Channel A critical alarm +in4_crit_alarm Channel B critical alarm +in5_crit_alarm Channel C critical alarm +in6_crit_alarm Channel D critical alarm +in7_crit_alarm Channel E critical alarm +in8_crit_alarm Channel F critical alarm +in9_crit_alarm AIN1 critical alarm +in10_crit_alarm AIN2 critical alarm + +temp1_input Chip tempererature +temp1_min Mimimum chip tempererature +temp1_max Maximum chip tempererature +temp1_crit Critical chip tempererature +temp1_crit_alarm Temperature critical alarm diff --git a/Documentation/hwmon/smsc47m1 b/Documentation/hwmon/smsc47m1 index 42c8431b3c9..2a13378dcf2 100644 --- a/Documentation/hwmon/smsc47m1 +++ b/Documentation/hwmon/smsc47m1 @@ -7,13 +7,10 @@ Supported chips: Addresses scanned: none, address read from Super I/O config space Prefix: 'smsc47m1' Datasheets: - http://www.smsc.com/main/datasheets/47b27x.pdf - http://www.smsc.com/main/datasheets/47m10x.pdf - http://www.smsc.com/main/datasheets/47m112.pdf - http://www.smsc.com/main/tools/discontinued/47m13x.pdf - http://www.smsc.com/main/datasheets/47m14x.pdf - http://www.smsc.com/main/tools/discontinued/47m15x.pdf - http://www.smsc.com/main/datasheets/47m192.pdf + http://www.smsc.com/media/Downloads_Public/Data_Sheets/47b272.pdf + http://www.smsc.com/media/Downloads_Public/Data_Sheets/47m10x.pdf + http://www.smsc.com/media/Downloads_Public/Data_Sheets/47m112.pdf + http://www.smsc.com/ * SMSC LPC47M292 Addresses scanned: none, address read from Super I/O config space Prefix: 'smsc47m2' diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface index 3de6b0bcb14..48ceabedf55 100644 --- a/Documentation/hwmon/sysfs-interface +++ b/Documentation/hwmon/sysfs-interface @@ -80,9 +80,9 @@ All entries (except name) are optional, and should only be created in a given driver if the chip has the feature. -******** -* Name * -******** +********************* +* Global attributes * +********************* name The chip name. This should be a short, lowercase string, not containing @@ -91,6 +91,12 @@ name The chip name. I2C devices get this attribute created automatically. RO +update_interval The interval at which the chip will update readings. + Unit: millisecond + RW + Some devices have a variable update rate or interval. + This attribute can be used to change it to the desired value. + ************ * Voltages * @@ -100,10 +106,24 @@ in[0-*]_min Voltage min value. Unit: millivolt RW +in[0-*]_lcrit Voltage critical min value. + Unit: millivolt + RW + If voltage drops to or below this limit, the system may + take drastic action such as power down or reset. At the very + least, it should report a fault. + in[0-*]_max Voltage max value. Unit: millivolt RW +in[0-*]_crit Voltage critical max value. + Unit: millivolt + RW + If voltage reaches or exceeds this limit, the system may + take drastic action such as power down or reset. At the very + least, it should report a fault. + in[0-*]_input Voltage input value. Unit: millivolt RO @@ -277,7 +297,7 @@ temp[1-*]_input Temperature input value. Unit: millidegree Celsius RO -temp[1-*]_crit Temperature critical value, typically greater than +temp[1-*]_crit Temperature critical max value, typically greater than corresponding temp_max values. Unit: millidegree Celsius RW @@ -289,6 +309,11 @@ temp[1-*]_crit_hyst from the critical value. RW +temp[1-*]_lcrit Temperature critical min value, typically lower than + corresponding temp_min values. + Unit: millidegree Celsius + RW + temp[1-*]_offset Temperature offset which is added to the temperature reading by the chip. @@ -337,9 +362,6 @@ Also see the Alarms section for status flags associated with temperatures. * Currents * ************ -Note that no known chip provides current measurements as of writing, -so this part is theoretical, so to say. - curr[1-*]_max Current max value Unit: milliampere RW @@ -464,6 +486,7 @@ limit-related alarms, not both. The driver should just reflect the hardware implementation. in[0-*]_alarm +curr[1-*]_alarm fan[1-*]_alarm temp[1-*]_alarm Channel alarm @@ -475,6 +498,8 @@ OR in[0-*]_min_alarm in[0-*]_max_alarm +curr[1-*]_min_alarm +curr[1-*]_max_alarm fan[1-*]_min_alarm fan[1-*]_max_alarm temp[1-*]_min_alarm @@ -490,7 +515,6 @@ to notify open diodes, unconnected fans etc. where the hardware supports it. When this boolean has value 1, the measurement for that channel should not be trusted. -in[0-*]_fault fan[1-*]_fault temp[1-*]_fault Input fault condition @@ -506,6 +530,7 @@ beep_enable Master beep enable RW in[0-*]_beep +curr[1-*]_beep fan[1-*]_beep temp[1-*]_beep Channel beep diff --git a/Documentation/hwmon/thmc50 b/Documentation/hwmon/thmc50 index 9639ca93d55..8a7772ade8d 100644 --- a/Documentation/hwmon/thmc50 +++ b/Documentation/hwmon/thmc50 @@ -9,7 +9,7 @@ Supported chips: * Texas Instruments THMC50 Prefix: 'thmc50' Addresses scanned: I2C 0x2c - 0x2e - Datasheet: http://focus.ti.com/docs/prod/folders/print/thmc50.html + Datasheet: http://www.ti.com/ Author: Krzysztof Helt <krzysztof.h1@wp.pl> diff --git a/Documentation/hwmon/tmp102 b/Documentation/hwmon/tmp102 new file mode 100644 index 00000000000..8454a776312 --- /dev/null +++ b/Documentation/hwmon/tmp102 @@ -0,0 +1,26 @@ +Kernel driver tmp102 +==================== + +Supported chips: + * Texas Instruments TMP102 + Prefix: 'tmp102' + Addresses scanned: none + Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp102.html + +Author: + Steven King <sfking@fdwdc.com> + +Description +----------- + +The Texas Instruments TMP102 implements one temperature sensor. Limits can be +set through the Overtemperature Shutdown register and Hysteresis register. The +sensor is accurate to 0.5 degree over the range of -25 to +85 C, and to 1.0 +degree from -40 to +125 C. Resolution of the sensor is 0.0625 degree. The +operating temperature has a minimum of -55 C and a maximum of +150 C. + +The TMP102 has a programmable update rate that can select between 8, 4, 1, and +0.5 Hz. (Currently the driver only supports the default of 4 Hz). + +The driver provides the common sysfs-interface for temperatures (see +Documentation/hwmon/sysfs-interface under Temperatures). diff --git a/Documentation/hwmon/via686a b/Documentation/hwmon/via686a index d651b25f751..e5f90ab5c48 100644 --- a/Documentation/hwmon/via686a +++ b/Documentation/hwmon/via686a @@ -5,7 +5,7 @@ Supported chips: * Via VT82C686A, VT82C686B Southbridge Integrated Hardware Monitor Prefix: 'via686a' Addresses scanned: ISA in PCI-space encoded address - Datasheet: On request through web form (http://www.via.com.tw/en/support/datasheets/) + Datasheet: On request through web form (http://www.via.com.tw/en/resources/download-center/) Authors: Kyösti Mälkki <kmalkki@cc.hut.fi>, diff --git a/Documentation/hwmon/w83627ehf b/Documentation/hwmon/w83627ehf index b7e42ec4b26..13d556112fc 100644 --- a/Documentation/hwmon/w83627ehf +++ b/Documentation/hwmon/w83627ehf @@ -20,6 +20,10 @@ Supported chips: Prefix: 'w83667hg' Addresses scanned: ISA address retrieved from Super I/O registers Datasheet: not available + * Winbond W83667HG-B + Prefix: 'w83667hg' + Addresses scanned: ISA address retrieved from Super I/O registers + Datasheet: Available from Nuvoton upon request Authors: Jean Delvare <khali@linux-fr.org> @@ -32,8 +36,8 @@ Description ----------- This driver implements support for the Winbond W83627EHF, W83627EHG, -W83627DHG, W83627DHG-P and W83667HG super I/O chips. We will refer to them -collectively as Winbond chips. +W83627DHG, W83627DHG-P, W83667HG and W83667HG-B super I/O chips. +We will refer to them collectively as Winbond chips. The chips implement three temperature sensors, five fan rotation speed sensors, ten analog voltage sensors (only nine for the 627DHG), one @@ -68,14 +72,15 @@ follows: temp1 -> pwm1 temp2 -> pwm2 temp3 -> pwm3 -prog -> pwm4 (not on 667HG; the programmable setting is not supported by - the driver) +prog -> pwm4 (not on 667HG and 667HG-B; the programmable setting is not + supported by the driver) /sys files ---------- name - this is a standard hwmon device entry. For the W83627EHF and W83627EHG, - it is set to "w83627ehf" and for the W83627DHG it is set to "w83627dhg" + it is set to "w83627ehf", for the W83627DHG it is set to "w83627dhg", + and for the W83667HG it is set to "w83667hg". pwm[1-4] - this file stores PWM duty cycle or DC value (fan speed) in range: 0 (stop) to 255 (full) diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf index 44dd2bcc72b..fb145e5e722 100644 --- a/Documentation/hwmon/w83627hf +++ b/Documentation/hwmon/w83627hf @@ -5,23 +5,19 @@ Supported chips: * Winbond W83627HF (ISA accesses ONLY) Prefix: 'w83627hf' Addresses scanned: ISA address retrieved from Super I/O registers - Datasheet: http://www.winbond.com/PDF/sheet/w83627hf.pdf * Winbond W83627THF Prefix: 'w83627thf' Addresses scanned: ISA address retrieved from Super I/O registers - Datasheet: http://www.winbond.com/PDF/sheet/w83627thf.pdf * Winbond W83697HF Prefix: 'w83697hf' Addresses scanned: ISA address retrieved from Super I/O registers - Datasheet: http://www.winbond.com/PDF/sheet/697hf.pdf * Winbond W83637HF Prefix: 'w83637hf' Addresses scanned: ISA address retrieved from Super I/O registers - Datasheet: http://www.winbond.com/PDF/sheet/w83637hf.pdf * Winbond W83687THF Prefix: 'w83687thf' Addresses scanned: ISA address retrieved from Super I/O registers - Datasheet: Provided by Winbond on request + Datasheet: Provided by Winbond on request(http://www.winbond.com/hq/enu) Authors: Frodo Looijaard <frodol@dds.nl>, diff --git a/Documentation/hwmon/w83781d b/Documentation/hwmon/w83781d index c91e0b63ea1..ecbc1e4574b 100644 --- a/Documentation/hwmon/w83781d +++ b/Documentation/hwmon/w83781d @@ -9,7 +9,7 @@ Supported chips: * Winbond W83782D Prefix: 'w83782d' Addresses scanned: I2C 0x28 - 0x2f, ISA 0x290 (8 I/O ports) - Datasheet: http://www.winbond.com/PDF/sheet/w83782d.pdf + Datasheet: http://www.winbond.com * Winbond W83783S Prefix: 'w83783s' Addresses scanned: I2C 0x2d diff --git a/Documentation/hwmon/w83792d b/Documentation/hwmon/w83792d index 14a668ed8aa..8a023ce0b72 100644 --- a/Documentation/hwmon/w83792d +++ b/Documentation/hwmon/w83792d @@ -5,7 +5,7 @@ Supported chips: * Winbond W83792D Prefix: 'w83792d' Addresses scanned: I2C 0x2c - 0x2f - Datasheet: http://www.winbond.com.tw/E-WINBONDHTM/partner/PDFresult.asp?Pname=1035 + Datasheet: http://www.winbond.com.tw Author: Chunhao Huang Contact: DZShen <DZShen@Winbond.com.tw> |